


Useful Data
Me Mass of the earth 5.98 * 1024 kg
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K
R Gas constant 8.31 J/mol K
NA Avogadro’s number 6.02 * 1023 particles/mol
T0 Absolute zero -273�C
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20�C 343 m/s
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg
me Mass of the electron 9.11 * 10-31 kg
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A
e Fundamental unit of charge 1.60 * 10-19 C
c Speed of light in vacuum 3.00 * 108 m/s
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 eV s
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 eV s
aB Bohr radius 5.29 * 10-11 m

Common Prefixes
Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors
Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180�/p = 57.3�
1 rev = 360� = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations
Binominal Approximation: (1 + x)n � 1 + nx if x V 1

Small-Angle Approximation: sin u � tan u � u and cos u � 1 if u V 1 radian

Greek Letters Used in Physics
Alpha a Mu m

Beta b Pi p

Gamma � g Rho r

Delta � d Sigma g s

Epsilon P Tau t

Eta h Phi � f

Theta � u Psi c

Lambda l Omega � v
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Worked Examples walk the student carefully 
through detailed solutions, focusing on underlying 
reasoning and common pitfalls to avoid. 

NEW! Data-based Examples (shown here) help 
students with the skill of drawing conclusions from 
laboratory data.

106    c h a p t e r  4 . Kinematics in Two Dimensions

 Thus    vt = vr    and    at = ar    are analogous equations for the tangential velocity and 
acceleration. In  Example   4.14   , where we found the roulette ball to have angular 
acceleration    a = -1.89 rad/s2,    its tangential acceleration was   

    at = ar = (-1.89 rad/s2)(0.15 m) = -0.28 m/s2   

   eXAMPle 4.15   Analyzing rotational data 
 You’ve been assigned the task of measuring the start-up charac-
teristics of a large industrial motor. After several seconds, when 
the motor has reached full speed, you know that the angular ac-
celeration will be zero, but you hypothesize that the angular ac-
celeration may be constant during the first couple of seconds as the 
motor speed increases. To find out, you attach a shaft encoder to 
the 3.0-cm-diameter axle. A shaft encoder is a device that converts 
the angular position of a shaft or axle to a signal that can be read by 
a computer. After setting the computer program to read four values 
a second, you start the motor and acquire the following data:   

 Time (s)  Angle    (�)   

0.00   0

0.25  16

0.50  69

0.75 161

1.00 267

1.25 428

1.50 620

    a. Do the data support your hypothesis of a constant angular ac-
celeration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?  

   b. A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach    10 m/s2?      

  MoDel   The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.  

  vIsUAlIZe     FIGURe   4.38     shows that the blade tip has both a tangen-
tial and a radial acceleration.   

   a = 2m.    If the graph is not a straight line, our observation of 
whether it curves upward or downward will tell us whether the 
angular acceleration us increasing or decreasing. 

   FIGURe   4.39     is the graph of    u    versus    t 2,    and it confirms our 
hypothesis that the motor starts up with constant angular ac-
celeration. The best-fit line, found using a spreadsheet, gives 
a slope of    274.6�/s2.    The units come not from the spreadsheet 
but by looking at the units of rise    (�)    over run (   s2    because we’re 
graphing    t 2    on the  x -axis). Thus the angular acceleration is 

    a = 2m = 549.2�/s2 *
p rad

180�
= 9.6 rad/s2   

 where we used    180� = p rad    to convert to SI units of    rad/s2.     

  FIGURe 4.38         Pictorial representation of the axle and blade.   
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  FIGURe 4.39         Graph of    u    versus    t 2    for the motor shaft.   

  solve 
    a.  If  the motor starts up with constant angular acceleration, with 

   ui = 0    and    vi = 0 rad/s,    the angle-time equation of rotational 
kinematics is    u =

1
2  

at 2.    This can be written as a linear equation 
   y = mx + b    if we let    u = y    and    t 2 = x.    That is, constant angular 
acceleration predicts that a graph of    u    versus    t 2    should be a straight 
line with slope    m =

1
2  

a    and  y -intercept    b = 0.    We can test this. 
If the graph turns out to be a straight line with zero  y -intercept, 
it will confirm the hypothesis of constant angular acceleration and 
we can then use its slope to determine the angular acceleration: 

   b. The magnitude of the linear acceleration is 

    a = 2ar 

2 + at 

2   

 Constant angular acceleration implies constant tangential ac-
celeration, and the tangential acceleration of the blade tip is 

    at = ar = (9.6 rad/s2)(0.38 m) = 3.65 m/s2   

 We were careful to use the blade’s radius, not its diameter, and 
we kept an extra significant figure to avoid round-off error. The 
radial (centripetal) acceleration increases as the rotation speed 
increases, and the total acceleration reaches    10 m/s2    when 

    ar = 2a2 - at 

2 = 2(10 m/s2)2 - (3.65 m/s2)2 = 9.31 m/s2   

 Radial acceleration is    ar = v2r,    so the corresponding angular 
velocity is 

    v = Aar

r
= B 9.31 m/s2

0.38 m
= 4.95 rad/s   

 For constant angular acceleration,    v = at,    so this angular ve-
locity is achieved at 

    t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s   

 Thus it takes    0.52 s    for the acceleration of the blade tip to reach 
   10 m/s2.        

  Assess   The motor has not completed 2 full revolutions in    1.5 s,    so 
it has a slow start and modest accelerations. A tangential accelera-
tion of    3.65 m/s2    seems reasonable, so we have confidence in our 
final answer of    0.52 s.      

1

2

268    c h a p t e r  10 . Energy

    (vix)2M = 0 m/s,    as expected, because we chose a moving reference frame in which 
ball 2 would be at rest. 

   FIGURe   10.35    b now shows a situation—with ball 2 initially at rest—in which we can 
use Equations 10.42 to find the post-collision velocities in frame M: 

    (vfx)1M =
m1 - m2

m1 + m2
 (vix)1M = 1.7 m/s

 (vfx)2M =
2m1

m1 + m2
 (vix)1M = 6.7 m/s 

(10.45)

   

 Reference frame M hasn’t changed—it’s still moving to the left in the lab frame at 
   3.0 m/s   —but the collision has changed both balls’ velocities in frame M. 

 To finish, we need to transform the post-collision velocities in frame M back to the 
lab frame L. We can do so with another application of the Galilean transformation: 

    (vfx)1L = (vfx)1M + (vx)ML = 1.7 m/s +  (-3.0 m/s) = -1.3 m/s

 (vfx)2L = (vfx)2M + (vx)ML = 6.7 m/s + (-3.0 m/s) = 3.7 m/s  
(10.46)

   

   FIGURe   10.36     shows the outcome of the collision in the lab frame. It’s not hard to confirm 
that these final velocities do, indeed, conserve both momentum and energy.  

  FIGURe 10.36         The post-collision velocities 
in the lab frame.   

(vfx)1L � �1.3 m/s (vfx)2L � 3.7 m/s

1 2

we will assume that the collision is perfectly elastic. Third, the 
ball, after it bounces off the paperweight, swings back up as a 
pendulum.  

  vIsUAlIZe     FIGURe   10.37     shows four distinct moments of time: as the 
ball is released, an instant before the collision, an instant after the 
collision but before the ball and paperweight have had time to move, 
and as the ball reaches its highest point on the rebound. Call the ball 
A and the paperweight B, so    mA = 0.20 kg    and    mB = 0.50 kg.      

   CHAlleNGe eXAMPle 10.10    A rebounding pendulum 
 A 200 g steel ball hangs on a 1.0-m-long string. The ball is pulled 
sideways so that the string is at a    45�    angle, then released. At the 
very bottom of its swing the ball strikes a 500 g steel paperweight 
that is resting on a frictionless table. To what angle does the ball 
rebound? 

  MoDel   We can divide this problem into three parts. First the ball 
swings down as a pendulum. Second, the ball and paperweight 
have a collision. Steel balls bounce off each other very well, so 

  FIGURe 10.37         Four moments in the collision of a pendulum with a paperweight.   

Find: u3 

0

L � 1.0 m

mB � 500 g

u0 � 45�

mA � 200 g
A

y

(v0)A � 0 m/s
(y0)A � L(1 � cos u0)

(v3)A � 0 m/s
(y3)A � L(1 � cos u3)

(v1)A � (v1x)A

(y1)A � 0

(v1x)B � 0 m/s

A
(v2x)B(v2x)A

A B
A

BB

Part 1: Conservation of energy

Part 2: Conservation of momentum

Part 3: Conservation of energy

u3

10.4 . Restoring Forces and Hooke’s Law    255

  STOP TO THINK 10.3    A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURe   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 

  The mass hangs in static equilibrium, so the upward spring force    F
u

sp    exactly bal-
ances the downward gravitational force    F

u

G    to give    F
u

net = 0
u

.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURe   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   

 The proportionality constant  k , the slope of the force-versus-displacement graph, is 
called the  spring constant.  The units of the spring constant are    N/m.    

  
PRoBleM-solvING
sTRATeGY 10.1        Conservation of mechanical energy  

  MoDel   Choose a system that is isolated and has no friction or other losses of 
mechanical energy.  

  vIsUAlIZe   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  solve   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURe 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
restoring force
exactly balances
the pull of gravity.

L0

FG

r

Fsp

r

  FIGURe 10.14         Measured data for the 
restoring force of a real spring.   

0.0

2.5

2.0

1.5

1.0

0.5

0.0
0.2 0.4 0.6 0.8

The restoring force is proportional
to the displacement of the spring
from equilibrium.

Fsp (N)

�s � L � L0 (m)

Slope � k � 3.5 N/m

NEW! Challenge Examples illustrate how to integrate 
multiple concepts and use more sophisticated reasoning.
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  solve   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURe 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
restoring force
exactly balances
the pull of gravity.
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  FIGURe 10.14         Measured data for the 
restoring force of a real spring.   
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  TACTICs
B o X  9 . 1  

      Drawing a before-and-after pictorial representation 

     ●1  Sketch the situation.   Use two drawings, labeled “Before” and “After,” to 
show the objects  before  they interact and again  after  they interact.  

    ●2  Establish a coordinate system.   Select your axes to match the motion.  
    ●3  Define symbols.   Define symbols for the masses and for the velocities before 

and after the interaction. Position and time are not needed.  
    ●4  List known information.   Give the values of quantities that are known from 

the problem statement or that can be found quickly with simple geometry or 
unit conversions. Before-and-after pictures are simpler than the pictures for 
dynamics problems, so listing known information on the sketch is adequate.  

    ●5  Identify the desired unknowns.   What quantity or quantities will allow you 
to answer the question? These should have been defined in step 3.  

   ●6   If appropriate,  draw a momentum bar chart  to clarify the situation and 
establish appropriate signs.   

 Exercises 17–19       

   eXAMPle 9.1   Hitting a baseball 
 A 150 g baseball is thrown with a speed of    20 m/s.    It is hit straight 
back toward the pitcher at a speed of    40 m/s.    The interaction force 
between the ball and the bat is shown in   FIGURe   9.7    . What  maxi-
mum  force    Fmax    does the bat exert on the ball? What is the  average  
force of the bat on the ball? 

  vIsUAlIZe     FIGURe   9.8     is a before-and-after pictorial representation. 
The steps from Tactics Box 9.1 are explicitly noted. Because    Fx    
is positive (a force to the right), we know the ball was initially 
moving toward the left and is hit back toward the right. Thus we 
converted the statements about  speeds  into information about 
 velocities,  with    vix    negative.   

  solve   Until now we’ve consistently started the mathematical rep-
resentation with Newton’s second law. Now we want to use the 
impulse-momentum theorem: 

    �px = Jx = area under the force curve   

 We know the velocities before and after the collision, so we can 
calculate the ball’s momenta: 

     pix = mvix = (0.15 kg)(-20 m/s) = -3.0 kg m/s

  pfx = mvfx = (0.15 kg)(40 m/s) = 6.0 kg m/s    
   MoDel   Model the baseball as a particle and the interaction as a 
collision.  

  FIGURe 9.7         The interaction 
force between the baseball 
and the bat.   
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   FIGURe 9.8         A before-and-after pictorial representation.   
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 right with a higher speed.

2. It’s hit to the right.

1. The ball was initially
 moving to the left.

Draw a momentum bar chart.6

  NoTe   � The generic subscripts i and f, for  initial  and  final,  are adequate in equa-
tions for a simple problem, but using numerical subscripts, such as    v1x    and    v2x,    will 
help keep all the symbols straight in more complex problems. �  
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  STOP TO THINK 10.3    A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s Law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURE   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 

  The mass hangs in static equilibrium, so the upward spring force    F
u

sp    exactly bal-
ances the downward gravitational force    F

u

G    to give    F
u

net = 0
u

.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURE   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   

 The proportionality constant  k , the slope of the force-versus-displacement graph, is 
called the  spring constant.  The units of the spring constant are    N/m.    

  
PROBLEM-SOLVING
STRATEGY 10.1        Conservation of mechanical energy  

  MODEL   Choose a system that is isolated and has no friction or other losses of 
mechanical energy.  

  VISUALIZE   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  SOLVE   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  ASSESS   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURE 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.
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the pull of gravity.
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  FIGURE 10.14         Measured data for the 
restoring force of a real spring.   
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solve

At the heart of the problem-solving instruction is the consistent 
4-step MODEL/ VISUALIZE/ SOLVE/ ASSESS approach, used 
throughout the book and all supplements. Problem-Solving 
Strategies provide detailed guidance for particular topics and 
categories of problems, often drawing on key skills outlined 
in the step-by-step procedures of Tactics Boxes. Problem-
Solving Strategies and Tactics Boxes are also illustrated in 
dedicated MasteringPhysics Skill-Builder Tutorials.
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knowledge (through Looking Back references).
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Part Knowledge 
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words, math, and 
figures and organizing 
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     s U M M A R Y 
 The goal of  Chapter   27    has been to understand and apply Gauss’s law. 

  Gauss’s law 
 For any  closed  surface enclosing net charge    Qin   , the net electric flux through 
the surface is 

    �e = C E
u # dA

u

=
Qin 

P0
    

 The electric flux    �e    is the same for  any  closed surface enclosing charge    Qin.     

  symmetry 
 The symmetry of the electric field must match the 
symmetry of the charge distribution. 

 In practice,    �e    is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.   

  General Principles     

     symmetric    
    Gaussian surface    

    electric flux,    �e        

    area vector,    A
u

       

    surface integral    
    Gauss’s law    

    screening      

  Terms and Notation 

     Charge  creates the electric field that 
is responsible for the electric flux.             

  Important Concepts       

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

     Flux  is the amount of electric field 
passing through a surface of area  A :   

    �e = E
u # A

u

   

 where    A
u

    is the  area vector.  

  
         For closed surfaces:  
 A net flux in or out indicates that 
the surface encloses a net charge. 

Field lines through but with no 
 net  flux mean that the surface 
encloses no  net  charge.     
        

     Surface integrals  calculate the flux by summing the fluxes 
through many small pieces of the surface:   

    �e = a E
u # dA

u

 S 3E
u # dA

u

   

  
         Two important situations:  
 If the electric field is everywhere 
tangent to the surface, then 

    �e = 0   

 If the electric field is everywhere 
perpendicular to the surface  and  has 
the same strength  E  at all points, then   

    �e = E A              

u

A

E

r

r dA
E

r

r

     Conductors in electrostatic equilibrium  

   •   The electric field is zero at all points within the conductor.  

  •   Any excess charge resides entirely on the exterior surface.  

  •   The external electric field is perpendicular to the surface and of magnitude    h/P0   , where    h    is the 
surface charge density.  

  •   The electric field is zero inside any hole within a conductor unless there is a charge in the hole.                   

  Applications   

E
r

�
�

�
�

�
�

�
�

�
�

�
�

�

E � 0
r r
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             This loudspeaker cone generates 
sound waves by oscillating back 
and forth at audio frequencies.    

 Oscillations   

      � looking Ahead   The goal of  Chapter   14    is to understand systems that oscillate with simple harmonic motion.  

 In this chapter you will learn to: 

   ■   Represent simple harmonic motion 
both graphically and mathematically.  

  ■   Understand the dynamics of oscillat-
ing systems.  

  ■   Recognize the similarities among 
many types of oscillating systems.   

 Simple harmonic motion has a very 
close connection to uniform circular 
motion. You’ll learn that an edge-on 
view of uniform circular motion is none 
other than simple harmonic motion.       

   simple Harmonic Motion 
 The most basic 
oscillation, with 
sinusoidal motion, 
is called  simple 
harmonic motion.    
  

       The oscillating cart 
is an example of 
simple harmonic 
motion. You’ll learn 
how to use the 
mass and the spring 
constant to deter-
mine the frequency 
of oscillation.    

  � looking Back 
 Section 4.5 Uniform circular motion  

Oscillation

     Pendulums 
 A mass swinging at the end of a string or 
rod is a  pendulum.  Its motion is another 
example of simple harmonic motion.     

       The period of a pendu-
lum is determined by 
the length of the string; 
neither the mass nor 
the amplitude matters. 
Consequently, the pen-
dulum was the basis of 
time keeping for many 
centuries.     

  Damping and Resonance 
 If there’s drag or other dissipation, then 
the oscillation “runs down.” This is 
called a  damped oscillation.      

       The amplitude of 
a damped oscil-
lation undergoes 
 exponential 
decay.     

 Oscillations can increase in amplitude, 
sometimes dramatically, when driven at 
their natural oscillation frequency. This 
is called  resonance.     

t

x

0

�A

A

     energy of oscillations 
 If there is no friction or other dissipa-
tion, then the mechanical energy of an 
oscillator is conserved. Conservation of 
energy will be an important tool.     

       The system oscil-
lates between all 
kinetic energy and 
all potential energy          

  � looking Back 
 Section 10.5 Elastic potential energy 
 Section 10.6 Energy diagrams  

0

All potential

All kinetic

A
x

�A

     springs 
 Simple harmonic motion occurs when 
there is a  linear restoring force.  The 
simplest example is 
a mass on a spring. 
You will learn how to 
determine the period 
of oscillation.     

       The “bounce” at the 
bottom of a bungee 
jump is an exhilarating 
example of a mass 
oscillating on a spring.          

  � looking Back 
 Section 10.4 Restoring forces  

NEW! PhET Simulations and Tutorials allow students to 
explore real-life phenomena and discover the underlying physics. 
Sixteen tutorials are provided in the MasteringPhysics item 
library, and 76 PhET simulations are available in the Study Area 
and Pearson eText, along with the comprehensive library of 
ActivPhysics applets and applet-based tutorials.
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  static equilibrium 

   eXAMPle 6.1   Finding the force on the kneecap 
 Your kneecap (patella) is attached by a tendon to your quad-
riceps muscle. This tendon pulls at a    10�    angle relative to the 
femur, the bone of your upper leg. The patella is also attached 
to your lower leg (tibia) by a tendon that pulls parallel to the 
leg. To balance these forces, the lower end of your femur 
pushes outward on the patella. Bending your knee increases 

the tension in the tendons, and both have a tension of 60 N 
when the knee is bent to make a    70�    angle between the upper 
and lower leg. What force does the femur exert on the kneecap 
in this position? 

  MoDel   Model the kneecap as a particle in static equilibrium.  

  vIsUAlIZe     FIGURe   6.1     shows how to draw a pictorial representa-
tion. We’ve chosen to align the  x -axis with the femur. The three 
forces—shown on the free-body diagram—are labeled    T 

u

1    and    T 
u

2    
for the tensions and    F

u

    for the femur’s push. Notice that we’ve 
 defined  angle    u    to indicate the direction of the femur’s force on 
the kneecap.   

  solve   This is a static-equilibrium problem, with three forces on 
the kneecap that must sum to zero. Newton’s first law, written in 
component form, is 

     (Fnet)x = a
i

(Fi)x = T1x + T2x + Fx = 0

  (Fnet)y = a
i

(Fi)y = T1y + T2y + Fy = 0   

  NoTe   � You might have been tempted to write    - T1x    in the equation 
since    T 

u

1    points to the left. But the net force, by definition, is the  sum  
of all the individual forces. That fact that    T 

u

1    points to the left will be 
taken into account when we  evaluate  the components. �  

 The components of the force vectors can be evaluated directly 
from the free-body diagram: 

     T1x = -T1 cos 10�  T1y = T1 sin 10�

  T2x = -T2 cos 70�   T2y = -T2 sin 70�

  Fx = F cos u     Fy = F sin u   

  This is where signs enter , with    T1x    being assigned a negative value 
because    T 

u

1    points to the left. Similarly,    T 
u

2    points both to the left 
and down, so both    T2x    and    T2y    are negative. With these compo-
nents, Newton’s first law becomes 

     -T1 cos 10� - T2 cos 70� + F cos u = 0

  T1 sin 10� - T2 sin 70� + F sin u = 0   

 These are two simultaneous equations for the two unknowns    F    
and    u.    We will encounter equations of this form on many occa-
sions, so make a note of the method of solution. First, rewrite the 
two equations as 

     F cos u = T1 cos 10� + T2 cos 70�

  F sin u = -T1 sin 10� + T2 sin 70�   

 Next, divide the second equation by the first to eliminate    F:    

    
F sin u

F cos u
= tan u =

-T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70�
   

 Then solve for    u:    

     u =  tan-11 -T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70� 2
  = tan-11 - (60 N) sin 10� + (60 N) sin 70�

(60 N) cos 10� + (60 N) cos 70� 2 = 30�   

 Finally, use    u    to find    F:    

     F =
T1 cos 10� + T2 cos 70�

cos u

  =
(60 N) cos 10� + (60 N) cos 70�)

cos 30�
= 92 N   

 The question asked What force? and force is a vector, so we must 
specify both the magnitude and the direction. With the knee in this 
position, the femur exerts a force    F

u

= (92 N, 30� above horizontal)    
on the kneecap.  

  Assess   The magnitude of the force would be 0 N if the leg were 
straight, 120 N if the knee could be bent    180�    so that the two 
tendons pull in parallel. The knee is closer to fully bent than to 
straight, so we would expect a femur force between 60 N and 
120 N. Thus the calculated magnitude of 92 N seems reasonable.    
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   FIGURe 6.1         Pictorial representation of the kneecap in static equilibrium.   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    

BIO

   63. ||    A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion.   FIGURe   P14.63     
shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    
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   63. ||    A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion.   FIGURe   P14.63     
shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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ber bands is essentially unchanged as the mass oscillates.    
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is low, the penny rides up and down without difficulty. If the 
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where ordinary tasks seem easier than on earth, but you can’t 
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from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
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    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
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15. The graph shows how the magnetic field changes
through a rectangular loop of wire with resistance
R. Draw a graph of the current in the loop as a
function of time. Let a counterclockwise 
current be positive, a clockwise current be
negative.

a. What is the magnetic flux through the loop at ?

b. Does this flux change between and ? 

c. Is there an induced current in the loop between and ? 

d. What is the magnetic flux through the loop at ? 

e. What is the change in flux through the loop between and ?

f. What is the time interval between and ?

g. What is the magnitude of the induced emf between and ?

h. What is the magnitude of the induced current between and ?

i. Does the magnetic field point out of or into the loop?

f. Between and , is the magnetic flux increasing or decreasing?

g. To oppose the change in the flux between and , should the 
magnetic field of the induced current point out of or into the loop?

h. Is the induced current between and positive or negative?

i. Does the flux through the loop change after ?

j. Is there an induced current in the loop after ?

k. Use all this information to draw a graph of the induced current. Add appropriate labels on
the vertical axis.
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NEW! Math Remediation found within selected tutorials provide just-
in-time math help and allow students to brush up on the most important 
mathematical concepts needed to successfully complete assignments. This 
new feature links students directly to math review and practice helping 
students make the connection between math and physics.

NEW! Enhanced end-of-chapter problems in 
MasteringPhysics now offer additional support such 
as problem-solving strategy hints, relevant math 
review and practice, links to the eText, and links to 
the related Video Tutor Solution.
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Pre-Built Assignments. For every chapter in the book, 
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 • Add password protection.
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 • Randomize question order in an assignment.
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Gradebook

 • Every assignment is graded automatically.

 • Shades of red highlight vulnerable students and challenging 
assignments.

 • The Gradebook Diagnostics screen provides your favorite weekly 
diagnostics, summarizing grade distribution, improvement in scores 
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Class Performance on Assignment. Click on a problem to see 
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common wrong answers. Compare results at every stage with the 
national average or with your previous class.

NEW! Learning Outcomes. In addition to being able to create 
your own learning outcomes to associate with questions in an 
assignment, you can now select content that is tagged to a large 
number of publisher-provided learning outcomes. You can also 
print or export student results based on learning outcomes for your 
own use or to incorporate into reports for your administration.

www.masteringphysics.com


Preface to the Instructor

In	 2003	 we	 published	 Physics for Scientists and Engineers:	 A Strategic Approach.	
This	was	the	first	comprehensive	introductory	textbook	built	from	the	ground	up	on	
research	into	how	students	can	more	effectively	learn	physics.	The	development	and	
testing	that	led	to	this	book	had	been	partially	funded	by	the	National	Science	Founda-
tion.	This	first	edition	quickly	became	the	most	widely	adopted	new	physics	textbook	
in	more	than	30	years,	meeting	widespread	critical	acclaim	from	professors	and	stu-
dents.	For	the	second	edition,	and	now	the	third,	we	have	built	on	the	research-proven	
instructional	techniques	introduced	in	the	first	edition	and	the	extensive	feedback	from	
thousands	of	users	to	take	student	learning	even	further.

Objectives
My	primary	goals	 in	writing	Physics for Scientists and Engineers: A Strategic Ap
proach	have	been:

	■	 To	produce	a	textbook	that	is	more	focused	and	coherent,	less	encyclopedic.
	■	 To	move	key	results	from	physics	education	research	into	the	classroom	in	a	way	

that	allows	instructors	to	use	a	range	of	teaching	styles.
	■	 To	provide	a	balance	of	quantitative	reasoning	and	conceptual	understanding,	with	

special	attention	to	concepts	known	to	cause	student	difficulties.
	■	 To	develop	students’	problem-solving	skills	in	a	systematic	manner.
	■	 To	support	an	active-learning	environment.

These	goals	and	 the	rationale	behind	 them	are	discussed	at	 length	 in	 the	Instructor 
Guide	and	in	my	small	paperback	book,	Five Easy Lessons: Strategies for Successful 
Physics Teaching.	Please	request	a	copy	from	your	local	Pearson	sales	representative	
if	it	is	of	interest	to	you	(ISBN	978-0-8053-8702-5).

What’s New to This Edition
For	this	third	edition,	we	continue	to	apply	the	best	results	from	educational	research,	
and	to	refine	and	tailor	 them	for	 this	course	and	its	students.	At	 the	same	time,	 the	
extensive	feedback	we’ve	received	has	led	to	many	changes	and	improvements	to	the	
text,	the	figures,	and	the	end-of-chapter	problems.	These	include:

	■	 New	illustrated	Chapter Previews	give	a	visual	overview	of	the	upcoming	ideas,	
set	them	in	context,	explain	their	utility,	and	tie	them	to	existing	knowledge	(through	
Looking Back	references).	These	previews	build	on	the	cognitive	psychology	con-
cept	of	an	“advance	organizer.”

	■	 New	Challenge Examples	 illustrate	how	 to	 integrate	multiple	concepts	and	use	
more	 sophisticated	 reasoning	 in	 problem-solving,	 ensuring	 an	 optimal	 range	 of	
worked	examples	for	students	to	study	in	preparation	for	homework	problems.

	■	 New	Data-based Examples	help	 students	with	 the	 skill	of	drawing	conclusions	
from	laboratory	data.	Designed	to	supplement	lab-based	instruction,	these	exam-
ples	also	help	students	in	general	with	mathematical	reasoning,	graphical	interpre-
tation,	and	assessment	of	results.

End-of-chapter	problem	enhancements	include	the	following:

	■	 Data from Mastering Physics® have been thoroughly analyzed	to	ensure	an	opti-
mal	range	of	difficulty,	problem	types,	and	topic	coverage.	In	addition,	the	wording	

viii



Preface to the Instructor    ix

of	every	problem	has	been	reviewed	for	clarity.	Roughly	20%	of	the	end-of-chapter	
problems	are	new	or	significantly	revised.

	■	 Data-based problems	allow	students	to	practice	drawing	conclusions	from	data	(as	
demonstrated	in	the	new	data-based	examples	in	the	text).

	■	 An increased emphasis on symbolic answers	encourages	students	to	work	alge-
braically.	The	Student Workbook	also	contains	new	exercises	to	help	students	work	
through	symbolic	solutions.

	■	 Bio problems	are	set	in	life-science,	bioengineering,	or	biomedical	contexts.

Targeted	 content	 changes	 have	 been	 carefully	 implemented	 throughout	 the	 book.	
These	include:

	■	 Life-science and bioengineering worked examples and applications	 focus	on	
the	physics	of	life-science	situations	in	order	to	serve	the	needs	of	life-science	stu-
dents	taking	a	calculus-based	physics	class.

	■	 Descriptive text throughout has been streamlined	to	focus	the	presentation	and	
generate	a	shorter	text.

	■	 The	 chapter	 on	 Modern Optics and Matter	 Waves	 has	 been	 re-worked	 into	
Chapters 38	and	39	to	streamline	the	coverage	of	this	material.

At	the	front	of	the	book,	you’ll	find	an	illustrated	walkthrough	of	the	new	pedagogical	
features	 in	 this	 third	 edition.	The	 Preface to the Student	 demonstrates	 how	 all	 the	
book’s	features	are	designed	to	help	your	students.

Textbook Organization
The	42-chapter	extended	edition	(ISBN	978-0-321-73608-6/0-321-73608-7)	of	Physics 
for Scientists and Engineers	is	intended	for	a	three-semester	course.	Most	of	the	36-chapter	
standard	edition	(ISBN	978-0-321-75294-9/0-321-75294-5),	ending	with	relativity,	can	
be	covered	in	two	semesters,	although	the	judicious	omission	of	a	few	chapters	will	avoid	
rushing	 through	 the	material	and	give	students	more	 time	 to	develop	 their	knowledge	
and skills.

There’s	 a	 growing	 sentiment	 that	 quantum	 physics	 is	 quickly	 becoming	 the	
province of	engineers,	not	just	scientists,	and	that	even	a	two-semester	course	should	
include	a	reasonable	introduction	to	quantum	ideas.	The	Instructor Guide	outlines	a	
couple	of	routes	through	the	book	that	allow	most	of	the	quantum	physics	chapters	
to	be	included	in	a	two-semester	course.	I’ve	written	the	book	with	the	hope	that	an	
increasing	number	of	instructors	will	choose	one	of	these	routes.

The	 full	 textbook	 is	 divided	 into	 seven	 parts:	 Part	 I:	 Newton’s Laws,	 Part	 II:	
Conservation Laws,	Part	III:	Applications of Newtonian Mechanics,	Part	IV:	Ther
mo dynamics,	 Part	V:	 Waves and Optics,	 Part	VI:	 Electricity and Magnetism,	 and	
Part  VII:	 Relativity and Quantum Physics.	 Although	 I	 recommend	 covering	 the	
parts  in	 this	 order	 (see	 below),	 doing	 so	 is	 by	 no	 means	 essential.	 Each	 topic	 is	
self-contained,	 and	 Parts	 III–VI	 can	 be	 rearranged	 to	 suit	 an	 instructor’s	 needs.	
To	 facilitate	a	 reordering	of	 topics,	 the	 full	 text	 is	available	 in	 the	 five	 individual	
volumes	listed	in	the	margin.

Organization Rationale:	Thermodynamics	is	placed	before	waves	because	it	is	a	
continuation	of	ideas	from	mechanics.	The	key	idea	in	thermodynamics	is	energy,	and	
moving	from	mechanics	into	thermodynamics	allows	the	uninterrupted	development	
of	this	important	idea.	Further,	waves	introduce	students	to	functions	of	two	variables,	
and	the	mathematics	of	waves	is	more	akin	to	electricity	and	magnetism	than	to	me-
chanics.	Thus	moving	 from	waves	 to	 fields	 to	quantum	physics	provides	 a	gradual	
transition	of	ideas	and	skills.

The	 purpose	 of	 placing	 optics	 with	 waves	 is	 to	 provide	 a	 coherent	 presentation	
of	wave	physics,	one	of	the	two	pillars	of	classical	physics.	Optics	as	it	is	presented	
in	 introductory	 physics	 makes	 no	 use	 of	 the	 properties	 of	 electromagnetic	 fields.	
There’s	 little	 reason	other	 than	historical	 tradition	 to	delay	optics	until	 after	E&M.	

 ■ Extended edition, with modern 
physics (ISBN 978-0-321-73608-6 / 
0-321-73608-7): Chapters 1–42.

 ■ Standard edition (ISBN 978-0-
321-75294-9 / 0-321-75294-5):  
Chapters 1–36.

 ■ Volume 1 (ISBN 978-0-321-75291-8 / 
0-321-75291-0) covers mechanics: 
Chapters 1–15.

 ■ Volume 2 (ISBN 978-0-321-75318-2 / 
0-321-75318-6) covers thermodynamics: 
Chapters 16–19.

 ■ Volume 3 (ISBN 978-0-321-75317-5 / 
0-321-75317-8) covers waves and 
optics: Chapters 20–24.

 ■ Volume 4 (ISBN 978-0-321-75316-8 / 
0-321-75316-X) covers electricity  
and magnetism, plus relativity: 
Chapters 25–36.

 ■ Volume 5 (ISBN 978-0-321-75315-1 / 
0-321-75315-1) covers relativity and 
quantum physics: Chapters 36–42.

 ■ Volumes 1–5 boxed set (ISBN 978-0-
321-77265-7 / 0-321-77265-2).
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The	documented	difficulties	that	students	have	with	optics	are	difficulties	with	waves,	
not	difficulties	with	electricity	and	magnetism.	However,	the	optics	chapters	are	eas-
ily	deferred	until	the	end	of	Part	VI	for	instructors	who	prefer	that	ordering	of	topics.

The Student Workbook
A	key	component	of	Physics for Scientists and Engineers: A Strategic Approach	is	the	
accompanying	Student Workbook.	The	workbook	bridges	 the	gap	between	 textbook	
and	homework	problems	by	providing	students	the	opportunity	to	learn	and	practice	
skills	prior	 to	using	 those	skills	 in	quantitative	end-of-chapter	problems,	much	as	a	
musician	practices	technique	separately	from	performance	pieces.	The	workbook	ex-
ercises,	which	are	keyed	to	each	section	of	the	textbook,	focus	on	developing	specific	
skills,	ranging	from	identifying	forces	and	drawing	free-body	diagrams	to	interpreting	
wave	functions.

The	 workbook	 exercises,	 which	 are	 generally	 qualitative	 and/or	 graphical,	 draw	
heavily	upon	the	physics	education	research	literature.	The	exercises	deal	with	issues	
known	 to	 cause	 student	 difficulties	 and	 employ	 techniques	 that	 have	 proven	 to	 be	
effective	at	overcoming	those	difficulties.	The	workbook	exercises	can	be	used	in	class	
as	part	of	an	active-learning	 teaching	strategy,	 in	 recitation	sections,	or	as	assigned	
homework.	 More	 information	 about	 effective	 use	 of	 the	 Student Workbook	 can	 be	
found	in	the	Instructor Guide.

Available	 versions:	 Extended	 (ISBN	 978-0-321-75308-3/0-321-75308-9),	 Stan-
dard	(ISBN	978-0-321-75309-0/0-321-75309-7),	Volume	1	(ISBN	978-0-321-75314-
4/0-321-75314-3),	Volume	 2	 (ISBN	 978-0-321-75313-7/0-321-75313-5),	Volume	 3	
(ISBN	 978-0-321-75312-0/0-321-75310-0),	 Volume	 4	 (ISBN	 978-0-321-75311-3/	
0-321-75311-9),	and	Volume	5	(ISBN	978-0-321-75310-6/0-321-75310-0).

Instructor Supplements
	■	 The	 Instructor Guide for	 Physics for Scientists and 

Engineers	 (ISBN	 978-0-321-74765-5/0-321-74765-8)	
offers	 detailed	 comments	 and	 suggested	 teaching	 ideas	
for	every	chapter,	 an	extensive	 review	of	what	has	been	
learned	 from	physics	 education	 research,	 and	guidelines		
for	 using	 active-learning	 techniques	 in	 your	 classroom.	
This	 invaluable	 guide	 is	 available	 on	 the	 Instructor		
Resource	 DVD,	 and	 via	 download,	 either	 from	 the		
MasteringPhysics	 Instructor	Area	 or	 from	 the	 Instructor	
Resource	Center	(www.pearsonhighered.com/educator).

	■	 The	 Instructor Solutions	 (ISBN	 978-0-321-76940-4/	
0-321-76940-6),	 written	 by	 the	 author,	 Professor	 Larry	
Smith	 (Snow	 College),	 and	 Brett	 Kraabel	 (Ph.D.,	 Uni-
versity	 of	 California,	 Santa	 Barbara),	 provide	 complete	
solutions	 to	 all	 the	 end-of-chapter	 problems.	 The	 solu-
tions	follow	the	four-step	Model/Visualize/Solve/Assess	
procedure	 used	 in	 the	 Problem-Solving	 Strategies	 and	
in	 all	 worked	 examples.	 The	 solutions	 are	 available	 by	
chapter	 as	 editable	 Word®	 documents	 and	 as	 PDFs	 for	
your	own	use	or	for	posting	on	your	password-protected	
course	website.	Also	provided	are	PDFs	of	handwritten	
solutions	to	all	of	the	exercises	in	the	Student Workbook,	
written	 by	 Professor	 James	Andrews	 and	 Brian	 Garcar	
(Youngstown	State	University).	All	solutions	are	available	

only	 via	 download,	 either	 from	 the	 MasteringPhysics	
Instructor	Area	 or	 from	 the	 Instructor	 Resource	 Center	
(www.pearsonhighered.com/educator).

	■	 The	cross-platform	Instructor Resource DVD	(ISBN	978-
0-321-75456-1/0-321-75456-5)	 provides	 a	 comprehensive	
library	 of	 more	 than	 220	 applets	 from	 ActivPhysics 
OnLine	and	76	PhET simulations,	as	well	as	all	figures,	
photos,	tables,	summaries,	and	key	equations	from	the	text-
book	in	JPEG	format.	In	addition,	all	the	Problem-Solving	
Strategies,	Tactics	Boxes,	and	Key	Equations	are	provided	
in	 editable	 Word	 format.	 PowerPoint®	 Lecture Outlines	
with	 embedded	 Classroom Response System “Clicker” 
Questions	(including	reading	quizzes)	are	also	provided.

	■	 MasteringPhysics®	 (www.masteringphysics.com)	
is	the	most	advanced,	educationally	effective,	and	
widely	used	physics	homework	and	tutorial	sys-

tem	in	the	world.	Eight	years	in	development,	it	provides	
instructors	with	a	library	of	extensively	pre-tested	end-of-	
chapter	 problems	 and	 rich,	 multipart,	 multistep	 tutorials	
that	incorporate	a	wide	variety	of	answer	types,	wrong	an-
swer	 feedback,	 individualized	 help	 (comprising	 hints	 or	
simpler	 sub-problems	 upon	 request),	 all	 driven	 by	 the	
largest	 metadatabase	 of	 student	 problem-solving	 in	 the	
world.	NSF-sponsored	published	research	(and	subsequent	

Force and Motion . C H A P T E R 5 5-3

5.4 What Do Forces Do? A Virtual Experiment

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

5.5 Newton’s Second Law

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.
b. Below the figure, draw and label the object’s acceleration vector.

x

y 

0 1 2

Force (rubber bands)

A
cc
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3 4

The figure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-
versus-force graphs for objects of mass
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studies)	show	that	MasteringPhysics	has	dramatic	educa-
tional	results.	MasteringPhysics	allows	instructors	to	build	
wide-ranging	homework	assignments	of	just	the	right	dif-
ficulty	and	length	and	provides	them	with	efficient	tools	to	
analyze	in	unprecedented	detail	both	class	trends	and	the	
work	of	any	student.

	 	 	 MasteringPhysics	routinely	provides	instant	and	in-
dividualized	feedback	and	guidance	to	more	than	100,000	
students	 every	 day.	 A	 wide	 range	 of	 tools	 and	 support	
make	MasteringPhysics	fast	and	easy	for	instructors	and	
students	 to	 learn	 to	 use.	 Extensive	 class	 tests	 show	 that	
by	the	end	of	their	course,	an	unprecedented	nine	of	ten	
students	recommend	MasteringPhysics	as	their	preferred	
way	to	study	physics	and	do	homework.

	 	 For	 the	 third	 edition	 of	 Physics for Scientists and 
Engineers,	MasteringPhysics	now	has	the	following	func-
tionalities:

	 ■	 Learning Outcomes:	In	addition	to	being	able	to	create	
their	own	learning	outcomes	to	associate	with	questions	
in	an	assignment,	professors	can	now	select	content	that	
is	tagged	to	a	large	number	of	publisher-provided	learn-
ing	outcomes.	They	can	also	print	or	export	student	re-
sults	based	on	learning	outcomes	for	their	own	use	or	to	
incorporate	into	reports	for	their	administration.

	 ■	 Quizzing and Testing Enhancements:	These	include	
options	 to	 hide	 item	 titles,	 add	 password	 protection,	
limit	access	to	completed	assignments,	and	to	random-
ize	question	order	in	an	assignment.

	 ■	 Math Remediation:	 Found	 within	 selected	 tutorials,	
special	links	provide	just-in-time	math	help	and	allow	
students	to	brush	up	on	the	most	important	mathemati-
cal	 concepts	 needed	 to	 successfully	 complete	 assign-
ments.	This	new	feature	links	students	directly	to	math	

review	and	practice	helping	students	make	the	connec-
tion	between	math	and	physics.

	 ■	 Enhanced End-of-Chapter Problems:	 A	 subset	 of	
homework	problems	now	offer	additional	support	such	
as	problem-solving	strategy	hints,	relevant	math	review	
and	practice,	links	to	the	eText,	and	links	to	the	related	
Video	Tutor	Solution.

	■	 ActivPhysics OnLine™	 (accessed	 through	 the	
Self	Study	area	within	www.masteringphysics.com)	
provides	 a	 comprehensive	 library	 of	 more	 than	

220	tried	and	tested	ActivPhysics	core	applets	updated	for	
web	delivery	using	the	latest	online	technologies.	In	addi-
tion,	 it	 provides	 a	 suite	 of	 highly	 regarded	 applet-based	
tutorials	 developed	 by	 education	 pioneers	 Alan	 Van	
Heuvelen	and	Paul	D’Alessandris.

	 	 	 The	 online	 exercises	 are	 designed	 to	 encourage	
students	to	confront	misconceptions,	reason	qualitatively	
about	 physical	 processes,	 experiment	 quantitatively,	 and	
learn	to	think	critically.	The	highly	acclaimed	ActivPhysics	
OnLine	companion	workbooks	help	students	work	through	
complex	concepts	and	understand	them	more	clearly.	The	
applets	 from	 the	 ActivPhysics	 OnLine	 library	 are	 also	
available	on	the	Instructor	Resource	DVD	for	this	text.

	■	 The	Test Bank	 (ISBN	978-0-321-74766-2/0-321-74766-6)	
contains	 more	 than	 2,000	 high-quality	 problems,	 with	 a	
range	 of	 multiple-choice,	 true/false,	 short-answer,	 and	
regular	homework-type	questions.	Test	files	are	provided	
both	 in	TestGen	 (an	 easy-to-use,	 fully	 networkable	 pro-
gram	 for	 creating	 and	 editing	 quizzes	 and	 exams)	 and	
Word	format.	They	are	available	only	via	download,	either		
from	 the	 MasteringPhysics	 Instructor	 Area	 or	 from	 the	
Instructor	 Resource	 Center	 (www.pearsonhighered.com/
educator).

Student Supplements
	■	 The	Student Solutions Manuals Chapters 1–19	(ISBN	

978-0-321-74767-9/0-321-74767-4)	and	Chapters 20–42	
(ISBN	 978-0-321-77269-5/0-321-77269-5),	 written	 by	
the	 author,	 Professor	 Larry	 Smith	 (Snow	 College),	 and	
Brett	 Kraabel	 (Ph.D.,	 University	 of	 California,	 Santa		
Barbara),	provide	detailed	solutions	to	more	than	half	of	
the	 odd-numbered	 end-of-chapter	 problems.	 The	 solu-
tions	 follow	 the	 four-step	 Model/Visualize/Solve/Assess	
procedure	used	in	the	Problem-Solving	Strategies	and	in	
all	worked	examples.

	■	 MasteringPhysics®	(www.masteringphysics.com)	
is  a	 home	work,	 tutorial,	 and	 assessment	 system	
based	on	years	of	research	into	how	students	work	

physics	 problems	 and	 precisely	 where	 they	 need	 help.	
Studies	 show	 that	 students	 who	 use	 Mastering	Physics	
significantly	 increase	 their	 scores	 compared	 to	 hand-
written	 homework.	 MasteringPhysics	 achieves	 this	

improvement	 by	 providing	 students	 with	 instantaneous	
feedback	 specific	 to	 their	wrong	answers,	 simpler	 sub-
problems	upon	request	when	they	get	stuck,	and	partial	
credit	 for	 their	 method(s).	 This	 individualized,	 24/7	
Socratic	tutoring	is	recommended	by	9	out	of	10	students	
to	their	peers	as	the	most	effective	and	time-efficient	way	
to	study.

	■	 Pearson eText	 is	 available	 through	 MasteringPhysics,	
either	automatically	when	MasteringPhysics	is	packaged	
with	new	books,	or	available	as	a	purchased	upgrade	on-
line.	Allowing	 students	 access	 to	 the	 text	wherever	 they	
have	access	to	the	Internet,	Pearson	eText	comprises	the	
full	text,	including	figures	that	can	be	enlarged	for	better	
viewing.	With	eText,	students	are	also	able	to	pop	up	defi-
nitions	and	terms	to	help	with	vocabulary	and	the	reading	
of	the	material.	Students	can	also	take	notes	in	eText	using	
the	annotation	feature	at	the	top	of	each	page.
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Special	 thanks	 go	 to	 our	 third	 edition	 review	 panel:	 Kyle	
Altman,	Taner	Edis,	Kent	Fisher,	Marty	Gelfand,	Elizabeth	
George,	 Jason	 Harlow,	 Bob	 Jacobsen,	 David	 Lee,	 Gary	
Morris,	Eric	Murray,	and	Bruce	Schumm.

Gary	B.	Adams,	Arizona State University
Ed	Adelson,	Ohio State University
Kyle	Altmann,	Elon University
Wayne	R.	Anderson,	Sacramento City College
James	H.	Andrews,	Youngstown State University
Kevin	Ankoviak,	Las Positas College
David	Balogh,	Fresno City College
Dewayne	Beery,	Buffalo State College
Joseph	Bellina,	Saint Mary’s College
James	R.	Benbrook,	University of Houston
David	Besson,	University of Kansas

Randy	Bohn,	University of Toledo
Richard	A.	Bone,	Florida International University
Gregory	Boutis,	York College
Art	Braundmeier,	University of Southern Illinois, 

Edwardsville
Carl	Bromberg,	Michigan State University
Meade	Brooks,	Collin College
Douglas	Brown,	Cabrillo College
Ronald	Brown,	California Polytechnic State University, 

San Luis Obispo
Mike	Broyles,	Collin County Community College
Debra	Burris,	University of Central Arkansas
James	Carolan,	University of British Columbia
Michael	Chapman,	Georgia Tech University
Norbert	Chencinski,	College of Staten Island
Kristi	Concannon,	King’s College

Reviewers and Classroom Testers

	■	 Pearson Tutor Services	(www.pearsontutorservices.com)	
Each	student’s	subscription	to	MasteringPhysics	also	con-
tains	 complimentary	 access	 to	 Pearson	 Tutor	 Services,	
powered	 by	 Smarthinking,	 Inc.	 By	 logging	 in	 with	 their	
MasteringPhysics	ID	and	password,	they	will	be	connected	
to	 highly	 qualified	 e-instructors	 who	 provide	 additional	
interactive	online	tutoring	on	the	major	concepts	of	phys-
ics.	Some	restrictions	apply;	offer	subject	to	change.

	■	 ActivPhysics OnLine™	(accessed	through	the	Self	
Study	 area	 within	 www.masteringphysics.com)	

provides	 students	 with	 a	 suite	 of	 highly	 regarded	 applet-
based	tutorials	(see	above).	The	following	workbooks	help	
students	 work	 through	 complex	 concepts	 and	 understand	
them	more	clearly:

	■	 ActivPhysics OnLine Workbook, Volume 1: Mechanics • 
Thermal Physics • Oscillations & Waves	 (ISBN	 978-0-
8053-9060-5/0-8053-9060-X)

	■	 ActivPhysics OnLine Workbook, Volume 2: Electric-
ity & Magnetism • Optics • Modern Physics	(ISBN	978-
0-8053-9061-2/0-8053-9061-8)
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Preface to the Student

The	most	incomprehensible	thing	about	the	universe	is	that	it	is	comprehensible.
—Albert	Einstein

The	day	I	went	into	physics	class	it	was	death.
—Sylvia	Plath,	The Bell Jar

Let’s	have	a	little	chat	before	we	start.	A	rather	one-sided	chat,	admittedly,	because	
you	can’t	respond,	but	that’s	OK.	I’ve	talked	with	many	of	your	fellow	students	over	
the	years,	so	I	have	a	pretty	good	idea	of	what’s	on	your	mind.

What’s	your	reaction	to	taking	physics?	Fear	and	loathing?	Uncertainty?	Excite-
ment?	All	of	the	above?	Let’s	face	it,	physics	has	a	bit	of	an	image	problem	on	campus.	
You’ve	probably	heard	that	it’s	difficult,	maybe	downright	impossible	unless	you’re	
an	Einstein.	Things	that	you’ve	heard,	your	experiences	in	other	science	courses,	and	
many	other	factors	all	color	your	expectations	about	what	this	course	is	going	to	be	
like.

It’s	true	that	there	are	many	new	ideas	to	be	learned	in	physics	and	that	the	course,	
like	college	courses	in	general,	is	going	to	be	much	faster	paced	than	science	courses	
you	had	in	high	school.	I	think	it’s	fair	to	say	that	it	will	be	an	intense	course.	But	we	
can	 avoid	 many	 potential	 problems	 and	 difficulties	 if	 we	 can	 establish,	 here	 at	 the	
beginning,	what	this	course	is	about	and	what	is	expected	of	you—and	of	me!

Just	 what	 is	 physics,	 anyway?	 Physics	 is	 a	 way	 of	 thinking	 about	 the	 physical	
aspects	of	nature.	Physics	is	not	better	than	art	or	biology	or	poetry	or	religion,	which	
are	also	ways	to	think	about	nature;	it’s	simply	different.	One	of	the	things	this	course	
will	emphasize	is	that	physics	is	a	human	endeavor.	The	ideas	presented	in	this	book	
were	not	found	in	a	cave	or	conveyed	to	us	by	aliens;	they	were	discovered	and	devel-
oped	by	real	people	engaged	in	a	struggle	with	real	issues.	I	hope	to	convey	to	you	
something	of	the	history	and	the	process	by	which	we	have	come	to	accept	the	princi-
ples	that	form	the	foundation	of	today’s	science	and	engineering.

You	might	be	surprised	to	hear	that	physics	is	not	about	“facts.”	Oh,	not	that facts	
are	unimportant,	but	physics	 is	 far	more	 focused	on	discovering	relationships	 that	
exist	between	facts	and	patterns	that	exist	in	nature	than	on	learning	facts	for	their	
own	 sake.	 As	 a	 consequence,	 there’s	 not	 a	 lot	 of	 memorization	 when	 you	 study	
physics.	Some—there	are	 still	 definitions	 and	equations	 to	 learn—but	 less	 than	 in	
many	other	courses.	Our	emphasis,	instead,	will	be	on	thinking	and	reasoning.	This	is	
important	to	factor	into	your	expectations	for	the	course.

Perhaps	most	important	of	all,	physics is not math!	Physics	is	much	broader.	We’re	
going	 to	 look	for	patterns	and	relationships	 in	nature,	develop	 the	 logic	 that	 relates	
different	 ideas,	 and	 search	 for	 the	 reasons	why	 things	happen	 as	 they	do.	 In	 doing	
so,	we’re	going	to	stress	qualitative	reasoning,	pictorial	and	graphical	reasoning,	and	
reasoning	by	analogy.	And	yes,	we	will	use	math,	but	it’s	just	one	tool	among	many.

It	will	save	you	much	frustration	if	you’re	aware	of	this	physics–math	distinction	up	
front.	Many	of	you,	I	know,	want	to	find	a	formula	and	plug	numbers	into	it—that	is,	
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to	do	a	math	problem.	Maybe	that	worked	in	high	school	science	courses,	but	it	is	not	
what	this	course	expects	of	you.	We’ll	certainly	do	many	calculations,	but	the	specific	
numbers	are	usually	the	last	and	least	important	step	in	the	analysis.

Physics	is	about	recognizing	patterns.	For	example,	the	top	photograph	is	an	x-ray	
diffraction	pattern	showing	how	a	focused	beam	of	x	rays	spreads	out	after	passing	
through	a	crystal.	The	bottom	photograph	shows	what	happens	when	a	focused	beam	
of	electrons	is	shot	through	the	same	crystal.	What	does	the	obvious	similarity	in	these	
two	photographs	tell	us	about	the	nature	of	light	and	the	nature	of	matter?

As	you	study,	you’ll	sometimes	be	baffled,	puzzled,	and	confused.	That’s	perfectly	
normal	and	to	be	expected.	Making	mistakes	is	OK	too	if	you’re	willing	to	learn	from	
the	experience.	No	one	is	born	knowing	how	to	do	physics	any	more	than	he or	she	
is	born	knowing	how	to	play	the	piano	or	shoot	basketballs.	The	ability	to	do	physics	
comes	from	practice,	repetition,	and	struggling	with	the	ideas	until	you	“own”	them	
and  can	 apply	 them	 yourself	 in	 new	 situations.	 There’s	 no	 way	 to	 make	 learning	
effortless,	 at	 least	 for	 anything	 worth	 learning,	 so	 expect	 to	 have	 some	 difficult	
moments	ahead.	But	also	expect	to	have	some	moments	of	excitement	at	the	joy	of	
discovery.	There	will	be	instants	at	which	the	pieces	suddenly	click	into	place	and	you	
know	that	you	understand	a	powerful	idea.	There	will	be	times	when	you’ll	surprise	
yourself	by	successfully	working	a	difficult	problem	that	you	didn’t	think	you	could	
solve.	My	hope,	as	an	author,	is	that	the	excitement	and	sense	of	adventure	will	far	
outweigh	the	difficulties	and	frustrations.

Getting the Most Out of Your Course
Many	of	you,	I	suspect,	would	like	to	know	the	“best”	way	to	study	for	this	course.	
There	 is	 no	 best	 way.	 People	 are	 different,	 and	 what	 works	 for	 one	 student	 is	 less	
effective	for	another.	But	I	do	want	to	stress	that	reading the text	is	vitally	important.	
Class time	will	be	used	to	clarify	difficulties	and	to	develop	tools	for	using	the	knowl-
edge,	but	your	instructor	will	not	use	class	time	simply	to	repeat	information	in	the	
text.	The	 basic	 knowledge	 for	 this	 course	 is	 written	 down	 on	 these	 pages,	 and	 the	
numberone expectation	 is	 that	 you	 will	 read	 carefully	 and	 thoroughly	 to	 find	 and	
learn that	knowledge.

Despite	there	being	no	best	way	to	study,	I	will	suggest	one	way	that	is	successful	
for	many	students.	It	consists	of	the	following	four	steps:

	 1.	 Read each chapter before it is discussed in class.	I	cannot	stress	too	strongly	
how	important	this	step	is.	Class	attendance	is	much	more	effective	if	you	are	
prepared.	When	you	first	read	a	chapter,	focus	on	learning	new	vocabulary,	defi-
nitions,	and	notation.	There’s	a	 list	of	 terms	and	notations	at	 the	end	of	each	
chapter.	Learn	them!	You	won’t	understand	what’s	being	discussed	or	how	the	
ideas	are	being	used	if	you	don’t	know	what	the	terms	and	symbols	mean.

	 2.	 Participate actively in class.	Take	notes,	ask	and	answer	questions,	and	partici-
pate	in	discussion	groups.	There	is	ample	scientific	evidence	that	active partici
pation	is	much	more	effective	for	learning	science	than	passive	listening.

	 3.	 After class, go back for a careful re-reading of the chapter.	In	your	second	
reading,	pay	closer	attention	to	the	details	and	the	worked	examples.	Look	for	
the	logic	behind	each	example	(I’ve	highlighted	this	to	make	it	clear),	not	just	at	
what	formula	is	being	used.	Do	the	Student Workbook	exercises	for	each	section	
as	you	finish	your	reading	of	it.

	 4.	 Finally, apply what you have learned to the homework problems at the end 
of each chapter.	I	strongly	encourage	you	to	form	a	study	group	with	two	or	
three	classmates.	There’s	good	evidence	that	students	who	study	regularly	with	
a	group	do	better	than	the	rugged	individualists	who	try	to	go	it	alone.
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(b) Electron diffraction pattern
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Did	someone	mention	a	workbook?	The	companion	Student Workbook	 is	a	vital	
part	of	the	course.	Its	questions	and	exercises	ask	you	to	reason	qualitatively,	to	use	
graphical	information,	and	to	give	explanations.	It	is	through	these	exercises	that	you	
will	learn	what	the	concepts	mean	and	will	practice	the	reasoning	skills	appropriate	to	
the	chapter.	You	will	then	have	acquired	the	baseline	knowledge	and	confidence	you	
need	before	turning	to	the	end-of-chapter	homework	problems.	In	sports	or	in	music,	
you	would	never	think	of	performing	before	you	practice,	so	why	would	you	want	to	
do	so	in	physics?	The	workbook	is	where	you	practice	and	work	on	basic	skills.

Many	of	you,	I	know,	will	be	tempted	to	go	straight	to	the	homework	problems	and	
then	thumb	through	the	text	looking	for	a	formula	that	seems	like	it	will	work.	That	
approach	will	not	succeed	in	this	course,	and	it’s	guaranteed	to	make	you	frustrated	
and	discouraged.	Very	 few	homework	problems	are	of	 the	“plug	and	chug”	variety	
where	you	simply	put	numbers	into	a	formula.	To	work	the	homework	problems	suc-
cessfully,	 you	 need	 a	 better	 study	 strategy—either	 the	 one	 outlined	 above	 or	 your	
own—that	helps	you	learn	the	concepts	and	the	relationships	between	the	ideas.

A	traditional	guideline	in	college	is	to	study	two	hours	outside	of	class	for	every	
hour	spent	in	class,	and	this	text	is	designed	with	that	expectation.	Of	course,	two hours	
is	 an	average.	Some	chapters	 are	 fairly	 straightforward	and	will	 go	quickly.	Others	
likely	will	require	much	more	than	two	study	hours	per	class	hour.

Getting the Most Out of Your Textbook
Your	 textbook	 provides	 many	 features	 designed	 to	 help	 you	 learn	 the	 concepts	 of	
physics	and	solve	problems	more	effectively.

	■	 TACTICS BOXES	give	step-by-step	procedures	for	particular	skills,	such	as	inter-
preting	graphs	or	drawing	special	diagrams.	Tactics	Box	steps	are	explicitly	illus-
trated	in	subsequent	worked	examples,	and	these	are	often	the	starting	point	of	a	
full	ProblemSolving Strategy.
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  Thinking About Force 
 It is important to identify correctly all the forces acting on an object. It is equally im-
portant not to include forces that do not really exist. We have established a number of 
criteria for identifying forces; the three critical ones are: 

    ■   A force has an agent. Something tangible and identifiable causes the force.  
   ■   Forces exist at the point of contact between the agent and the object experiencing 

the force (except for the few special cases of long-range forces).  
   ■   Forces exist due to interactions happening  now , not due to what happened in the past.   

 We all have had many experiences suggesting that a force is necessary to keep 
something moving. Consider a bowling ball rolling along on a smooth floor. It is very 
tempting to think that a horizontal “force of motion” keeps it moving in the forward 
direction. But  nothing contacts the ball  except the floor. No agent is giving the ball a 
forward push. According to our definition, then, there is  no  forward “force of motion” 
acting on the ball. So what keeps it going? Recall our discussion of the first law:  No  
cause is needed to keep an object moving at constant velocity. It continues to move 
forward simply because of its inertia.    

 One reason for wanting to include a “force of motion” is that we tend to view the 
problem from our perspective as one of the agents of force. You certainly have to keep 
pushing to move a box across the floor at constant velocity. If you stop, it stops. New-
ton’s laws, though, require that we adopt the object’s perspective. The box experiences 
your pushing force in one direction  and  a friction force in the opposite direction. The 
box moves at constant velocity if the  net  force is zero. This will be true as long as your 
pushing force exactly balances the friction force. When you stop pushing, the friction 
force causes an acceleration that slows and stops the box. 

 A related problem occurs if you throw a ball. A pushing force was indeed required to ac-
celerate the ball  as it was thrown.  But that force disappears the instant the ball loses contact 
with your hand. The force does not stick with the ball as the ball travels through the air. 
Once the ball has acquired a velocity,  nothing  is needed to keep it moving with that velocity.   

   5.7  Free-Body Diagrams 
 Having discussed at length what is and is not a force, we are ready to assemble our 
knowledge about force and motion into a single diagram called a  free-body diagram.  
You will learn in the next chapter how to write the equations of motion directly from 
the free-body diagram. Solution of the equations is a mathematical exercise—possibly 
a difficult one, but nonetheless an exercise that could be done by a computer. The 
 physics  of the problem, as distinct from the purely calculational aspects, are the steps 
that lead to the free-body diagram. 

 A  free-body diagram,  part of the  pictorial representation  of a problem, represents 
the object as a particle and shows  all  of the forces acting on the object.   

        There’s no “force of motion” or any other 
forward force on this arrow. It continues 
to move because of inertia.   

  TACTICs
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       Drawing a free-body diagram 

      ●1  Identify all forces acting on the object.   This step was described in Tactics 
Box 5.2.  

    ●2  Draw a coordinate system.   Use the axes defined in your pictorial representation.  
    ●3  Represent the object as a dot at the origin of the coordinate axes.   This is 

the particle model.  
    ●4  Draw vectors representing each of the identified forces.   This was de-

scribed in Tactics Box 5.1. Be sure to label each force vector.  
    ●5  Draw and label the  net force  vector    F

u

net.      Draw this vector beside the diagram, 
not on the particle. Or, if appropriate, write    F

u

net = 0
u

.    Then check that    F
u

net    points 
in the same direction as the acceleration vector    a

u
    on your motion diagram.   

 Exercises 24–29       

32.6 . Ampère’s Law and Solenoids    935

  Suppose, as shown in   FIGURe   32.23    b, we divide the line into many small segments 
of length    �s.    The first segment is    �s1,    the second is    �s2,    and so on. The sum of all 
the    �s>s    is the length  l  of the line between i and f. We can write this mathemati-
cally as 

    l = a
k

�sk S 3
f

i

ds (32.10)   

 where, in the last step, we let    �s S ds    and the sum become an integral. 
 This integral is called a  line integral.  All we’ve done is to subdivide a line into 

infinitely many infinitesimal pieces, then add them up. This is exactly what you do in 
calculus when you evaluate an integral such as    1x dx.    In fact, an integration along the 
 x -axis  is  a line integral, one that happens to be along a straight line.   Figure   32.23     dif-
fers only in that the line is curved. The underlying idea in both cases is that an integral 
is just a fancy way of doing a sum. 

 The line integral of  Equation   32.10    is not terribly exciting.   FIGURe   32.24    a makes things 
more interesting by allowing the line to pass through a magnetic field.   FIGURe   32.24    b 

again divides the line into small segments, but this time    �s
u

k     is the displacement vector 
of segment  k.  The magnetic field at this point in space is    B

u

k.    
  Suppose we were to evaluate the dot product    B

u

k
# �s

u

k    at each segment, then add the 
values of    B

u

k
# �s

u

k    due to every segment. Doing so, and again letting the sum become 
an integral, we have 

    a
k

B
u

k
# �s

u

k S 3
f

i

B
u # d s

u
= the line integral of B

u

  from i to f   

 Once again, the integral is just a shorthand way to say: Divide the line into lots of little 
pieces, evaluate    B

u

k
# �s

u

k    for each piece, then add them up. 
 Although this process of evaluating the integral could be difficult, the only line 

integrals we’ll need to deal with fall into two simple cases. If the magnetic field is 
 everywhere perpendicular  to the line, then    B

u # ds
u

= 0    at every point along the line and 
the integral is zero. If the magnetic field is  everywhere tangent  to the line  and  has the 
same magnitude  B  at every point, then    B

u # ds
u

= B ds    at every point and 

    3
f

i

 B
u # d s

u
= 3

f

i

B ds = B3
f

i

ds = Bl (32.11)   

 We used  Equation   32.10    in the last step to integrate  ds  along the line. 
 Tactics Box 32.3 summarizes these two situations.     

   FIGURe 32.24         Integrating    B
u

    along a line 
from i to f.   

f

i

(a)

The line passes through a magnetic field.

B
r

f

i

(b)

�sk

Magnetic field at segment k

Displacement of segment k

Bk

r

r
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       evaluating line integrals 

    ●1   If    B
u

    is everywhere perpendicular to a 
line, the line integral of    B

u

    is 

   3
f

i

 B
u # d s

u
= 0    

   ●2   If    B
u

    is everywhere tangent to a line of 
length  l and  has the same magnitude  B  at 
every point, then 

   3
f

i

 B
u # d s

u
= Bl                  

 Exercises 23–24        
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Exercises 10–12: Three forces , , and cause a 1 kg object to accelerate with the acceleration given.
Two of the forces are shown on the free-body diagrams below, but the third is missing. For each, draw and
label on the grid the missing third force vector.

10.

11.

12. The object moves with 
constant velocity.

13. Three arrows are shot horizontally. They have left the bow and are traveling parallel to the ground. Air
resistance is negligible. Rank in order, from largest to smallest, the magnitudes of the horizontal forces
F1, F2, and F3 acting on the arrows. Some may be equal. Give your answer in the form A �B � C �D.

Order:

Explanation:

1

80 g

10 m/s

2

80 g

9 m/s

3

90 g

9 m/s

ar � �3 ĵ m/s2

ar � 2 î m/s2

F
r

3F
r

2F
r

1
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DYNAMICS WORKSHEET Name Problem 

MODEL Make simplifying assumptions.

• Draw a picture. Show important points in the motion. • Draw a motion diagram.
• •
• •

Known

Find

SOLVE
Start with Newton’s first or second law in component form, adding other information as needed to solve the problem.

ASSESS

• • Identify forces and interactions.
• • Draw free-body diagrams.

Have you answered the question?
Do you have correct units, signs, and significant figures?
Is your answer reasonable?

VISUALIZE

Establish a coordinate system. Define symbols.
List knowns. Identify what you’re trying to find.



	■	 PROBLEM-SOLVING STRATEGIES	are	provided	for	each	broad	class	of	problems—
problems	 characteristic	 of	 a	 chapter	 or	 group	 of	 chapters.	The	 strategies	 follow	
a	 consistent	 four-step	 approach	 to	 help	 you	 develop	 confidence	 and	 proficient	
prob	lem-solving	skills:	MODEL, VISUALIZE, SOLVE, ASSESS.

	■	 Worked	EXAMPLES	illustrate	good	problem-solving	practices	through	the	consistent	
use	of	the	four-step	problem-solving	approach	and,	where	appropriate,	the	Tactics	
Box	 steps.	The	worked	examples	 are	often	very	detailed	 and	carefully	 lead	you	
through	the	reasoning	behind	the	solution	as	well	as	the	numerical	calculations.	A	
careful	study	of	the	reasoning	will	help	you	apply	the	concepts	and	techniques	to	
the	new	and	novel	problems	you	will	encounter	in	homework	assignments	and	on	
exams.

	■	 NOTE ▶  paragraphs	 alert	 you	 to	 common	 mistakes	 and	 point	 out	 useful	 tips	 for	
tackling	problems.

	■	 Stop to think	 questions	 embedded	 in	 the	 chapter	 allow	 you	 to	 quickly	 assess	
whether	you’ve	understood	the	main	idea	of	a	section.	A	correct	answer	will	give	
you	confidence	to	move	on	to	the	next	section.	An	incorrect	answer	will	alert	you	
to	re-read	the	previous	section.

	■	 Blue	annotations	on	 figures	help	you	better	understand	what	 the	 figure	 is	 showing.	
They	will	help	you	 to	 interpret	graphs;	 translate	between	graphs,	math,	and	pic-
tures;	grasp	difficult	concepts	through	a	visual	analogy;	and	develop	many	other	
important	skills.

	■	 Pencil sketches	provide	practical	examples	of	 the	 figures	you	should	draw	yourself	
when	solving	a	problem.
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PRoBleM-solvING
sTRATeGY 6.2        Dynamics problems  

  MoDel   Make simplifying assumptions.  

  vIsUAlIZe   Draw a  pictorial representation.  

    ■   Show important points in the motion with a sketch, establish a coordinate 
system, define symbols, and identify what the problem is trying to find.  

   ■   Use a motion diagram to determine the object’s acceleration vector    a
u
.     

   ■   Identify all forces acting on the object  at this instant  and show them on a free-
body diagram.  

   ■   It’s OK to go back and forth between these steps as you visualize the situation.    

  solve   The mathematical representation is based on Newton’s second law: 

    F
u

net = a
i

F
u

i = ma
u

   

 The vector sum of the forces is found directly from the free-body diagram. 
Depending on the problem, either 

    ■   Solve for the acceleration, then use kinematics to find velocities and posi-
tions; or  

   ■   Use kinematics to determine the acceleration, then solve for unknown forces.    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 22    

 Newton’s second law is a vector equation. To apply the step labeled Solve, you 
must write the second law as two simultaneous equations: 

     (Fnet )x = aFx = max

  (6.2)
  (Fnet )y = aFy = may   

 The primary goal of this chapter is to illustrate the use of this strategy. 

   eXAMPle 6.3   speed of a towed car 
 A 1500 kg car is pulled by a tow truck. The tension in the tow rope 
is 2500 N, and a 200 N friction force opposes the motion. If the car 
starts from rest, what is its speed after 5.0 seconds? 

  MoDel   We’ll treat the car as an accelerating particle. We’ll as-
sume, as part of our  interpretation  of the problem, that the road is 
horizontal and that the direction of motion is to the right.  

  vIsUAlIZe     FIGURe   6.3     on the next page shows the pictorial rep-
resentation. We’ve established a coordinate system and defined 
symbols to represent kinematic quantities. We’ve identified the 
speed    v1,    rather than the velocity    v1x,    as what we’re trying to find.   

  solve   We begin with Newton’s second law: 

     (Fnet)x = aFx = Tx + fx + nx + (FG)x = max

  (Fnet)y = aFy = Ty + fy + ny + (FG)y = may   

 All four forces acting on the car have been included in the vector 
sum. The equations are perfectly general, with    +     signs every-

where, because the four vectors are  added  to give    F
u

net.    We can 
now “read” the vector components from the free-body diagram: 

     Tx = +T   Ty = 0    nx = 0   ny = +n

  fx = - f  fy = 0  (FG)x = 0   (FG)y = -FG   

 The signs depend on which way the vectors point. Substituting 
these into the second-law equations and dividing by  m  give 

     ax =
1
m

 (T - f )

  =
1

1500 kg
 (2500 N - 200 N) = 1.53 m/s2

  ay =
1
m

 (n - FG)    

  NoTe   � Newton’s second law has allowed us to determine    ax    ex-
actly but has given only an algebraic expression for    ay.    However, 
we know  from the motion diagram  that    ay = 0!    That is, the motion 
is purely along the  x -axis, so there is  no  acceleration along the  y -
axis. The requirement    ay = 0    allows us to conclude that    n = FG.    
Although we do not need  n  for this problem, it will be important in 
many future problems. �  

Annotated FIGURE showing the operation 
of the Michelson interferometer.
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	■	 Each	chapter	begins	with	a	Chapter Preview,	a	visual	outline	of	the	chapter	ahead	
with	 recommendations	 of	 important	 topics	 you	 should	 review	 from	 previous	
chapters.	 A	 few	 minutes	 spent	 with	 the	 Preview	 will	 help	 you	 organize	 your	
thoughts	so	as	to	get	the	most	out	of	reading	the	chapter.

	■	 Schematic	 Chapter Summaries	 help	 you	 organize	 what	 you	 have	 learned	 into	 a	
hierarchy,	from	general	principles	(top)	to	applications	(bottom).	Side-by-side	pic-
torial,	 graphical,	 textual,	 and	 mathematical	 representations	 are	 used	 to	 help	 you	
translate	between	these	key	representations.

	■	 Part Overviews	 and	 Summaries	 provide	 a	 global	 framework	 for	 what	 you	 are	
learning.	Each	part	begins	with	an	overview	of	the	chapters	ahead	and	concludes	
with	a	broad	summary	to	help	you	to	connect	the	concepts	presented	in	that	set	of	
chapters. KNOWLEDGE STRUCTURE	tables	in	the	Part	Summaries,	similar	to	the	
Chapter	Summaries,	help	you	to	see	the	forest	rather	than	just	the	trees.

Now	 that	 you	 know	 more	 about	 what	 is	 expected	 of	 you,	 what	 can	 you	 expect	
of	me?	That’s	a	 little	 trickier	because	 the	book	 is	already	written!	Nonetheless,	 the	
book	 was	 prepared	 on	 the	 basis	 of	 what	 I	 think	 my	 students	 throughout	 the	 years	
have	 expected—and	 wanted—from	 their	 physics	 textbook.	 Further,	 I’ve	 listened	 to	
the	extensive	feedback	I	have	received	from	thousands	of	students	like	you,	and	their	
instructors,	who	used	the	first	and	second	editions	of	this	book.

You	 should	 know	 that	 these	 course	 materials—the	 text	 and	 the	 workbook—are	
based	on	extensive	research	about	how	students	learn	physics	and	the	challenges	they	
face.	The	effectiveness	of	many	of	the	exercises	has	been	demonstrated	through	exten-
sive	class	testing.	I’ve	written	the	book	in	an	informal	style	that	I	hope	you	will	find	
appealing	and	that	will	encourage	you	to	do	the	reading.	And,	finally,	I	have	endeav-
ored	to	make	clear	not	only	that	physics,	as	a	technical	body	of	knowledge,	is	relevant	
to	your	profession	but	also	that	physics	is	an	exciting	adventure	of	the	human	mind.

I	hope	you’ll	enjoy	the	time	we’re	going	to	spend	together.
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  esseNTIAl CoNCePTs   Particle, acceleration, force, interaction  
  BAsIC GoAls   How does a particle respond to a force? How do objects interact?  

  GeNeRAl PRINCIPles    Newton’s first law  An object will remain at rest or will continue to move with constant velocity 
   (equilibrium) if and only if    F

u

net = 0
u

.    
   Newton’s second law      F

u

net = ma
u

    

   Newton’s third law      F
u

A on B = - F
u

B on A    

  BAsIC PRoBleM-solvING sTRATeGY   Use Newton’s second law for each particle or object. Use Newton’s third law to equate the magni-
tudes of the two members of an action/reaction pair.

   Linear motion Trajectory motion Circular motion  
    aFx = max     

or    
 aFx = 0         aFx = max          aFr = mv 2/r = mv2r    

    aFy = 0         aFy = may         aFy = may            aFt = 0 or mat        

  aFz = 0     

  linear and trajectory kinematics 
  Uniform acceleration:     vfs = vis + as �t    

    (as = constant)        sf = si + vis �t +
1
2 as  (�t)2

         vfs 

2 = vis 

2 + 2as �s    

  Trajectories:  The same equations are used for both  x  and  y . 

  Uniform motion:     sf = si + vs �t

        (a = 0, vs = constant)     

  General case      vs = ds/dt =     slope of the position graph 

     as = dvs /dt =     slope of the velocity graph 

     vfs = vis + 3
tf

ti

as dt = vis +     area under the acceleration curve 

     sf = si + 3
tf

ti

vs dt = si +     area under the velocity curve  

    The goal of Part I  has been to discover the connection be-
tween force and motion. We started with  kinematics,  which 
is the mathematical description of motion; then we proceeded 
to  dynamics,  which is the explanation of motion in terms of 
forces. Newton’s three laws of motion form the basis of our 
explanation. All of the examples we have studied so far are 
applications of Newton’s laws. 

 The table below is called a  knowledge structure  for New-
ton’s laws. A knowledge structure summarizes the essential 
concepts, the general principles, and the primary applications 
of a theory. The first section of the table tells us that New-
tonian mechanics is concerned with how  particles  respond to 
 forces.  The second section indicates that we have introduced 
only three general principles, Newton’s three laws of motion. 

 You use this knowledge structure by working your way 
through it, from top to bottom. Once you recognize a problem 

as a dynamics problem, you immediately know to start with 
Newton’s laws. You can then determine the category of motion 
and apply Newton’s second law in the appropriate form. New-
ton’s third law will help you identify the forces acting on par-
ticles as they interact. Finally, the kinematic equations for that 
category of motion allow you to reach the solution you seek. 

 The knowledge structure provides the  procedural know-
ledge  for solving dynamics problems, but it does not represent 
the total knowledge required. You must add to it knowledge 
about what position and velocity are, about how forces are 
identified, about action/reaction pairs, about drawing and 
using free-body diagrams, and so on. These are specific 
 tools  for problem solving. The problem-solving strategies of 
 Chapters   5    through    8    combine the procedures and the tools 
into a powerful method for thinking about and solving 
problems.   

 Newton’s LawsI
SUMMARY        P A R T 

  KNoWleDGe sTRUCTURe I   Newton’s laws 

  Circular kinematics
   Uniform circular motion:  

   T = 2pr/v = 2p/v
uf = ui + v�t
ar = v 2/r = v2r
vt = vr

     Nonuniform circular motion:  

   vf = vi + a�t

uf = ui + vi �t +
1
2 a(�t)2

vf 

2 = vi 

2 + 2a�u      

Summary    803

     s U M M A R Y 
 The goal of  Chapter   27    has been to understand and apply Gauss’s law. 

  Gauss’s law 
 For any  closed  surface enclosing net charge    Qin   , the net electric flux through 
the surface is 

    �e = C E
u # dA

u

=
Qin 

P0
    

 The electric flux    �e    is the same for  any  closed surface enclosing charge    Qin.     

  symmetry 
 The symmetry of the electric field must match the 
symmetry of the charge distribution. 

 In practice,    �e    is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.   

  General Principles     

     symmetric    
    Gaussian surface    

    electric flux,    �e        

    area vector,    A
u

       

    surface integral    
    Gauss’s law    

    screening      

  Terms and Notation 

     Charge  creates the electric field that 
is responsible for the electric flux.             

  Important Concepts       

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

     Flux  is the amount of electric field 
passing through a surface of area  A :   

    �e = E
u # A

u

   

 where    A
u

    is the  area vector.  

  
         For closed surfaces:  
 A net flux in or out indicates that 
the surface encloses a net charge. 

Field lines through but with no 
 net  flux mean that the surface 
encloses no  net  charge.     
        

     Surface integrals  calculate the flux by summing the fluxes 
through many small pieces of the surface:   

    �e = a E
u # dA

u

 S 3E
u # dA

u

   

  
         Two important situations:  
 If the electric field is everywhere 
tangent to the surface, then 

    �e = 0   

 If the electric field is everywhere 
perpendicular to the surface  and  has 
the same strength  E  at all points, then   

    �e = E A              

u

A

E

r

r dA
E

r

r

     Conductors in electrostatic equilibrium  

   •   The electric field is zero at all points within the conductor.  

  •   Any excess charge resides entirely on the exterior surface.  

  •   The external electric field is perpendicular to the surface and of magnitude    h/P0   , where    h    is the 
surface charge density.  

  •   The electric field is zero inside any hole within a conductor unless there is a charge in the hole.                   

  Applications   

E
r

�
�

�
�

�
�

�
�

�
�

�
�

�

E � 0
r r
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Introduction

Said	Alice	to	the	Cheshire	cat,
“Cheshire-Puss,	would	you	tell	me,	please,	which	way	I	ought	to	go	from	here?”
“That	depends	a	good	deal	on	where	you	want	to	go,”	said	the	Cat.
“I	don’t	much	care	where—”	said	Alice.
“Then	it	doesn’t	matter	which	way	you	go,”	said	the	Cat.

—Lewis	Carroll,	Alice in Wonderland

Have	you	ever	wondered	about	questions	such	as

	 Why	is	the	sky	blue?

	 Why	is	glass	an	insulator	but	metal	a	conductor?

	 What,	really,	is	an	atom?

These	are	the	questions	of	which	physics	is	made.	Physicists	try	to	understand	the	
universe	 in	which	we	 live	by	observing	 the	phenomena	of	nature—such	as	 the	sky	
being	blue—and	by	looking	for	patterns	and	principles	to	explain	these	phenomena.	
Many	of	the	discoveries	made	by	physicists,	from	electromagnetic	waves	to	nuclear	
energy,	have	forever	altered	the	ways	in	which	we	live	and	think.

You	are	about	to	embark	on	a	journey	into	the	realm	of	physics.	It	is	a	journey	in	
which	you	will	learn	about	many	physical	phenomena	and	find	the	answers	to	ques-
tions	such	as	 the	ones	posed	above.	Along	 the	way,	you	will	also	 learn	how	to	use	
physics	to	analyze	and	solve	many	practical	problems.

As	you	proceed,	you	are	going	to	see	the	methods	by	which	physicists	have	come	
to	understand	the	laws	of	nature.	The	ideas	and	theories	of	physics	are	not	arbitrary;	
they	are	firmly	grounded	in	experiments	and	measurements.	By	the	time	you	finish	
this	text,	you	will	be	able	to	recognize	the	evidence	upon	which	our	present	knowledge	
of	the	universe	is	based.

Which Way Should We Go?
We	are	rather	like	Alice	in	Wonderland,	here	at	the	start	of	the	journey,	in	that	we	must	
decide	which	way	to	go.	Physics	is	an	immense	body	of	knowledge,	and	without	spe-
cific	goals	it	would	not	much	matter	which	topics	we	study.	But	unlike	Alice,	we	do	
have	some	particular	destinations	that	we	would	like	to	visit.

The	physics	that	provides	the	foundation	for	all	of	modern	science	and	engineering	
can	be	divided	into	three	broad	categories:

■	 Particles	and	energy.
■	 Fields	and	waves.
■	 The	atomic	structure	of	matter.

A	 particle,	 in	 the	 sense	 that	 we’ll	 use	 the	 term,	 is	 an	 idealization	 of	 a	 physical	
object.	We	will	use	particles	to	understand	how	objects	move	and	how	they	interact	
with	each	other.	One	of	the	most	important	properties	of	a	particle	or	a	collection	of	
particles	is	energy.	We	will	study	energy	both	for	its	value	in	understanding	physical	
processes	and	because	of	its	practical	importance	in	a	technological	society.

Journey into Physics

xxix

A scanning tunneling microscope allows  
us to “see” the individual atoms on a 
surface. One of our goals is to understand 
how an image such as this is made.



Particles	are	discrete,	localized	objects.	Although	many	phenomena	can	be	under-
stood	in	terms	of	particles	and	their	interactions,	the	long-range	interactions	of	gravity,	
electricity,	and	magnetism	are	best	understood	in	terms	of	fields,	such	as	the	gravita-
tional	field	and	the	electric	field.	Rather	than	being	discrete,	fields	spread	continuously	
through	space.	Much	of	the	second	half	of	this	book	will	be	focused	on	understanding	
fields	and	the	interactions	between	fields	and	particles.

Certainly	one	of	the	most	significant	discoveries	of	the	past	500	years	is	that	matter	
consists	of	atoms.	Atoms	and	their	properties	are	described	by	quantum	physics,	but	
we	cannot	leap	directly	into	that	subject	and	expect	that	it	would	make	any	sense.	To	
reach	our	destination,	we	are	going	to	have	to	study	many	other	topics	along	the	way—
rather	like	having	to	visit	the	Rocky	Mountains	if	you	want	to	drive	from	New	York	to	
San	Francisco.	All	our	knowledge	of	particles	and	fields	will	come	into	play	as	we	end	
our	journey	by	studying	the	atomic	structure	of	matter.

The Route Ahead
Here	at	the	beginning,	we	can	survey	the	route	ahead.	Where	will	our	journey	take	us?	
What	scenic	vistas	will	we	view	along	the	way?

Parts I and II,	 Newton’s Laws	 and	 Conservation Laws,	 form	 the	 basis	 of	 what	 is	
called	classical mechanics.	Classical	mechanics	is	 the	study	of	motion.	(It	 is	called	
classical	to	distinguish	it	from	the	modern	theory	of	motion	at	the	atomic	level,	which	
is	called	quantum mechanics.)	The	first	two	parts	of	this	textbook	establish	the	basic	
language	and	concepts	of	motion.	Part	I	will	look	at	motion	in	terms	of	particles	and	
forces.	We	will	use	these	concepts	to	study	the	motion	of	everything	from	accelerating	
sprinters	to	orbiting	satellites.	Then,	in	Part	II,	we	will	introduce	the	ideas	of	momentum	
and	energy.	These	concepts—especially	energy—will	give	us	a	new	perspective	on	
motion	and	extend	our	ability	to	analyze	motion.

Part III,	Applications of Newtonian Mechanics,	will	
pause	to	look	at	four	important	applications	of	classi-
cal	mechanics:	Newton’s	theory	of	gravity,	rotational	
motion,	oscillatory	motion,	and	the	motion	of	fluids.	
Only	 oscillatory	 motion	 is	 a	 prerequisite	 for	 later	
chapters.	Your	 instructor	 may	 choose	 to	 cover	 some	
or	all	of	the	other	chapters,	depending	upon	the	time	
available,	but	your	study	of	Parts	IV–VII	will	not	be	
hampered	if	these	chapters	are	omitted.

Part IV,	Thermodynamics,	 extends	 the	 ideas	of	par-
ticles	and	energy	to	systems	such	as	liquids	and	gases	
that	 contain	vast	 numbers	of	particles.	Here	we	will	
look	for	connections	between	the	microscopic	behavior	of	large	numbers	of	atoms	and	
the	macroscopic	properties	of	bulk	matter.	You	will	find	that	some	of	the	properties	
of	gases	that	you	know	from	chemistry,	such	as	the	ideal	gas	law,	turn	out	to	be	direct	
consequences	of	the	underlying	atomic	structure	of	the	gas.	We	will	also	expand	the	
concept	of	energy	and	study	how	energy	is	transferred	and	utilized.
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Waves	are	ubiquitous	in	nature,	whether	they	be	large-scale	oscillations	like	ocean	waves,	
the	less	obvious	motions	of	sound	waves,	or	the	subtle	undulations	of	light	waves	and	
matter	waves	 that	go	 to	 the	heart	of	 the	atomic	 structure	of	matter.	 In	Part V,	Waves 
and Optics,	we	will	 emphasize	 the	unity	of	wave	physics	 and	 find	 that	many	diverse	
wave	phenomena	can	be	analyzed	with	the	same	concepts	and	mathematical	language.	
Light	waves	are	of	special	interest,	and	we	will	end	this	portion	of	our	journey	with	an	
exploration	of	optical	instruments,	ranging	from	microscopes	and	telescopes	to	that	most	
important	of	all	optical	instruments—your	eye.

Part VI,	Electricity and Magnetism,	is	devoted	
to	 the	electromagnetic force,	one	of	 the	most	
important	forces	in	nature.	In	essence,	the	elec-
tromagnetic	 force	 is	 the	 “glue”	 that	 holds	
atoms	together.	It	is	also	the	force	that	makes	
this	the	“electronic	age.”	We’ll	begin	this	part	
of	the	journey	with	simple	observations	of	sta-
tic	 electricity.	 Bit	 by	 bit,	 we’ll	 be	 led	 to	 the	
basic	ideas	behind	electrical	circuits,	to	mag-
netism,	and	eventually	to	the	discovery	of	elec-
tromagnetic	waves.

Part VII	 is	Relativity and Quantum Physics.	
We’ll	 start	 by	 exploring	 the	 strange	 world	
of	 Einstein’s	 theory	 of	 relativity,	 a	 world	 in	
which	 space	 and	 time	 aren’t	 quite	 what	 they	
appear	 to  be.	 Then	 we	 will	 enter	 the	 micro-
scopic	domain	of	atoms,	where	the	behaviors	

of	light	and	matter	are	at	complete	odds	with	what	our	common	sense	tells	us	is	pos-
sible.	Although	the	mathematics	of	quantum	theory	quickly	gets	beyond	the	level	of	
this	text,	and	time	will	be	running	out,	you	will	see	that	the	quantum	theory	of	atoms	
and	nuclei	explains	many	of	the	things	that	you	learned	simply	as	rules	in	chemistry.

We	will	not	have	visited	all	of	physics	on	our	travels.	There	just	isn’t	time.	Many	
exciting	topics,	ranging	from	quarks	to	black	holes,	will	have	to	remain	unexplored.	
But	this	particular	journey	need	not	be	the	last.	As	you	finish	this	text,	you	will	have	
the	background	and	 the	experience	 to	explore	new	topics	further	 in	more	advanced	
courses	or	for	yourself.

With	that	said,	let	us	take	the	first	step.
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1

Overview

Why Things Change
Each of the seven parts of this book opens with an overview to give you a look ahead, 
a glimpse at where your journey will take you in the next few chapters. It’s easy to 
lose sight of the big picture while you’re busy negotiating the terrain of each chapter. 
In Part I, the big picture, in a word, is change.

Simple observations of the world around you show that most things change, few 
things remain the same. Some changes, such as aging, are biological. Others, such as 
sugar dissolving in your coffee, are chemical. We’re going to study change that in-
volves motion of one form or another—the motion of balls, cars, and rockets.

There are two big questions we must tackle:

	■	 How do we describe motion? It is easy to say that an object moves, but it’s not 
obvious how we should measure or characterize the motion if we want to analyze it 
mathematically. The mathematical description of motion is called kinematics, and 
it is the subject matter of Chapters 1 through 4.

	■	 How do we explain motion? Why do objects have the particular motion they do? 
Why, when you toss a ball upward, does it go up and then come back down rather 
than keep going up? Are there “laws of nature” that allow us to predict an object’s 
motion? The explanation of motion in terms of its causes is called dynamics, and it 
is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accelera-
tion (the “effect”). A variety of pictorial and graphical tools will be developed in 
Chapters 1 through 5 to help you develop an intuition for the connection between force 
and acceleration. You’ll then put this knowledge to use in Chapters 5 through 8 as you 
analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely complicated. 
We would never be able to develop a science if we had to keep track of every little de-
tail of every situation. A model is a simplified description of reality—much as a model 
airplane is a simplified version of a real airplane—used to reduce the complexity of 
a problem to the point where it can be analyzed and understood. We will introduce 
several important models of motion, paying close attention, especially in these earlier 
chapters, to where simplifying assumptions are being made, and why.

The “laws of motion” were discovered by Isaac Newton roughly 350 years ago, so 
the study of motion is hardly cutting-edge science. Nonetheless, it is still extremely 
important. Mechanics—the science of motion—is the basis for much of engineering 
and applied science, and many of the ideas introduced here will be needed later to un-
derstand things like the motion of waves and the motion of electrons through circuits. 
Newton’s mechanics is the foundation of much of contemporary science, thus we will 
start at the beginning.
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Units and Significant 
Figures
Calculations in physics 
are most commonly 
done using SI units–
known more informally 
as the metric system. 
The basic units needed 
in the study of motion 
are the meter (m), the second (s), and the 
kilogram (kg).

Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, 
that have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation 
that outlines the big ideas and the organiza-
tion of the chapter that is to come.

The chapter previews not only let you 
know what is coming, they also help you 
make connections with material you have 
already seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.
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You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.

You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

Calculations in physics 
are most commonly done 
using SI units–known 
more informally as the 
metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
the kilogram (kg).

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Units and Significant Figures

Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
Each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. Reviewing this material 
will enhance your learning.

You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

Calculations in physics 
are most commonly done 
using SI units–known 
more informally as the 
metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
the kilogram (kg).

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Units and Significant Figures

Concepts of Motion1

Motion takes many forms. The 
motorcycle and rider seen here 
are an example of translational 
motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview of 
the material to come. You should read these 
chapter previews carefully to get a sense of 
the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

 Looking Ahead The goal of Chapter 1 is to introduce the fundamental concepts of motion.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.

You will learn to 
use a graphical 
technique to add 
and subtract vectors.

Calculations in physics 
are most commonly done 
using SI units–known 
more informally as the 
metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
the kilogram (kg).

A significant figure is a digit that is reliably 
known. You will learn the rules for using 
significant figures correctly.

The Kilogram

7583_Ch01_pp0000-0032.indd   2 2/21/11   4:29 PM

 Looking Ahead  The goal of Chapter 1 is to introduce the fundamental concepts of motion.

Arrows show the flow of 
ideas in the chapter.

7583_Ch01_pp0000-0032.indd   2 4/20/11   1:30 PM

 Looking Ahead The goal of Chapter 1 is to introduce the fundamental concepts of motion.

Arrows show the flow of 
ideas in the chapter.

7583_Ch01_pp0000-0032.indd   2 4/20/11   2:06 PM

 Looking Ahead The goal of Chapter 1 is to introduce the fundamental concepts of motion.

Arrows show the flow of ideas in  
the chapter.



1.1 . Motion Diagrams    3

1.1  Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire book. 
Although  we  all  have  intuition  about  motion,  based  on  our  experiences,  some  of 
the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing  motion  and  becoming  familiar  with  the  concepts  needed  to  describe  a 
moving object. Our goal is to lay the foundations for understanding motion.

As a starting point, let’s define motion as the change of an object’s position with 
time. Figure 1.1 shows four basic types of motion that we will study in this book. The 
first three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, whether 
straight or curved,  is called  the object’s trajectory. Rotational motion  is somewhat 
different in that rotation is a change of the object’s angular position. We’ll defer rota-
tional motion until later and, for now, focus on translational motion.

Making a Motion Diagram
An easy way to study motion is to make a movie of a moving object. A movie camera, 
as you probably know, takes photographs at a fixed rate, typically 30 photographs every 
second. Each separate photo is called a frame, and the frames are all lined up one after 
the other in a filmstrip. As an example, Figure 1.2 shows four frames from the movie of a 
car going past. Not surprisingly, the car is in a somewhat different position in each frame.

Suppose we cut the individual frames of the filmstrip apart, stack them on top of 
each other, and project the entire stack at once onto a screen for viewing. The result 
is shown in Figure 1.3. This composite photo, showing an object’s position at several 
equally spaced instants of time, is called a motion diagram. As the example below 
shows, we can define concepts such as at rest, constant speed, speeding up, and slow-
ing down in terms of how an object appears in a motion diagram.

Note  It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object. 

Linear motion Circular motion

Projectile motion Rotational motion

Figure 1.1  Four basic types of motion.

Figure 1.2  Four frames from the movie 
of a car.

Figure 1.3  A motion diagram of the car 
shows all the frames simultaneously.

The same amount of time elapses
between each image and the next.



Car A Car B
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examples of motion diagrams

An object that occupies only a single position 
in a motion diagram is at rest.

A stationary ball on the ground.

Images that are equally spaced indicate an 
object moving with constant speed.

A skateboarder rolling down the sidewalk.

An increasing distance between the images 
shows that the object is speeding up.

A sprinter starting the 100 meter dash.

A decreasing distance between the images 
shows that the object is slowing down.

A car stopping for a red light.

A more complex motion shows aspects of 
both slowing down (as the ball rises) and 
speeding up (as the ball falls).

A jump shot from center court.

Stop to think 1.1 
 Which car is going faster, A or B? Assume there are equal intervals of time between 

the frames of both movies.

NoTe  Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the chapter, but you should make a serious effort to 
think about these questions before turning to the answers. If you answer correctly, 
and are sure of your answer rather than just guessing, you can proceed to the next 
section with confidence. But if you answer incorrectly, it would be wise to reread 
the preceding sections before proceeding onward. 

1.2 The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All 
we really need to keep track of is the motion of a single point on the object, so we can 
treat the object as if all its mass were concentrated into this single point. An object 



(a) (c) 0
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(b) 0

1

2

3

4
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0

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were exposed.

The same amount of time elapses
between each image and the next.

4

1 2 3 4

FigUre 1.4 Motion diagrams in which 
the object is represented as a particle.
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that can be represented as a mass at a single point in space is called a particle. A 
particle has no size, no shape, and no distinction between top and bottom or between 
front and back.

If we treat an object as a particle, we can represent the object in each frame of a 
motion diagram as a simple dot rather than having to draw a full picture. FigUre 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were exposed.

Using the Particle Model
Treating an object as a particle is, of course, a simplification of reality. As we noted in 
the Part I Overview, such a simplification is called a model. Models allow us to focus 
on the important aspects of a phenomenon by excluding those aspects that play only a 
minor role. The particle model of motion is a simplification in which we treat a mov-
ing object as if all of its mass were concentrated at a single point. The particle model 
is an excellent approximation of reality for the translational motion of cars, planes, 
rockets, and similar objects. In later chapters, we’ll find that the motion of more com-
plex objects, which cannot be treated as a single particle, can often be analyzed as if 
the object were a collection of particles.

Not all motions can be reduced to the motion of a single point. Consider a rotating 
gear. The center of the gear doesn’t move at all, and each tooth on the gear is moving 
in a different direction. Rotational motion is qualitatively different than translational 
motion, and we’ll need to go beyond the particle model later when we study rotational 
motion.

Stop to think 1.2  Three motion diagrams are 
shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a de-
scending rocket slowing to make a soft landing 
on Mars?

1.3 Position and Time
As we look at a motion diagram, it would be useful to know where the object is (i.e., 
its position) and when the object was at that position (i.e., the time). Position measure-
ments can be made by laying a coordinate system grid over a motion diagram. You 
can then measure the (x, y) coordinates of each point in the motion diagram. Of course, 
the world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins. Likewise, you can choose the 
orientation of the x-axis and y-axis to be helpful for that particular problem. The con-
ventional choice is for the x-axis to point to the right and the y-axis to point upward, 
but there is nothing sacred about this choice. We will soon have many occasions to tilt 
the axes at an angle.

Time, in a sense, is also a coordinate system, although you may never have thought of 
time this way. You can pick an arbitrary point in the motion and label it ;t = 0 seconds.” 



The frame at t � 0 s is frame 0.

A coordinate
system has been
added to the
motion diagram.

The ball’s
position in
frame 4 can be
specified with 
coordinates.

(x4,  y4 ) � (12 m, 9 m)

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0.0 s

3

12

9

6

3

0
60 9 12 15

(a)

y (m)

x (m)

Alternatively, the position
vector specifies the distance
and direction from the origin.

Frame 4

(b)

37�

y

x 

r4 � (15 m, 37�)r

FigUre 1.5 Position and time 
measurements made on the motion 
diagram of a basketball.
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This is simply the instant you decide to start your clock or stopwatch, so it is the origin 
of your time coordinate. Different observers might choose to start their clocks at differ-
ent moments. A movie frame labeled ;t = 4 seconds” was taken 4 seconds after you 
started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as nega-
tive times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FigUre 1.5a shows an xy-coordinate system and time information su-
perimposed over the motion diagram of a basketball. You can see that the ball’s 
position is (x4, y4) = (12 m, 9 m) at time t4 = 2.0 s. Notice how we’ve used sub-
scripts to indicate the time and the object’s position in a specific frame of the motion 
diagram.

NoTe  The frame at t = 0 is frame 0. That is why the fifth frame is labeled 4. 

Another way to locate the ball is to draw an arrow from the origin to the point repre-
senting the ball. You can then specify the length and direction of the arrow. An arrow 
drawn from the origin to an object’s position is called the position vector of the object, 
and it is given the symbol r 

u
. FigUre 1.5B shows the position vector r 

u

4 = (15 m, 37�).
The position vector r 

u
 does not tell us anything different than the coordinates (x, y). 

It simply provides the information in an alternative form. Although you’re more fa-
miliar with coordinates than with vectors, you will find that vectors are a useful way 
to describe many concepts in physics.

A Word About Vectors and Notation
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg and 
its temperature is 30�C. A physical quantity described by a single number (with a unit) 
is called a scalar quantity. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional quality and cannot be de-
scribed by a single number. To describe the motion of a car, for example, you must 
specify not only how fast it is moving, but also the direction in which it is moving. A 
vector quantity is a quantity having both a size (the “How far?” or “How fast?”) and 
a direction (the “Which way?”). The size or length of a vector is called its magnitude. 
The magnitude of a vector can be positive or zero, but it cannot be negative. Vec-
tors will be studied thoroughly in Chapter 3, so all we need for now is a little basic 
information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r 

u
 and A

u

 are symbols for vectors, whereas r and A, without the arrows, are 
symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very impor-
tant because we will often use both r and r 

u
, or both A and A

u

, in the same problem, and 
they mean different things! Without the arrow, you will be using the same symbol with 
two different meanings and will likely end up making a mistake. Note that the arrow 
over the symbol always points to the right, regardless of which direction the actual 
vector points. Thus we write r 

u
 or A

u

, never r
z
 or A

z

.

Displacement
Consider the following:

Sam is standing 50 feet (ft) east of the corner of 12th Street and Vine. He then walks 
northeast for 100 ft to a second point. What is Sam’s change of position?



1

2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A � B.

rr r

r r

r

r

r r

A
r

B
r

B
r

A
r

r
A

r
A

r
B

A�B
r r

3. Sam’s displacement �r is
the vector drawn from his
starting position to his ending
position.

End

Start
12th Street

V
in

e

r

2. After Sam walks 100 ft
northeast, his new position is   .1. The origin is chosen to be

at the corner. Position
vectors are drawn from the
origin.

50 feet

Origin

r1

N

r1
r

�r

r0
r

r

r

FigUre 1.6 Sam undergoes a displacement �r 
u from position r 

u

0 to position r 
u

1.
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FigUre 1.6 shows Sam’s motion in terms of position vectors. Sam’s initial position is 
the vector r 

u

0 drawn from the origin to the point where he starts walking. Vector r 
u

1  
is his position after he finishes walking. You can see that Sam has changed position, 
and a change of position is called a displacement. His displacement is the vector 
labeled �r 

u
. The Greek letter delta (�) is used in math and science to indi cate the 

change in a quantity. Here it indicates a change in the position r 
u

.

NoTe  �r 
u

 is a single symbol. You cannot cancel out or remove the � in algebraic 
operations. 

TACTiCS
B o x  1 . 1 

 Vector addition

Displacement is a vector quantity; it requires both a length and a direction to de-
scribe it. Specifically, the displacement �r 

u
 is a vector drawn from a starting position 

to an ending position. Sam’s displacement is written

 �r 
u

= (100 ft, northeast)

The length, or magnitude, of a displacement vector is simply the straight-line distance 
between the starting and ending positions.

Sam’s final position in Figure 1.6, vector r 
u

1, can be seen as a combination of where 
he started, vector r 

u

0, plus the vector �r 
u

 representing his change of position. In fact, r 
u

1 
is the vector sum of vectors r 

u

0 and �r 
u

. This is written

 r 
u

1 = r 
u

0 + �r 
u

 (1.1)

Notice, however, that we are adding vector quantities, not numbers. Vector addition is 
a different process from “regular” addition. We’ll explore vector addition more thor-
oughly in Chapter 3, but for now you can add two vectors A

u

 and B
u

 with the three-step 
procedure shown in Tactics Box 1.1.



To subtract B from A: Draw A.

Place the tail of
�B at the tip of A.

Draw an arrow from
the tail of A to the
tip of �B. This is
vector A � B.

r r r

r r

r

r

r r

1

2

3

r
A

r
B

�B
r

r
A

r
A

r
A

A�B
r r

�B
r

r
B

–B
r

Vector –B has the same length as
B but points in the opposite direction.

r

r

The zero vector 0 has no length.
r

B � (–B) � 0 because the sum 
returns to the starting point.

r r r

FigUre 1.8 The negative of a vector.

End

Start

The displacement vector
is not affected by the 
choice of origin.

50 feet New origin

r3
r�rr

r2
r

FigUre 1.7 Sam’s displacement �r 
u 

is unchanged by using a different 
coordinate system.
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If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r 

u

0 and �r 
u

 are added to give r 
u

1.

NoTe  A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vec-
tor B

u

 is not changed by sliding it to where its tail is at the tip of A
u

. 

In Figure 1.6, we chose arbitrarily to put the origin of the coordinate system at 
the corner. While this might be convenient, it certainly is not mandatory. FigUre 1.7 
shows a different choice of where to place the origin. Notice something interesting. 
The initial and final position vectors r 

u

0 and r 
u

1 have become new vectors r 
u

2 and r 
u

3, 
but the displacement vector �r 

u
 has not changed! The displacement is a quantity 

that is independent of the coordinate system. In other words, the arrow drawn from 
one position of an object to the next is the same no matter what coordinate system 
you choose.

This observation suggests that the displacement, rather than the actual position, is 
what we want to focus on as we analyze the motion of an object. Equation 1.1 told us 
that r 

u

1 = r 
u

0 + �r 
u

. This is easily rearranged to give a more precise definition of dis-
placement: The displacement � ru of an object as it moves from an initial position 
rui to a final position ruf is

 �r 
u

= r 
u

f - r 
u

i (1.2)

Graphically, � ru is a vector arrow drawn from position r 
u

i to position r 
u

f. The dis-
placement vector is independent of the coordinate system.

NoTe  To be more general, we’ve written Equation 1.2 in terms of an initial posi-
tion and a final position, indicated by subscripts i and f. We’ll frequently use i and f 
when writing general equations, then use specific numbers or values, such as 0 and 
1, when working a problem. 

This definition of �r 
u

 involves vector subtraction. With numbers, subtraction is 
the same as the addition of a negative number. That is, 5 - 3 is the same as 5 + (-3). 
Similarly, we can use the rules for vector addition to find A

u

- B
u

= A
u

+ (-B
u

) if we 
first define what we mean by -B

u

. As FigUre 1.8 shows, the negative of vector B
u

 is 
a vector with the same length but pointing in the opposite direction. This makes 
sense because B

u

- B
u

= B
u

+ (-B
u

) = 0
u

, where 0
u

, a vector with zero length, is called 
the zero vector.

TACTiCS
B o x  1 . 2 

 Vector subtraction



(a) Rocket launch

(b) Car stopping 

Start

Stop

r

�r3
r

�r2
r

�r1
r

�r0
r

�r0
r �r1

r �r2
r �r3

r

FigUre 1.10 Motion diagrams with the 
displacement vectors.

f

i

Position
vectors

Origin

(a)

Two dots of
a motion diagram

rf
r

ri
r

What is the particle’s
displacement vector �r?r

(b)

f

i

1

2

3

Draw �ri at the 
tip of rf. 

r

r

Draw rf � ri. This
is �r. 

r r

r
Draw rf.

r

rf � ri
r r

�ri
r

rf
r

ri
r

�rr Finally, slide �r back
to the motion diagram. 
It is a vector from 
dot i to dot f.

r

FigUre 1.9 Using vector subtraction to find �r 
u

= r 
u

f - r 
u

i.
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Application to Motion Diagrams
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors. As Figure 1.9 shows, the displacement vectors are simply the arrows connect-
ing each dot to the next. Label each arrow with a vector symbol �r 

u

n  , starting with 
n = 0. FigUre 1.10 shows the motion diagrams of Figure 1.4 redrawn to include the 
displacement vectors. You do not need to show the position vectors.

NoTe  When an object either starts from rest or ends at rest, the initial or final 
dots are as close together as you can draw the displacement vector arrow connect-
ing them. In addition, just to be clear, you should write “Start” or “Stop” beside 
the initial or final dot. It is important to distinguish stopping from merely slowing 
down. 

Now we can conclude, more precisely than before, that, as time proceeds:

	■	 An object is speeding up if its displacement vectors are increasing in length.
	■	 An object is slowing down if its displacement vectors are decreasing in length.

exAMPLe 1.1  Headfirst into the snow
Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst 
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion dia-
gram for Alice. Show and label all displacement vectors.

MoDeL Use the particle model to represent Alice as a dot.

ViSUALize FigUre 1.11 shows Alice’s motion diagram. The problem statement suggests 
that Alice’s speed is very nearly constant until she hits the snowbank. Thus her displace-
ment vectors are of equal length as she slides along the icy road. She begins slowing 
when she hits the snowbank, so the displacement vectors then get shorter until she stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

�r0
r �r1

r �r2
r �r3

r �r4
r �r5

r �r6
r

FigUre 1.11 Alice’s motion diagram.

FigUre 1.9 uses the vector subtraction rules of Tactics Box 1.2 to prove that the dis-
placement �r 

u
 is simply the vector connecting the dots of a motion diagram.



The victory goes to the runner with the 
highest average speed.

A stopwatch is used to measure a time 
interval.
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Time interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of film might be t1 and t2. The specific values are arbitrary because they are 
timed relative to an arbitrary instant that you chose to call t = 0. But the time interval 
�t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to move from 
one position to the next. All observers will measure the same value for �t, regardless 
of when they choose to start their clocks.

The time interval �t � tf � ti measures the elapsed time as an object moves 
from an initial position rui at time ti to a final position ruf at time tf  . The value of 
�t is independent of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements �r 

u
 and the time intervals �t because these are 

independent of the specific coordinate system used to measure them.

1.4 Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

 average speed =
distance traveled

time interval spent traveling
=

d

�t
 (1.3)

If you drive 15 miles (mi) in 30 minutes (1
2 h), your average speed is

 average speed =
15 mi

1
2 h

= 30 mph (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier is 
moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply knowing 
that the boat’s speed is 20 mph is not enough information!

It’s the displacement �r 
u

, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d/�t is the ratio �r 

u
/�t. This ratio is a vector because �r 

u
 is a vector, so 

it has both a magnitude and a direction. The size, or magnitude, of this ratio will be 
larger for a fast object than for a slow object. But in addition to measuring how fast an 
object moves, this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it has 
the symbol v  

u

avg. The average velocity of an object during the time interval �t, in 
which the object undergoes a displacement � ru, is the vector

 v  

u

avg =
�r 

u

�t
 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector �ru. This is the direction of motion.



(a)

vavg A � (20 mph, north)

vavg B � (20 mph, east)

(b)

A

B

�rA � (5 mi, north)r

�rB � (5 mi, east)r

r

r

The velocity vectors point
in the direction of motion.

FigUre 1.12 The displacement vectors 
and velocities of ships A and B.

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

rv

FigUre 1.14 Motion diagram of a car 
accelerating up a hill.

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average
velocity vectors.

Hare

Tortoise

v0
r v1

r v2
r

v0
r v1

r v2
r

FigUre 1.13 Motion diagram of the 
tortoise racing the hare.
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NoTe  In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language. 

As an example, FigUre 1.12a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with �t = 0.25 h, we find

  v  

u

avg  A = (20 mph, north) 
  (1.6)
  v  

u

avg  B = (20 mph, east) 

Both ships have a speed of 20 mph, but their velocities are different. Notice how the 
velocity vectors in FigUre 1.12b point in the direction of motion.

NoTe  Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show 
on motion diagrams, is the average velocity v  

u

avg. But to allow the motion diagram 
to be a useful tool, we will drop the subscript and refer to the average velocity 
as simply v  

u
. Our definitions and symbols, which somewhat blur the distinction 

between average and instantaneous quantities, are adequate for visualization pur-
poses, but they’re not the final word. We will refine these definitions in Chapter 2, 
where our goal will be to develop the mathematics of motion. 

Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement �r 

u
, and the length 

of v  

u
 is directly proportional to the length of �r 

u
. Consequently, the vectors connecting 

each dot of a motion diagram to the next, which we previously labeled as displace-
ments, could equally well be identified as velocity vectors.

This idea is illustrated in FigUre 1.13, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v  

u
. The length of a velocity vector represents the average speed 

with which the object moves between the two points. Longer velocity vectors indi-
cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 
direction. We say the hare is moving with constant velocity. The tortoise is also mov-
ing with its own constant velocity.

exAMPLe 1.2  Accelerating up a hill
The light turns green and a car accelerates, starting from rest, up a 
20� hill. Draw a motion diagram showing the car’s velocity.

MoDeL Use the particle model to represent the car as a dot.

ViSUALize The car’s motion takes place along a straight line, but 
the line is neither horizontal nor vertical. Because a motion dia-
gram is made from frames of a movie, it will show the object mov-
ing with the correct orientation—in this case, at an angle of 20�. 
FigUre 1.14 shows several frames of the motion diagram, where we 
see the car speeding up. The car starts from rest, so the first arrow 
is drawn as short as possible and the first dot is labeled “Start.” 
The displacement vectors have been drawn from each dot to the 
next, but then they are identified and labeled as average velocity 
vectors v  

u
.

NoTe  Rather than label every single vector, it’s easier to give 
one label to the entire row of velocity vectors. You can see this in 
Figure 1.14. 



(e)(d)(c)(b)(a)

1

2

y

x

FigUre 1.15 Motion diagram of a ball 
traveling from Jake to Jose.

Jake Jose
vr

The velocity vectors are straight,
not curved to follow the trajectory.

12    c h a p t e r  1 . Concepts of Motion

Stop to think 1.3 
 A particle moves from position 1 to position 2 during the interval 

�t. Which vector shows the particle’s average velocity?

1.5 Linear Acceleration
The goal of this chapter is to find a set of concepts with which to describe motion. 
Position, time, and velocity are important concepts, and at first glance they might 
appear to be sufficient. But that is not the case. Sometimes an object’s velocity is con-
stant, as it was in Figure 1.13. More often, an object’s velocity changes as it moves, 
as in Figure 1.14 and 1.15. We need one more motion concept, one that will describe 
a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

 1. The magnitude can change, indicating a change in speed; or
 2. The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accelerating 
up a hill in Figure 1.14 was an example in which the magnitude of the velocity vector 
changed but not the direction. We’ll return to the second case in Chapter 4.

When we wanted to measure changes in position, the ratio �r 
u

/�t was useful. This 
ratio is the rate of change of position. By analogy, consider an object whose velocity 
changes from v  

u

1 to v  

u

2 during the time interval �t. Just as �r 
u

= r 
u

2 - r 
u

1 is the change 
of position, the quantity �v  

u
= v  

u

2 - v  

u

1   is the change of velocity. The ratio �v  

u
/�t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 
quickly and a small magnitude for objects that speed up slowly.

exAMPLe 1.3  it’s a hit!
Jake hits a ball at a 60� angle above horizontal. It is caught by Jose. 
Draw a motion diagram of the ball.

MoDeL This example is typical of how many problems in science 
and engineering are worded. The problem does not give a clear 
statement of where the motion begins or ends. Are we interested 
in the motion of the ball just during the time it is in the air between 
Jake and Jose? What about the motion as Jake hits it (ball rapidly 
speeding up) or as Jose catches it (ball rapidly slowing down)? The 
point is that you will often be called on to make a reasonable in-
terpretation of a problem statement. In this problem, the details of 
hitting and catching the ball are complex. The motion of the ball 
through the air is easier to describe, and it’s a motion you might 
expect to learn about in a physics class. So our interpretation is that 
the motion diagram should start as the ball leaves Jake’s bat (ball 
already moving) and should end the instant it touches Jose’s hand 
(ball still moving). We will model the ball as a particle.

ViSUALize With this interpretation in mind, FigUre 1.15 shows 
the motion diagram of the ball. Notice how, in contrast to the car 

of Figure 1.14, the ball is already moving as the motion diagram 
movie begins. As before, the average velocity vectors are found 
by connecting the dots with straight arrows. You can see that the 
average velocity vectors get shorter (ball slowing down), get lon-
ger (ball speeding up), and change direction. Each v  

u
 is different, 

so this is not constant-velocity motion.



The Audi TT accelerates from 0 to 60 mph 
in 6 s.

1

2

3

4 Return to the original motion 
diagram. Draw a vector at the 
middle point in the direction of
�v; label it a. This is the average
acceleration at the midpoint
between vn and vn�1. 

Draw the velocity vector vn�1.

Draw �vn at the tip of vn�1.

Draw �v � vn�1 � vn

 � vn�1 � (�vn)
This is the direction of a.  

To find the acceleration as the
velocity changes from vn to vn�1,
we must determine the change
of velocity �v � vn�1 � vn.

rr

r

r r

r r r

r r r

r r

r

r r

r r

vn�1
r

vn
r

vn�1
r

vn�1
r

�vn
r

vn�1
r

�vn
r

�vr

vn�1
r

vn
r

ar

Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.
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TACTiCS
B o x  1 . 3 

 Finding the acceleration vector

exercises 21–24 

The ratio �v  

u
/�t is called the average acceleration, and its symbol is a

u

avg. The 
average acceleration of an object during the time interval �t, in which the object’s 
velocity changes by �v  

u, is the vector

 a
u

avg =
�v  

u

�t
 (1.7)

The average acceleration vector points in the same direction as the vector �v 
u.

Acceleration is a fairly abstract concept. Yet it is essential to develop a good intuition 
about acceleration because it will be a key concept for understanding why objects move 
as they do. Motion diagrams will be an important tool for developing that intuition.

NoTe  As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply a

u
. This is adequate for visualization purposes, but not the 

final word. We will refine the definition of acceleration in Chapter 2. 

Finding the Acceleration Vectors on a Motion Diagram
Let’s look at how we can determine the average acceleration vector a

u
 from a motion 

diagram. From its definition, Equation 1.7, we see that a
u
 points in the same direction as 

�v  

u
, the change of velocity. This critical idea is the basis for a technique to find a

u
.

Notice that the acceleration vector goes beside the middle dot, not beside the veloc-
ity vectors. This is because each acceleration vector is determined as the difference 
between the two velocity vectors on either side of a dot. The length of a

u
 does not have 

to be the exact length of �v  

u
; it is the direction of a

u
 that is most important.
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