


Useful Data
Me Mass of the earth 5.98 * 1024 kg
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K
R Gas constant 8.31 J/mol K
NA Avogadro’s number 6.02 * 1023 particles/mol
T0 Absolute zero -273�C
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20�C 343 m/s
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg
me Mass of the electron 9.11 * 10-31 kg
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A
e Fundamental unit of charge 1.60 * 10-19 C
c Speed of light in vacuum 3.00 * 108 m/s
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 eV s
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 eV s
aB Bohr radius 5.29 * 10-11 m

Common Prefixes
Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors
Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180�/p = 57.3�
1 rev = 360� = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations
Binominal Approximation:  (1 + x)n � 1 + nx if x V 1

Small-Angle Approximation:  sin u � tan u � u and cos u � 1 if u V 1 radian

Greek Letters Used in Physics
Alpha a Mu m

Beta b Pi p

Gamma � g Rho r

Delta � d Sigma g s

Epsilon P Tau t

Eta h Phi � f

Theta � u Psi c

Lambda l Omega � v
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Worked Examples walk the student carefully 
through detailed solutions, focusing on underlying 
reasoning and common pitfalls to avoid. 

NEW! Data-based Examples (shown here) help 
students with the skill of drawing conclusions from 
laboratory data.

106    c h a p t e r  4 . Kinematics in Two Dimensions

 Thus    vt = vr    and    at = ar    are analogous equations for the tangential velocity and 
acceleration. In  Example   4.14   , where we found the roulette ball to have angular 
acceleration    a = -1.89 rad/s2,    its tangential acceleration was   

    at = ar = (-1.89 rad/s2)(0.15 m) = -0.28 m/s2   

   eXAMPle 4.15   Analyzing rotational data 
 You’ve been assigned the task of measuring the start-up charac-
teristics of a large industrial motor. After several seconds, when 
the motor has reached full speed, you know that the angular ac-
celeration will be zero, but you hypothesize that the angular ac-
celeration may be constant during the first couple of seconds as the 
motor speed increases. To find out, you attach a shaft encoder to 
the 3.0-cm-diameter axle. A shaft encoder is a device that converts 
the angular position of a shaft or axle to a signal that can be read by 
a computer. After setting the computer program to read four values 
a second, you start the motor and acquire the following data:   

 Time (s)  Angle    (�)   

0.00   0

0.25  16

0.50  69

0.75 161

1.00 267

1.25 428

1.50 620

    a. Do the data support your hypothesis of a constant angular ac-
celeration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?  

   b. A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach    10 m/s2?      

  MoDel   The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.  

  vIsUAlIZe     FIGURe   4.38     shows that the blade tip has both a tangen-
tial and a radial acceleration.   

   a = 2m.    If the graph is not a straight line, our observation of 
whether it curves upward or downward will tell us whether the 
angular acceleration us increasing or decreasing. 

   FIGURe   4.39     is the graph of    u    versus    t 2,    and it confirms our 
hypothesis that the motor starts up with constant angular ac-
celeration. The best-fit line, found using a spreadsheet, gives 
a slope of    274.6�/s2.    The units come not from the spreadsheet 
but by looking at the units of rise    (�)    over run (   s2    because we’re 
graphing    t 2    on the  x -axis). Thus the angular acceleration is 

    a = 2m = 549.2�/s2 *
p rad

180�
= 9.6 rad/s2   

 where we used    180� = p rad    to convert to SI units of    rad/s2.     

  FIGURe 4.38         Pictorial representation of the axle and blade.   
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  FIGURe 4.39         Graph of    u    versus    t 2    for the motor shaft.   

  solve 
    a.  If  the motor starts up with constant angular acceleration, with 

   ui = 0    and    vi = 0 rad/s,    the angle-time equation of rotational 
kinematics is    u =

1
2  

at 2.    This can be written as a linear equation 
   y = mx + b    if we let    u = y    and    t 2 = x.    That is, constant angular 
acceleration predicts that a graph of    u    versus    t 2    should be a straight 
line with slope    m =

1
2  

a    and  y -intercept    b = 0.    We can test this. 
If the graph turns out to be a straight line with zero  y -intercept, 
it will confirm the hypothesis of constant angular acceleration and 
we can then use its slope to determine the angular acceleration: 

   b. The magnitude of the linear acceleration is 

    a = 2ar 

2 + at 

2   

 Constant angular acceleration implies constant tangential ac-
celeration, and the tangential acceleration of the blade tip is 

    at = ar = (9.6 rad/s2)(0.38 m) = 3.65 m/s2   

 We were careful to use the blade’s radius, not its diameter, and 
we kept an extra significant figure to avoid round-off error. The 
radial (centripetal) acceleration increases as the rotation speed 
increases, and the total acceleration reaches    10 m/s2    when 

    ar = 2a2 - at 

2 = 2(10 m/s2)2 - (3.65 m/s2)2 = 9.31 m/s2   

 Radial acceleration is    ar = v2r,    so the corresponding angular 
velocity is 

    v = Aar

r
= B 9.31 m/s2

0.38 m
= 4.95 rad/s   

 For constant angular acceleration,    v = at,    so this angular ve-
locity is achieved at 

    t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s   

 Thus it takes    0.52 s    for the acceleration of the blade tip to reach 
   10 m/s2.        

  Assess   The motor has not completed 2 full revolutions in    1.5 s,    so 
it has a slow start and modest accelerations. A tangential accelera-
tion of    3.65 m/s2    seems reasonable, so we have confidence in our 
final answer of    0.52 s.      

1

2

268    c h a p t e r  10 . Energy

    (vix)2M = 0 m/s,    as expected, because we chose a moving reference frame in which 
ball 2 would be at rest. 

   FIGURe   10.35    b now shows a situation—with ball 2 initially at rest—in which we can 
use Equations 10.42 to find the post-collision velocities in frame M: 

    (vfx)1M =
m1 - m2

m1 + m2
 (vix)1M = 1.7 m/s

 (vfx)2M =
2m1

m1 + m2
 (vix)1M = 6.7 m/s 

(10.45)

   

 Reference frame M hasn’t changed—it’s still moving to the left in the lab frame at 
   3.0 m/s   —but the collision has changed both balls’ velocities in frame M. 

 To finish, we need to transform the post-collision velocities in frame M back to the 
lab frame L. We can do so with another application of the Galilean transformation: 

    (vfx)1L = (vfx)1M + (vx)ML = 1.7 m/s +  (-3.0 m/s) = -1.3 m/s

 (vfx)2L = (vfx)2M + (vx)ML = 6.7 m/s + (-3.0 m/s) = 3.7 m/s  
(10.46)

   

   FIGURe   10.36     shows the outcome of the collision in the lab frame. It’s not hard to confirm 
that these final velocities do, indeed, conserve both momentum and energy.  

  FIGURe 10.36         The post-collision velocities 
in the lab frame.   

(vfx)1L � �1.3 m/s (vfx)2L � 3.7 m/s

1 2

we will assume that the collision is perfectly elastic. Third, the 
ball, after it bounces off the paperweight, swings back up as a 
pendulum.  

  vIsUAlIZe     FIGURe   10.37     shows four distinct moments of time: as the 
ball is released, an instant before the collision, an instant after the 
collision but before the ball and paperweight have had time to move, 
and as the ball reaches its highest point on the rebound. Call the ball 
A and the paperweight B, so    mA = 0.20 kg    and    mB = 0.50 kg.      

   CHAlleNGe eXAMPle 10.10    A rebounding pendulum 
 A 200 g steel ball hangs on a 1.0-m-long string. The ball is pulled 
sideways so that the string is at a    45�    angle, then released. At the 
very bottom of its swing the ball strikes a 500 g steel paperweight 
that is resting on a frictionless table. To what angle does the ball 
rebound? 

  MoDel   We can divide this problem into three parts. First the ball 
swings down as a pendulum. Second, the ball and paperweight 
have a collision. Steel balls bounce off each other very well, so 

  FIGURe 10.37         Four moments in the collision of a pendulum with a paperweight.   

Find: u3 

0

L � 1.0 m

mB � 500 g

u0 � 45�

mA � 200 g
A

y

(v0)A � 0 m/s
(y0)A � L(1 � cos u0)

(v3)A � 0 m/s
(y3)A � L(1 � cos u3)

(v1)A � (v1x)A

(y1)A � 0

(v1x)B � 0 m/s

A
(v2x)B(v2x)A

A B
A

BB

Part 1: Conservation of energy

Part 2: Conservation of momentum

Part 3: Conservation of energy

u3

10.4 . Restoring Forces and Hooke’s Law    255

  STOP TO THINK 10.3    A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURe   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 

  The mass hangs in static equilibrium, so the upward spring force    F
u

sp    exactly bal-
ances the downward gravitational force    F

u

G    to give    F
u

net = 0
u

.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURe   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   

 The proportionality constant  k , the slope of the force-versus-displacement graph, is 
called the  spring constant.  The units of the spring constant are    N/m.    

  
PRoBleM-solvING
sTRATeGY 10.1        Conservation of mechanical energy  

  MoDel   Choose a system that is isolated and has no friction or other losses of 
mechanical energy.  

  vIsUAlIZe   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  solve   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURe 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
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L

A block of mass m
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to length L.

The spring’s
restoring force
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the pull of gravity.
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  FIGURe 10.14         Measured data for the 
restoring force of a real spring.   
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NEW! Challenge Examples illustrate how to integrate 
multiple concepts and use more sophisticated reasoning.
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Brian Jones. These engaging and helpful videos walk students through a representative problem for each main topic, 
often starting with a qualitative overview in the context of a lab- or real-world demo.

Builds problem-solving skills and confidence…
… through a carefully structured and research-proven program  
of problem-solving techniques and practice materials.
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frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURe   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 
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ances the downward gravitational force    F
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G    to give    F
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net = 0
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.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURe   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   
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  vIsUAlIZe   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  solve   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 
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  TACTICs
B o X  9 . 1  

      Drawing a before-and-after pictorial representation 

     ●1  Sketch the situation.   Use two drawings, labeled “Before” and “After,” to 
show the objects  before  they interact and again  after  they interact.  

    ●2  Establish a coordinate system.   Select your axes to match the motion.  
    ●3  Define symbols.   Define symbols for the masses and for the velocities before 

and after the interaction. Position and time are not needed.  
    ●4  List known information.   Give the values of quantities that are known from 

the problem statement or that can be found quickly with simple geometry or 
unit conversions. Before-and-after pictures are simpler than the pictures for 
dynamics problems, so listing known information on the sketch is adequate.  

    ●5  Identify the desired unknowns.   What quantity or quantities will allow you 
to answer the question? These should have been defined in step 3.  

   ●6   If appropriate,  draw a momentum bar chart  to clarify the situation and 
establish appropriate signs.   

 Exercises 17–19       

   eXAMPle 9.1   Hitting a baseball 
 A 150 g baseball is thrown with a speed of    20 m/s.    It is hit straight 
back toward the pitcher at a speed of    40 m/s.    The interaction force 
between the ball and the bat is shown in   FIGURe   9.7    . What  maxi-
mum  force    Fmax    does the bat exert on the ball? What is the  average  
force of the bat on the ball? 

  vIsUAlIZe     FIGURe   9.8     is a before-and-after pictorial representation. 
The steps from Tactics Box 9.1 are explicitly noted. Because    Fx    
is positive (a force to the right), we know the ball was initially 
moving toward the left and is hit back toward the right. Thus we 
converted the statements about  speeds  into information about 
 velocities,  with    vix    negative.   

  solve   Until now we’ve consistently started the mathematical rep-
resentation with Newton’s second law. Now we want to use the 
impulse-momentum theorem: 

    �px = Jx = area under the force curve   

 We know the velocities before and after the collision, so we can 
calculate the ball’s momenta: 

     pix = mvix = (0.15 kg)(-20 m/s) = -3.0 kg m/s

  pfx = mvfx = (0.15 kg)(40 m/s) = 6.0 kg m/s    
   MoDel   Model the baseball as a particle and the interaction as a 
collision.  

  FIGURe 9.7         The interaction 
force between the baseball 
and the bat.   

Fx

Fmax

0

6.0 ms
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   FIGURe 9.8         A before-and-after pictorial representation.   
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3. The ball moves to the
 right with a higher speed.

2. It’s hit to the right.

1. The ball was initially
 moving to the left.

Draw a momentum bar chart.6

  NoTe   � The generic subscripts i and f, for  initial  and  final,  are adequate in equa-
tions for a simple problem, but using numerical subscripts, such as    v1x    and    v2x,    will 
help keep all the symbols straight in more complex problems. �  
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  STOP TO THINK 10.3    A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s Law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURE   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 

  The mass hangs in static equilibrium, so the upward spring force    F
u

sp    exactly bal-
ances the downward gravitational force    F

u

G    to give    F
u

net = 0
u

.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURE   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   

 The proportionality constant  k , the slope of the force-versus-displacement graph, is 
called the  spring constant.  The units of the spring constant are    N/m.    

  
PROBLEM-SOLVING
STRATEGY 10.1        Conservation of mechanical energy  

  MODEL   Choose a system that is isolated and has no friction or other losses of 
mechanical energy.  

  VISUALIZE   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  SOLVE   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  ASSESS   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURE 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
restoring force
exactly balances
the pull of gravity.

L0

FG

r

Fsp

r

  FIGURE 10.14         Measured data for the 
restoring force of a real spring.   
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The restoring force is proportional
to the displacement of the spring
from equilibrium.

Fsp (N)

�s � L � L0 (m)

Slope � k � 3.5 N/m

solve

At the heart of the problem-solving instruction is the consistent 
4-step MODEL/ VISUALIZE/ SOLVE/ ASSESS approach, used 
throughout the book and all supplements. Problem-Solving 
Strategies provide detailed guidance for particular topics and 
categories of problems, often drawing on key skills outlined 
in the step-by-step procedures of Tactics Boxes. Problem-
Solving Strategies and Tactics Boxes are also illustrated in 
dedicated MasteringPhysics Skill-Builder Tutorials.
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     s U M M A R Y 
 The goal of  Chapter   27    has been to understand and apply Gauss’s law. 

  Gauss’s law 
 For any  closed  surface enclosing net charge    Qin   , the net electric flux through 
the surface is 

    �e = C E
u # dA

u

=
Qin 

P0
    

 The electric flux    �e    is the same for  any  closed surface enclosing charge    Qin.     

  symmetry 
 The symmetry of the electric field must match the 
symmetry of the charge distribution. 

 In practice,    �e    is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.   

  General Principles     

     symmetric    
    Gaussian surface    

    electric flux,    �e        

    area vector,    A
u

       

    surface integral    
    Gauss’s law    

    screening      

  Terms and Notation 

     Charge  creates the electric field that 
is responsible for the electric flux.             

  Important Concepts       

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

     Flux  is the amount of electric field 
passing through a surface of area  A :   

    �e = E
u # A

u

   

 where    A
u

    is the  area vector.  

  
         For closed surfaces:  
 A net flux in or out indicates that 
the surface encloses a net charge. 

Field lines through but with no 
 net  flux mean that the surface 
encloses no  net  charge.     
        

     Surface integrals  calculate the flux by summing the fluxes 
through many small pieces of the surface:   

    �e = a E
u # dA

u

 S 3E
u # dA

u

   

  
         Two important situations:  
 If the electric field is everywhere 
tangent to the surface, then 

    �e = 0   

 If the electric field is everywhere 
perpendicular to the surface  and  has 
the same strength  E  at all points, then   

    �e = E A              

u

A

E

r

r dA
E

r

r

     Conductors in electrostatic equilibrium  

   •   The electric field is zero at all points within the conductor.  

  •   Any excess charge resides entirely on the exterior surface.  

  •   The external electric field is perpendicular to the surface and of magnitude    h/P0   , where    h    is the 
surface charge density.  

  •   The electric field is zero inside any hole within a conductor unless there is a charge in the hole.                   

  Applications   

E
r

�
�

�
�

�
�

�
�

�
�

�
�

�

E � 0
r r
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             This loudspeaker cone generates 
sound waves by oscillating back 
and forth at audio frequencies.    

 Oscillations   

      � looking Ahead   The goal of  Chapter   14    is to understand systems that oscillate with simple harmonic motion.  

 In this chapter you will learn to: 

   ■   Represent simple harmonic motion 
both graphically and mathematically.  

  ■   Understand the dynamics of oscillat-
ing systems.  

  ■   Recognize the similarities among 
many types of oscillating systems.   

 Simple harmonic motion has a very 
close connection to uniform circular 
motion. You’ll learn that an edge-on 
view of uniform circular motion is none 
other than simple harmonic motion.       

   simple Harmonic Motion 
 The most basic 
oscillation, with 
sinusoidal motion, 
is called  simple 
harmonic motion.    
  

       The oscillating cart 
is an example of 
simple harmonic 
motion. You’ll learn 
how to use the 
mass and the spring 
constant to deter-
mine the frequency 
of oscillation.    

  � looking Back 
 Section 4.5 Uniform circular motion  

Oscillation

     Pendulums 
 A mass swinging at the end of a string or 
rod is a  pendulum.  Its motion is another 
example of simple harmonic motion.     

       The period of a pendu-
lum is determined by 
the length of the string; 
neither the mass nor 
the amplitude matters. 
Consequently, the pen-
dulum was the basis of 
time keeping for many 
centuries.     

  Damping and Resonance 
 If there’s drag or other dissipation, then 
the oscillation “runs down.” This is 
called a  damped oscillation.      

       The amplitude of 
a damped oscil-
lation undergoes 
 exponential 
decay.     

 Oscillations can increase in amplitude, 
sometimes dramatically, when driven at 
their natural oscillation frequency. This 
is called  resonance.     

t

x

0

�A

A

     energy of oscillations 
 If there is no friction or other dissipa-
tion, then the mechanical energy of an 
oscillator is conserved. Conservation of 
energy will be an important tool.     

       The system oscil-
lates between all 
kinetic energy and 
all potential energy          

  � looking Back 
 Section 10.5 Elastic potential energy 
 Section 10.6 Energy diagrams  

0

All potential

All kinetic

A
x

�A

     springs 
 Simple harmonic motion occurs when 
there is a  linear restoring force.  The 
simplest example is 
a mass on a spring. 
You will learn how to 
determine the period 
of oscillation.     

       The “bounce” at the 
bottom of a bungee 
jump is an exhilarating 
example of a mass 
oscillating on a spring.          

  � looking Back 
 Section 10.4 Restoring forces  

NEW! PhET Simulations and Tutorials allow students to 
explore real-life phenomena and discover the underlying physics. 
Sixteen tutorials are provided in the MasteringPhysics item 
library, and 76 PhET simulations are available in the Study Area 
and Pearson eText, along with the comprehensive library of 
ActivPhysics applets and applet-based tutorials.
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  static equilibrium 

   eXAMPle 6.1   Finding the force on the kneecap 
 Your kneecap (patella) is attached by a tendon to your quad-
riceps muscle. This tendon pulls at a    10�    angle relative to the 
femur, the bone of your upper leg. The patella is also attached 
to your lower leg (tibia) by a tendon that pulls parallel to the 
leg. To balance these forces, the lower end of your femur 
pushes outward on the patella. Bending your knee increases 

the tension in the tendons, and both have a tension of 60 N 
when the knee is bent to make a    70�    angle between the upper 
and lower leg. What force does the femur exert on the kneecap 
in this position? 

  MoDel   Model the kneecap as a particle in static equilibrium.  

  vIsUAlIZe     FIGURe   6.1     shows how to draw a pictorial representa-
tion. We’ve chosen to align the  x -axis with the femur. The three 
forces—shown on the free-body diagram—are labeled    T 

u

1    and    T 
u

2    
for the tensions and    F

u

    for the femur’s push. Notice that we’ve 
 defined  angle    u    to indicate the direction of the femur’s force on 
the kneecap.   

  solve   This is a static-equilibrium problem, with three forces on 
the kneecap that must sum to zero. Newton’s first law, written in 
component form, is 

     (Fnet)x = a
i

(Fi)x = T1x + T2x + Fx = 0

  (Fnet)y = a
i

(Fi)y = T1y + T2y + Fy = 0   

  NoTe   � You might have been tempted to write    - T1x    in the equation 
since    T 

u

1    points to the left. But the net force, by definition, is the  sum  
of all the individual forces. That fact that    T 

u

1    points to the left will be 
taken into account when we  evaluate  the components. �  

 The components of the force vectors can be evaluated directly 
from the free-body diagram: 

     T1x = -T1 cos 10�  T1y = T1 sin 10�

  T2x = -T2 cos 70�   T2y = -T2 sin 70�

  Fx = F cos u     Fy = F sin u   

  This is where signs enter , with    T1x    being assigned a negative value 
because    T 

u

1    points to the left. Similarly,    T 
u

2    points both to the left 
and down, so both    T2x    and    T2y    are negative. With these compo-
nents, Newton’s first law becomes 

     -T1 cos 10� - T2 cos 70� + F cos u = 0

  T1 sin 10� - T2 sin 70� + F sin u = 0   

 These are two simultaneous equations for the two unknowns    F    
and    u.    We will encounter equations of this form on many occa-
sions, so make a note of the method of solution. First, rewrite the 
two equations as 

     F cos u = T1 cos 10� + T2 cos 70�

  F sin u = -T1 sin 10� + T2 sin 70�   

 Next, divide the second equation by the first to eliminate    F:    

    
F sin u

F cos u
= tan u =

-T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70�
   

 Then solve for    u:    

     u =  tan-11 -T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70� 2
  = tan-11 - (60 N) sin 10� + (60 N) sin 70�

(60 N) cos 10� + (60 N) cos 70� 2 = 30�   

 Finally, use    u    to find    F:    

     F =
T1 cos 10� + T2 cos 70�

cos u

  =
(60 N) cos 10� + (60 N) cos 70�)

cos 30�
= 92 N   

 The question asked What force? and force is a vector, so we must 
specify both the magnitude and the direction. With the knee in this 
position, the femur exerts a force    F

u

= (92 N, 30� above horizontal)    
on the kneecap.  

  Assess   The magnitude of the force would be 0 N if the leg were 
straight, 120 N if the knee could be bent    180�    so that the two 
tendons pull in parallel. The knee is closer to fully bent than to 
straight, so we would expect a femur force between 60 N and 
120 N. Thus the calculated magnitude of 92 N seems reasonable.    

y

x

Identify the patella
as the object.

There’s no
net force.

Establish a coordinate
system aligned with
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70�70�
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Femur push
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Tibia
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u
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r r

F
r

T1

r

T2

r Name and label the
angle of the push.

List knowns and unknowns.

Known

T1 � 60 N
T2 � 60 N

Find

F

   FIGURe 6.1         Pictorial representation of the kneecap in static equilibrium.   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    

BIO

   63. ||    A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion.   FIGURe   P14.63     
shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    
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   63. ||    A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion.   FIGURe   P14.63     
shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    
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15. The graph shows how the magnetic field changes
through a rectangular loop of wire with resistance
R. Draw a graph of the current in the loop as a
function of time. Let a counterclockwise 
current be positive, a clockwise current be
negative.

a. What is the magnetic flux through the loop at ?

b. Does this flux change between and ? 

c. Is there an induced current in the loop between and ? 

d. What is the magnetic flux through the loop at ? 

e. What is the change in flux through the loop between and ?

f. What is the time interval between and ?

g. What is the magnitude of the induced emf between and ?

h. What is the magnitude of the induced current between and ?

i. Does the magnetic field point out of or into the loop?

f. Between and , is the magnetic flux increasing or decreasing?

g. To oppose the change in the flux between and , should the 
magnetic field of the induced current point out of or into the loop?

h. Is the induced current between and positive or negative?

i. Does the flux through the loop change after ?

j. Is there an induced current in the loop after ?

k. Use all this information to draw a graph of the induced current. Add appropriate labels on
the vertical axis.
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NEW! Math Remediation found within selected tutorials provide just-
in-time math help and allow students to brush up on the most important 
mathematical concepts needed to successfully complete assignments. This 
new feature links students directly to math review and practice helping 
students make the connection between math and physics.

NEW! Enhanced end-of-chapter problems in 
MasteringPhysics now offer additional support such 
as problem-solving strategy hints, relevant math 
review and practice, links to the eText, and links to 
the related Video Tutor Solution.



Make a difference with MasteringPhysics…
… the most effective and widely used online science tutorial, homework,  
and assessment system available.

Pre-Built Assignments. For every chapter in the book, 
MasteringPhysics provides pre-built assignments that 
cover the material with a tested mix of tutorials and end-
of-chapter problems of graded difficulty. Professors may 
use these assignments as-is or take them as a starting 
point for modification.

NEW! Quizzing and Testing Enhancements. 
These include options to:
	 •	Hide item titles.
	 •	Add password protection.
	 •	Limit access to completed assignments.
	 •	Randomize question order in an assignment.

  www.masteringphysics.com

Gradebook

	 •	Every assignment is graded automatically.

	 •	Shades of red highlight vulnerable students and challenging 
assignments.

	 •	The Gradebook Diagnostics screen provides your favorite weekly 
diagnostics, summarizing grade distribution, improvement in scores 
over the course, and much more.

Class Performance on Assignment. Click on a problem to see 
which step your students struggled with most, and even their most 
common wrong answers. Compare results at every stage with the 
national average or with your previous class.

NEW! Learning Outcomes. In addition to being able to create 
your own learning outcomes to associate with questions in an 
assignment, you can now select content that is tagged to a large 
number of publisher-provided learning outcomes. You can also 
print or export student results based on learning outcomes for your 
own use or to incorporate into reports for your administration.

www.masteringphysics.com


Preface to the Instructor

In 2003 we published Physics for Scientists and Engineers: A Strategic Approach. 
This was the first comprehensive introductory textbook built from the ground up on 
research into how students can more effectively learn physics. The development and 
testing that led to this book had been partially funded by the National Science Founda-
tion. This first edition quickly became the most widely adopted new physics textbook 
in more than 30 years, meeting widespread critical acclaim from professors and stu-
dents. For the second edition, and now the third, we have built on the research-proven 
instructional techniques introduced in the first edition and the extensive feedback from 
thousands of users to take student learning even further.

Objectives
My primary goals in writing Physics for Scientists and Engineers: A Strategic Ap­
proach have been:

	■	 To produce a textbook that is more focused and coherent, less encyclopedic.
	■	 To move key results from physics education research into the classroom in a way 

that allows instructors to use a range of teaching styles.
	■	 To provide a balance of quantitative reasoning and conceptual understanding, with 

special attention to concepts known to cause student difficulties.
	■	 To develop students’ problem-solving skills in a systematic manner.
	■	 To support an active-learning environment.

These goals and the rationale behind them are discussed at length in the Instructor 
Guide and in my small paperback book, Five Easy Lessons: Strategies for Successful 
Physics Teaching. Please request a copy from your local Pearson sales representative 
if it is of interest to you (ISBN 978-0-8053-8702-5).

What’s New to This Edition
For this third edition, we continue to apply the best results from educational research, 
and to refine and tailor them for this course and its students. At the same time, the 
extensive feedback we’ve received has led to many changes and improvements to the 
text, the figures, and the end-of-chapter problems. These include:

	■	 New illustrated Chapter Previews give a visual overview of the upcoming ideas, 
set them in context, explain their utility, and tie them to existing knowledge (through 
Looking Back references). These previews build on the cognitive psychology con-
cept of an “advance organizer.”

	■	 New Challenge Examples illustrate how to integrate multiple concepts and use 
more sophisticated reasoning in problem-solving, ensuring an optimal range of 
worked examples for students to study in preparation for homework problems.

	■	 New Data-based Examples help students with the skill of drawing conclusions 
from laboratory data. Designed to supplement lab-based instruction, these exam-
ples also help students in general with mathematical reasoning, graphical interpre-
tation, and assessment of results.

End-of-chapter problem enhancements include the following:

	■	 Data from Mastering Physics® have been thoroughly analyzed to ensure an opti-
mal range of difficulty, problem types, and topic coverage. In addition, the wording 

viii
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of every problem has been reviewed for clarity. Roughly 20% of the end-of-chapter 
problems are new or significantly revised.

	■	 Data-based problems allow students to practice drawing conclusions from data (as 
demonstrated in the new data-based examples in the text).

	■	 An increased emphasis on symbolic answers encourages students to work alge-
braically. The Student Workbook also contains new exercises to help students work 
through symbolic solutions.

	■	 Bio problems are set in life-science, bioengineering, or biomedical contexts.

Targeted content changes have been carefully implemented throughout the book. 
These include:

	■	 Life-science and bioengineering worked examples and applications focus on 
the physics of life-science situations in order to serve the needs of life-science stu-
dents taking a calculus-based physics class.

	■	 Descriptive text throughout has been streamlined to focus the presentation and 
generate a shorter text.

	■	 The chapter on Modern Optics and Matter Waves has been re-worked into 
Chapters 38 and 39 to streamline the coverage of this material.

At the front of the book, you’ll find an illustrated walkthrough of the new pedagogical 
features in this third edition. The Preface to the Student demonstrates how all the 
book’s features are designed to help your students.

Textbook Organization
The 42-chapter extended edition (ISBN 978-0-321-73608-6/0-321-73608-7) of Physics 
for Scientists and Engineers is intended for a three-semester course. Most of the 36-chapter 
standard edition (ISBN 978-0-321-75294-9/0-321-75294-5), ending with relativity, can 
be covered in two semesters, although the judicious omission of a few chapters will avoid 
rushing through the material and give students more time to develop their knowledge 
and skills.

There’s a growing sentiment that quantum physics is quickly becoming the 
province of engineers, not just scientists, and that even a two-semester course should 
include a reasonable introduction to quantum ideas. The Instructor Guide outlines a 
couple of routes through the book that allow most of the quantum physics chapters 
to be included in a two-semester course. I’ve written the book with the hope that an 
increasing number of instructors will choose one of these routes.

The full textbook is divided into seven parts: Part I: Newton’s Laws, Part II: 
Conservation Laws, Part III: Applications of Newtonian Mechanics, Part IV: Ther­
modynamics, Part V: Waves and Optics, Part VI: Electricity and Magnetism, and 
Part  VII: Relativity and Quantum Physics. Although I recommend covering the 
parts  in this order (see below), doing so is by no means essential. Each topic is 
self-contained, and Parts III–VI can be rearranged to suit an instructor’s needs. 
To facilitate a reordering of topics, the full text is available in the five individual 
volumes listed in the margin.

Organization Rationale: Thermodynamics is placed before waves because it is a 
continuation of ideas from mechanics. The key idea in thermodynamics is energy, and 
moving from mechanics into thermodynamics allows the uninterrupted development 
of this important idea. Further, waves introduce students to functions of two variables, 
and the mathematics of waves is more akin to electricity and magnetism than to me-
chanics. Thus moving from waves to fields to quantum physics provides a gradual 
transition of ideas and skills.

The purpose of placing optics with waves is to provide a coherent presentation 
of wave physics, one of the two pillars of classical physics. Optics as it is presented 
in introductory physics makes no use of the properties of electromagnetic fields. 
There’s little reason other than historical tradition to delay optics until after E&M. 

	■	 Extended edition, with modern 
physics (ISBN 978-0-321-73608-6 / 
0-321-73608-7): Chapters 1–42.

	■	 Standard edition (ISBN 978-0-
321-75294-9 / 0-321-75294-5):  
Chapters 1–36.

	■	 Volume 1 (ISBN 978-0-321-75291-8 / 
0-321-75291-0) covers mechanics: 
Chapters 1–15.

	■	 Volume 2 (ISBN 978-0-321-75318-2 / 
0-321-75318-6) covers thermodynamics: 
Chapters 16–19.

	■	 Volume 3 (ISBN 978-0-321-75317-5 / 
0-321-75317-8) covers waves and 
optics: Chapters 20–24.

	■	 Volume 4 (ISBN 978-0-321-75316-8 / 
0-321-75316-X) covers electricity  
and magnetism, plus relativity: 
Chapters 25–36.

	■	 Volume 5 (ISBN 978-0-321-75315-1 / 
0-321-75315-1) covers relativity and 
quantum physics: Chapters 36–42.

	■	 Volumes 1–5 boxed set (ISBN 978-0-
321-77265-7 / 0-321-77265-2).
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The documented difficulties that students have with optics are difficulties with waves, 
not difficulties with electricity and magnetism. However, the optics chapters are eas-
ily deferred until the end of Part VI for instructors who prefer that ordering of topics.

The Student Workbook
A key component of Physics for Scientists and Engineers: A Strategic Approach is the 
accompanying Student Workbook. The workbook bridges the gap between textbook 
and homework problems by providing students the opportunity to learn and practice 
skills prior to using those skills in quantitative end-of-chapter problems, much as a 
musician practices technique separately from performance pieces. The workbook ex-
ercises, which are keyed to each section of the textbook, focus on developing specific 
skills, ranging from identifying forces and drawing free-body diagrams to interpreting 
wave functions.

The workbook exercises, which are generally qualitative and/or graphical, draw 
heavily upon the physics education research literature. The exercises deal with issues 
known to cause student difficulties and employ techniques that have proven to be 
effective at overcoming those difficulties. The workbook exercises can be used in class 
as part of an active-learning teaching strategy, in recitation sections, or as assigned 
homework. More information about effective use of the Student Workbook can be 
found in the Instructor Guide.

Available versions: Extended (ISBN 978-0-321-75308-3/0-321-75308-9), Stan-
dard (ISBN 978-0-321-75309-0/0-321-75309-7), Volume 1 (ISBN 978-0-321-75314-
4/0-321-75314-3), Volume 2 (ISBN 978-0-321-75313-7/0-321-75313-5), Volume 3 
(ISBN 978-0-321-75312-0/0-321-75310-0), Volume 4 (ISBN 978-0-321-75311-3/ 
0-321-75311-9), and Volume 5 (ISBN 978-0-321-75310-6/0-321-75310-0).

Instructor Supplements
	■	 The Instructor Guide for Physics for Scientists and 

Engineers (ISBN 978-0-321-74765-5/0-321-74765-8) 
offers detailed comments and suggested teaching ideas 
for every chapter, an extensive review of what has been 
learned from physics education research, and guidelines 	
for using active-learning techniques in your classroom. 
This invaluable guide is available on the Instructor 	
Resource DVD, and via download, either from the 	
MasteringPhysics Instructor Area or from the Instructor 
Resource Center (www.pearsonhighered.com/educator).

	■	 The Instructor Solutions (ISBN 978-0-321-76940-4/ 
0-321-76940-6), written by the author, Professor Larry 
Smith (Snow College), and Brett Kraabel (Ph.D., Uni-
versity of California, Santa Barbara), provide complete 
solutions to all the end-of-chapter problems. The solu-
tions follow the four-step Model/Visualize/Solve/Assess 
procedure used in the Problem-Solving Strategies and 
in all worked examples. The solutions are available by 
chapter as editable Word® documents and as PDFs for 
your own use or for posting on your password-protected 
course website. Also provided are PDFs of handwritten 
solutions to all of the exercises in the Student Workbook, 
written by Professor James Andrews and Brian Garcar 
(Youngstown State University). All solutions are available 

only via download, either from the MasteringPhysics 
Instructor Area or from the Instructor Resource Center 
(www.pearsonhighered.com/educator).

	■	 The cross-platform Instructor Resource DVD (ISBN 978-
0-321-75456-1/0-321-75456-5) provides a comprehensive 
library of more than 220 applets from ActivPhysics 
OnLine and 76 PhET simulations, as well as all figures, 
photos, tables, summaries, and key equations from the text-
book in JPEG format. In addition, all the Problem-Solving 
Strategies, Tactics Boxes, and Key Equations are provided 
in editable Word format. PowerPoint® Lecture Outlines 
with embedded Classroom Response System “Clicker” 
Questions (including reading quizzes) are also provided.

	■	 MasteringPhysics® (www.masteringphysics.com) 
is the most advanced, educationally effective, and 
widely used physics homework and tutorial sys-

tem in the world. Eight years in development, it provides 
instructors with a library of extensively pre-tested end-of- 
chapter problems and rich, multipart, multistep tutorials 
that incorporate a wide variety of answer types, wrong an-
swer feedback, individualized help (comprising hints or 
simpler sub-problems upon request), all driven by the 
largest metadatabase of student problem-solving in the 
world. NSF-sponsored published research (and subsequent 
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5.4 What Do Forces Do? A Virtual Experiment

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

5.5 Newton’s Second Law

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.
b. Below the figure, draw and label the object’s acceleration vector.
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The figure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-
versus-force graphs for objects of mass

www.pearsonhighered.com/educator
www.masteringphysics.com
www.pearsonhighered.com/educator
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studies) show that MasteringPhysics has dramatic educa-
tional results. MasteringPhysics allows instructors to build 
wide-ranging homework assignments of just the right dif-
ficulty and length and provides them with efficient tools to 
analyze in unprecedented detail both class trends and the 
work of any student.

	 	 	 MasteringPhysics routinely provides instant and in-
dividualized feedback and guidance to more than 100,000 
students every day. A wide range of tools and support 
make MasteringPhysics fast and easy for instructors and 
students to learn to use. Extensive class tests show that 
by the end of their course, an unprecedented nine of ten 
students recommend MasteringPhysics as their preferred 
way to study physics and do homework.

	 	 For the third edition of Physics for Scientists and 
Engineers, MasteringPhysics now has the following func-
tionalities:

	 ■	 Learning Outcomes: In addition to being able to create 
their own learning outcomes to associate with questions 
in an assignment, professors can now select content that 
is tagged to a large number of publisher-provided learn-
ing outcomes. They can also print or export student re-
sults based on learning outcomes for their own use or to 
incorporate into reports for their administration.

	 ■	 Quizzing and Testing Enhancements: These include 
options to hide item titles, add password protection, 
limit access to completed assignments, and to random-
ize question order in an assignment.

	 ■	 Math Remediation: Found within selected tutorials, 
special links provide just-in-time math help and allow 
students to brush up on the most important mathemati-
cal concepts needed to successfully complete assign-
ments. This new feature links students directly to math 

review and practice helping students make the connec-
tion between math and physics.

	 ■	 Enhanced End-of-Chapter Problems: A subset of 
homework problems now offer additional support such 
as problem-solving strategy hints, relevant math review 
and practice, links to the eText, and links to the related 
Video Tutor Solution.

	■	 ActivPhysics OnLine™ (accessed through the 
Self Study area within www.masteringphysics.com) 
provides a comprehensive library of more than 

220 tried and tested ActivPhysics core applets updated for 
web delivery using the latest online technologies. In addi-
tion, it provides a suite of highly regarded applet-based 
tutorials developed by education pioneers Alan Van 
Heuvelen and Paul D’Alessandris.

	 	 	 The online exercises are designed to encourage 
students to confront misconceptions, reason qualitatively 
about physical processes, experiment quantitatively, and 
learn to think critically. The highly acclaimed ActivPhysics 
OnLine companion workbooks help students work through 
complex concepts and understand them more clearly. The 
applets from the ActivPhysics OnLine library are also 
available on the Instructor Resource DVD for this text.

	■	 The Test Bank (ISBN 978-0-321-74766-2/0-321-74766-6) 
contains more than 2,000 high-quality problems, with a 
range of multiple-choice, true/false, short-answer, and 
regular homework-type questions. Test files are provided 
both in TestGen (an easy-to-use, fully networkable pro-
gram for creating and editing quizzes and exams) and 
Word format. They are available only via download, either  
from the MasteringPhysics Instructor Area or from the 
Instructor Resource Center (www.pearsonhighered.com/
educator).

Student Supplements
	■	 The Student Solutions Manuals Chapters 1–19 (ISBN 

978-0-321-74767-9/0-321-74767-4) and Chapters 20–42 
(ISBN 978-0-321-77269-5/0-321-77269-5), written by 
the author, Professor Larry Smith (Snow College), and 
Brett Kraabel (Ph.D., University of California, Santa 	
Barbara), provide detailed solutions to more than half of 
the odd-numbered end-of-chapter problems. The solu-
tions follow the four-step Model/Visualize/Solve/Assess 
procedure used in the Problem-Solving Strategies and in 
all worked examples.

	■	 MasteringPhysics® (www.masteringphysics.com) 
is  a homework, tutorial, and assessment system 
based on years of research into how students work 

physics problems and precisely where they need help. 
Studies show that students who use MasteringPhysics 
significantly increase their scores compared to hand-
written homework. MasteringPhysics achieves this 

improvement by providing students with instantaneous 
feedback specific to their wrong answers, simpler sub-
problems upon request when they get stuck, and partial 
credit for their method(s). This individualized, 24/7 
Socratic tutoring is recommended by 9 out of 10 students 
to their peers as the most effective and time-efficient way 
to study.

	■	 Pearson eText is available through MasteringPhysics, 
either automatically when MasteringPhysics is packaged 
with new books, or available as a purchased upgrade on-
line. Allowing students access to the text wherever they 
have access to the Internet, Pearson eText comprises the 
full text, including figures that can be enlarged for better 
viewing. With eText, students are also able to pop up defi-
nitions and terms to help with vocabulary and the reading 
of the material. Students can also take notes in eText using 
the annotation feature at the top of each page.
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Preface to the Student

The most incomprehensible thing about the universe is that it is comprehensible.
—Albert Einstein

The day I went into physics class it was death.
—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, admittedly, because 
you can’t respond, but that’s OK. I’ve talked with many of your fellow students over 
the years, so I have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? Uncertainty? Excite-
ment? All of the above? Let’s face it, physics has a bit of an image problem on campus. 
You’ve probably heard that it’s difficult, maybe downright impossible unless you’re 
an Einstein. Things that you’ve heard, your experiences in other science courses, and 
many other factors all color your expectations about what this course is going to be 
like.

It’s true that there are many new ideas to be learned in physics and that the course, 
like college courses in general, is going to be much faster paced than science courses 
you had in high school. I think it’s fair to say that it will be an intense course. But we 
can avoid many potential problems and difficulties if we can establish, here at the 
beginning, what this course is about and what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of thinking about the physical 
aspects of nature. Physics is not better than art or biology or poetry or religion, which 
are also ways to think about nature; it’s simply different. One of the things this course 
will emphasize is that physics is a human endeavor. The ideas presented in this book 
were not found in a cave or conveyed to us by aliens; they were discovered and devel
oped by real people engaged in a struggle with real issues. I hope to convey to you 
something of the history and the process by which we have come to accept the princi
ples that form the foundation of today’s science and engineering.

You might be surprised to hear that physics is not about “facts.” Oh, not that facts 
are unimportant, but physics is far more focused on discovering relationships that 
exist between facts and patterns that exist in nature than on learning facts for their 
own sake. As a consequence, there’s not a lot of memorization when you study 
physics. Some—there are still definitions and equations to learn—but less than in 
many other courses. Our emphasis, instead, will be on thinking and reasoning. This is 
important to factor into your expectations for the course.

Perhaps most important of all, physics is not math! Physics is much broader. We’re 
going to look for patterns and relationships in nature, develop the logic that relates 
different ideas, and search for the reasons why things happen as they do. In doing 
so, we’re going to stress qualitative reasoning, pictorial and graphical reasoning, and 
reasoning by analogy. And yes, we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this physics–math distinction up 
front. Many of you, I know, want to find a formula and plug numbers into it—that is, 
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to do a math problem. Maybe that worked in high school science courses, but it is not 
what this course expects of you. We’ll certainly do many calculations, but the specific 
numbers are usually the last and least important step in the analysis.

Physics is about recognizing patterns. For example, the top photograph is an x-ray 
diffraction pattern showing how a focused beam of x rays spreads out after passing 
through a crystal. The bottom photograph shows what happens when a focused beam 
of electrons is shot through the same crystal. What does the obvious similarity in these 
two photographs tell us about the nature of light and the nature of matter?

As you study, you’ll sometimes be baffled, puzzled, and confused. That’s perfectly 
normal and to be expected. Making mistakes is OK too if you’re willing to learn from 
the experience. No one is born knowing how to do physics any more than he or she 
is born knowing how to play the piano or shoot basketballs. The ability to do physics 
comes from practice, repetition, and struggling with the ideas until you “own” them 
and  can apply them yourself in new situations. There’s no way to make learning 
effortless, at least for anything worth learning, so expect to have some difficult 
moments ahead. But also expect to have some moments of excitement at the joy of 
discovery. There will be instants at which the pieces suddenly click into place and you 
know that you understand a powerful idea. There will be times when you’ll surprise 
yourself by successfully working a difficult problem that you didn’t think you could 
solve. My hope, as an author, is that the excitement and sense of adventure will far 
outweigh the difficulties and frustrations.

Getting the Most Out of Your Course
Many of you, I suspect, would like to know the “best” way to study for this course. 
There is no best way. People are different, and what works for one student is less 
effective for another. But I do want to stress that reading the text is vitally important. 
Class time will be used to clarify difficulties and to develop tools for using the knowl
edge, but your instructor will not use class time simply to repeat information in the 
text. The basic knowledge for this course is written down on these pages, and the 
number-one expectation is that you will read carefully and thoroughly to find and 
learn that knowledge.

Despite there being no best way to study, I will suggest one way that is successful 
for many students. It consists of the following four steps:

	 1.	 Read each chapter before it is discussed in class. I cannot stress too strongly 
how important this step is. Class attendance is much more effective if you are 
prepared. When you first read a chapter, focus on learning new vocabulary, defi
nitions, and notation. There’s a list of terms and notations at the end of each 
chapter. Learn them! You won’t understand what’s being discussed or how the 
ideas are being used if you don’t know what the terms and symbols mean.

	 2.	 Participate actively in class. Take notes, ask and answer questions, and partici
pate in discussion groups. There is ample scientific evidence that active partici­
pation is much more effective for learning science than passive listening.

	 3.	 After class, go back for a careful re-reading of the chapter. In your second 
reading, pay closer attention to the details and the worked examples. Look for 
the logic behind each example (I’ve highlighted this to make it clear), not just at 
what formula is being used. Do the Student Workbook exercises for each section 
as you finish your reading of it.

	 4.	 Finally, apply what you have learned to the homework problems at the end 
of each chapter. I strongly encourage you to form a study group with two or 
three classmates. There’s good evidence that students who study regularly with 
a group do better than the rugged individualists who try to go it alone.
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(a) X-ray diffraction pattern

(b) Electron diffraction pattern
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Did someone mention a workbook? The companion Student Workbook is a vital 
part of the course. Its questions and exercises ask you to reason qualitatively, to use 
graphical information, and to give explanations. It is through these exercises that you 
will learn what the concepts mean and will practice the reasoning skills appropriate to 
the chapter. You will then have acquired the baseline knowledge and confidence you 
need before turning to the end-of-chapter homework problems. In sports or in music, 
you would never think of performing before you practice, so why would you want to 
do so in physics? The workbook is where you practice and work on basic skills.

Many of you, I know, will be tempted to go straight to the homework problems and 
then thumb through the text looking for a formula that seems like it will work. That 
approach will not succeed in this course, and it’s guaranteed to make you frustrated 
and discouraged. Very few homework problems are of the “plug and chug” variety 
where you simply put numbers into a formula. To work the homework problems suc
cessfully, you need a better study strategy—either the one outlined above or your 
own—that helps you learn the concepts and the relationships between the ideas.

A traditional guideline in college is to study two hours outside of class for every 
hour spent in class, and this text is designed with that expectation. Of course, two hours 
is an average. Some chapters are fairly straightforward and will go quickly. Others 
likely will require much more than two study hours per class hour.

Getting the Most Out of Your Textbook
Your textbook provides many features designed to help you learn the concepts of 
physics and solve problems more effectively.

	■	 TACTICS BOXES give step-by-step procedures for particular skills, such as inter-
preting graphs or drawing special diagrams. Tactics Box steps are explicitly illus-
trated in subsequent worked examples, and these are often the starting point of a 
full Problem-Solving Strategy.

130    c h a p t e r  5 . Force and Motion

  Thinking About Force 
 It is important to identify correctly all the forces acting on an object. It is equally im-
portant not to include forces that do not really exist. We have established a number of 
criteria for identifying forces; the three critical ones are: 

    ■   A force has an agent. Something tangible and identifiable causes the force.  
   ■   Forces exist at the point of contact between the agent and the object experiencing 

the force (except for the few special cases of long-range forces).  
   ■   Forces exist due to interactions happening  now , not due to what happened in the past.   

 We all have had many experiences suggesting that a force is necessary to keep 
something moving. Consider a bowling ball rolling along on a smooth floor. It is very 
tempting to think that a horizontal “force of motion” keeps it moving in the forward 
direction. But  nothing contacts the ball  except the floor. No agent is giving the ball a 
forward push. According to our definition, then, there is  no  forward “force of motion” 
acting on the ball. So what keeps it going? Recall our discussion of the first law:  No  
cause is needed to keep an object moving at constant velocity. It continues to move 
forward simply because of its inertia.    

 One reason for wanting to include a “force of motion” is that we tend to view the 
problem from our perspective as one of the agents of force. You certainly have to keep 
pushing to move a box across the floor at constant velocity. If you stop, it stops. New-
ton’s laws, though, require that we adopt the object’s perspective. The box experiences 
your pushing force in one direction  and  a friction force in the opposite direction. The 
box moves at constant velocity if the  net  force is zero. This will be true as long as your 
pushing force exactly balances the friction force. When you stop pushing, the friction 
force causes an acceleration that slows and stops the box. 

 A related problem occurs if you throw a ball. A pushing force was indeed required to ac-
celerate the ball  as it was thrown.  But that force disappears the instant the ball loses contact 
with your hand. The force does not stick with the ball as the ball travels through the air. 
Once the ball has acquired a velocity,  nothing  is needed to keep it moving with that velocity.   

   5.7  Free-Body Diagrams 
 Having discussed at length what is and is not a force, we are ready to assemble our 
knowledge about force and motion into a single diagram called a  free-body diagram.  
You will learn in the next chapter how to write the equations of motion directly from 
the free-body diagram. Solution of the equations is a mathematical exercise—possibly 
a difficult one, but nonetheless an exercise that could be done by a computer. The 
 physics  of the problem, as distinct from the purely calculational aspects, are the steps 
that lead to the free-body diagram. 

 A  free-body diagram,  part of the  pictorial representation  of a problem, represents 
the object as a particle and shows  all  of the forces acting on the object.   

        There’s no “force of motion” or any other 
forward force on this arrow. It continues 
to move because of inertia.   

  TACTICs
B o X  5 . 3 

       Drawing a free-body diagram 

      ●1  Identify all forces acting on the object.   This step was described in Tactics 
Box 5.2.  

    ●2  Draw a coordinate system.   Use the axes defined in your pictorial representation.  
    ●3  Represent the object as a dot at the origin of the coordinate axes.   This is 

the particle model.  
    ●4  Draw vectors representing each of the identified forces.   This was de-

scribed in Tactics Box 5.1. Be sure to label each force vector.  
    ●5  Draw and label the  net force  vector    F

u

net.      Draw this vector beside the diagram, 
not on the particle. Or, if appropriate, write    F

u

net = 0
u

.    Then check that    F
u

net    points 
in the same direction as the acceleration vector    a

u
    on your motion diagram.   

 Exercises 24–29       
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  Suppose, as shown in   FIGURe   32.23    b, we divide the line into many small segments 
of length    �s.    The first segment is    �s1,    the second is    �s2,    and so on. The sum of all 
the    �s>s    is the length  l  of the line between i and f. We can write this mathemati-
cally as 

    l = a
k

�sk S 3
f

i

ds (32.10)   

 where, in the last step, we let    �s S ds    and the sum become an integral. 
 This integral is called a  line integral.  All we’ve done is to subdivide a line into 

infinitely many infinitesimal pieces, then add them up. This is exactly what you do in 
calculus when you evaluate an integral such as    1x dx.    In fact, an integration along the 
 x -axis  is  a line integral, one that happens to be along a straight line.   Figure   32.23     dif-
fers only in that the line is curved. The underlying idea in both cases is that an integral 
is just a fancy way of doing a sum. 

 The line integral of  Equation   32.10    is not terribly exciting.   FIGURe   32.24    a makes things 
more interesting by allowing the line to pass through a magnetic field.   FIGURe   32.24    b 

again divides the line into small segments, but this time    �s
u

k     is the displacement vector 
of segment  k.  The magnetic field at this point in space is    B

u

k.    
  Suppose we were to evaluate the dot product    B

u

k
# �s

u

k    at each segment, then add the 
values of    B

u

k
# �s

u

k    due to every segment. Doing so, and again letting the sum become 
an integral, we have 

    a
k

B
u

k
# �s

u

k S 3
f

i

B
u # d s

u
= the line integral of B

u

  from i to f   

 Once again, the integral is just a shorthand way to say: Divide the line into lots of little 
pieces, evaluate    B

u

k
# �s

u

k    for each piece, then add them up. 
 Although this process of evaluating the integral could be difficult, the only line 

integrals we’ll need to deal with fall into two simple cases. If the magnetic field is 
 everywhere perpendicular  to the line, then    B

u # ds
u

= 0    at every point along the line and 
the integral is zero. If the magnetic field is  everywhere tangent  to the line  and  has the 
same magnitude  B  at every point, then    B

u # ds
u

= B ds    at every point and 

    3
f

i

 B
u # d s

u
= 3

f

i

B ds = B3
f

i

ds = Bl (32.11)   

 We used  Equation   32.10    in the last step to integrate  ds  along the line. 
 Tactics Box 32.3 summarizes these two situations.     

   FIGURe 32.24         Integrating    B
u

    along a line 
from i to f.   
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       evaluating line integrals 

    ●1   If    B
u

    is everywhere perpendicular to a 
line, the line integral of    B

u

    is 

   3
f

i

 B
u # d s

u
= 0    

   ●2   If    B
u

    is everywhere tangent to a line of 
length  l and  has the same magnitude  B  at 
every point, then 

   3
f

i

 B
u # d s

u
= Bl                  

 Exercises 23–24        
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Exercises 10–12: Three forces , , and cause a 1 kg object to accelerate with the acceleration given.
Two of the forces are shown on the free-body diagrams below, but the third is missing. For each, draw and
label on the grid the missing third force vector.

10.

11.

12. The object moves with 
constant velocity.

13. Three arrows are shot horizontally. They have left the bow and are traveling parallel to the ground. Air
resistance is negligible. Rank in order, from largest to smallest, the magnitudes of the horizontal forces
F1, F2, and F3 acting on the arrows. Some may be equal. Give your answer in the form A �B � C �D.

Order:

Explanation:

1

80 g

10 m/s

2

80 g

9 m/s

3

90 g

9 m/s

ar � �3 ĵ m/s2

ar � 2 î m/s2
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DYNAMICS WORKSHEET Name Problem 

MODEL Make simplifying assumptions.

• Draw a picture. Show important points in the motion. • Draw a motion diagram.
• •
• •

Known

Find

SOLVE
Start with Newton’s first or second law in component form, adding other information as needed to solve the problem.

ASSESS

• • Identify forces and interactions.
• • Draw free-body diagrams.

Have you answered the question?
Do you have correct units, signs, and significant figures?
Is your answer reasonable?

VISUALIZE

Establish a coordinate system. Define symbols.
List knowns. Identify what you’re trying to find.



	■	 Problem-Solving Strategies are provided for each broad class of problems—
problems characteristic of a chapter or group of chapters. The strategies follow 
a consistent four-step approach to help you develop confidence and proficient 
problem-solving skills: MODEL, VISUALIZE, SOLVE, ASSESS.

	■	 Worked EXAMPLES illustrate good problem-solving practices through the consistent 
use of the four-step problem-solving approach and, where appropriate, the Tactics 
Box steps. The worked examples are often very detailed and carefully lead you 
through the reasoning behind the solution as well as the numerical calculations. A 
careful study of the reasoning will help you apply the concepts and techniques to 
the new and novel problems you will encounter in homework assignments and on 
exams.

	■	 Note ▶  paragraphs alert you to common mistakes and point out useful tips for 
tackling problems.

	■	 Stop To Think questions embedded in the chapter allow you to quickly assess 
whether you’ve understood the main idea of a section. A correct answer will give 
you confidence to move on to the next section. An incorrect answer will alert you 
to re-read the previous section.

	■	 Blue annotations on figures help you better understand what the figure is showing. 
They will help you to interpret graphs; translate between graphs, math, and pic-
tures; grasp difficult concepts through a visual analogy; and develop many other 
important skills.

	■	 Pencil sketches provide practical examples of the figures you should draw yourself 
when solving a problem.
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PRoBleM-solvING
sTRATeGY 6.2        Dynamics problems  

  MoDel   Make simplifying assumptions.  

  vIsUAlIZe   Draw a  pictorial representation.  

    ■   Show important points in the motion with a sketch, establish a coordinate 
system, define symbols, and identify what the problem is trying to find.  

   ■   Use a motion diagram to determine the object’s acceleration vector    a
u
.     

   ■   Identify all forces acting on the object  at this instant  and show them on a free-
body diagram.  

   ■   It’s OK to go back and forth between these steps as you visualize the situation.    

  solve   The mathematical representation is based on Newton’s second law: 

    F
u

net = a
i

F
u

i = ma
u

   

 The vector sum of the forces is found directly from the free-body diagram. 
Depending on the problem, either 

    ■   Solve for the acceleration, then use kinematics to find velocities and posi-
tions; or  

   ■   Use kinematics to determine the acceleration, then solve for unknown forces.    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 22    

 Newton’s second law is a vector equation. To apply the step labeled Solve, you 
must write the second law as two simultaneous equations: 

     (Fnet )x = aFx = max

  (6.2)
  (Fnet )y = aFy = may   

 The primary goal of this chapter is to illustrate the use of this strategy. 

   eXAMPle 6.3   speed of a towed car 
 A 1500 kg car is pulled by a tow truck. The tension in the tow rope 
is 2500 N, and a 200 N friction force opposes the motion. If the car 
starts from rest, what is its speed after 5.0 seconds? 

  MoDel   We’ll treat the car as an accelerating particle. We’ll as-
sume, as part of our  interpretation  of the problem, that the road is 
horizontal and that the direction of motion is to the right.  

  vIsUAlIZe     FIGURe   6.3     on the next page shows the pictorial rep-
resentation. We’ve established a coordinate system and defined 
symbols to represent kinematic quantities. We’ve identified the 
speed    v1,    rather than the velocity    v1x,    as what we’re trying to find.   

  solve   We begin with Newton’s second law: 

     (Fnet)x = aFx = Tx + fx + nx + (FG)x = max

  (Fnet)y = aFy = Ty + fy + ny + (FG)y = may   

 All four forces acting on the car have been included in the vector 
sum. The equations are perfectly general, with    +     signs every-

where, because the four vectors are  added  to give    F
u

net.    We can 
now “read” the vector components from the free-body diagram: 

     Tx = +T   Ty = 0    nx = 0   ny = +n

  fx = - f  fy = 0  (FG)x = 0   (FG)y = -FG   

 The signs depend on which way the vectors point. Substituting 
these into the second-law equations and dividing by  m  give 

     ax =
1
m

 (T - f )

  =
1

1500 kg
 (2500 N - 200 N) = 1.53 m/s2

  ay =
1
m

 (n - FG)    

  NoTe   � Newton’s second law has allowed us to determine    ax    ex-
actly but has given only an algebraic expression for    ay.    However, 
we know  from the motion diagram  that    ay = 0!    That is, the motion 
is purely along the  x -axis, so there is  no  acceleration along the  y -
axis. The requirement    ay = 0    allows us to conclude that    n = FG.    
Although we do not need  n  for this problem, it will be important in 
many future problems. �  

Annotated FIGURE showing the operation 
of the Michelson interferometer.

1. The wave is
 divided at
 this point.

2. The returning
 waves recombine
 at this point.

3. The detector measures
 the superposition of the
 two waves that have
 traveled different paths.

Mirror M2

Mirror M1
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Source
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Pencil-sketch Figure showing a toboggan going down a hill 
and its energy bar chart.
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	■	 Each chapter begins with a Chapter Preview, a visual outline of the chapter ahead 
with recommendations of important topics you should review from previous 
chapters. A few minutes spent with the Preview will help you organize your 
thoughts so as to get the most out of reading the chapter.

	■	 Schematic Chapter Summaries help you organize what you have learned into a 
hierarchy, from general principles (top) to applications (bottom). Side-by-side pic-
torial, graphical, textual, and mathematical representations are used to help you 
translate between these key representations.

	■	 Part Overviews and Summaries provide a global framework for what you are 
learning. Each part begins with an overview of the chapters ahead and concludes 
with a broad summary to help you to connect the concepts presented in that set of 
chapters. KNOWLEDGE STRUCTURE tables in the Part Summaries, similar to the 
Chapter Summaries, help you to see the forest rather than just the trees.

Now that you know more about what is expected of you, what can you expect 
of me? That’s a little trickier because the book is already written! Nonetheless, the 
book was prepared on the basis of what I think my students throughout the years 
have expected—and wanted—from their physics textbook. Further, I’ve listened to 
the extensive feedback I have received from thousands of students like you, and their 
instructors, who used the first and second editions of this book.

You should know that these course materials—the text and the workbook—are 
based on extensive research about how students learn physics and the challenges they 
face. The effectiveness of many of the exercises has been demonstrated through exten
sive class testing. I’ve written the book in an informal style that I hope you will find 
appealing and that will encourage you to do the reading. And, finally, I have endeav
ored to make clear not only that physics, as a technical body of knowledge, is relevant 
to your profession but also that physics is an exciting adventure of the human mind.

I hope you’ll enjoy the time we’re going to spend together.
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  esseNTIAl CoNCePTs   Particle, acceleration, force, interaction  
  BAsIC GoAls   How does a particle respond to a force? How do objects interact?  

  GeNeRAl PRINCIPles    Newton’s first law  An object will remain at rest or will continue to move with constant velocity 
   (equilibrium) if and only if    F

u

net = 0
u

.    
   Newton’s second law      F

u

net = ma
u

    

   Newton’s third law      F
u

A on B = - F
u

B on A    

  BAsIC PRoBleM-solvING sTRATeGY   Use Newton’s second law for each particle or object. Use Newton’s third law to equate the magni-
tudes of the two members of an action/reaction pair.

   Linear motion Trajectory motion Circular motion  
    aFx = max     

or    
 aFx = 0         aFx = max          aFr = mv 2/r = mv2r    

    aFy = 0         aFy = may         aFy = may            aFt = 0 or mat        

  aFz = 0     

  linear and trajectory kinematics 
  Uniform acceleration:     vfs = vis + as �t    

    (as = constant)        sf = si + vis �t +
1
2 as  (�t)2

         vfs 

2 = vis 

2 + 2as �s    

  Trajectories:  The same equations are used for both  x  and  y . 

  Uniform motion:     sf = si + vs �t

        (a = 0, vs = constant)     

  General case      vs = ds/dt =     slope of the position graph 

     as = dvs /dt =     slope of the velocity graph 

     vfs = vis + 3
tf

ti

as dt = vis +     area under the acceleration curve 

     sf = si + 3
tf

ti

vs dt = si +     area under the velocity curve  

    The goal of Part I  has been to discover the connection be-
tween force and motion. We started with  kinematics,  which 
is the mathematical description of motion; then we proceeded 
to  dynamics,  which is the explanation of motion in terms of 
forces. Newton’s three laws of motion form the basis of our 
explanation. All of the examples we have studied so far are 
applications of Newton’s laws. 

 The table below is called a  knowledge structure  for New-
ton’s laws. A knowledge structure summarizes the essential 
concepts, the general principles, and the primary applications 
of a theory. The first section of the table tells us that New-
tonian mechanics is concerned with how  particles  respond to 
 forces.  The second section indicates that we have introduced 
only three general principles, Newton’s three laws of motion. 

 You use this knowledge structure by working your way 
through it, from top to bottom. Once you recognize a problem 

as a dynamics problem, you immediately know to start with 
Newton’s laws. You can then determine the category of motion 
and apply Newton’s second law in the appropriate form. New-
ton’s third law will help you identify the forces acting on par-
ticles as they interact. Finally, the kinematic equations for that 
category of motion allow you to reach the solution you seek. 

 The knowledge structure provides the  procedural know-
ledge  for solving dynamics problems, but it does not represent 
the total knowledge required. You must add to it knowledge 
about what position and velocity are, about how forces are 
identified, about action/reaction pairs, about drawing and 
using free-body diagrams, and so on. These are specific 
 tools  for problem solving. The problem-solving strategies of 
 Chapters   5    through    8    combine the procedures and the tools 
into a powerful method for thinking about and solving 
problems.   

 Newton’s LawsI
SUMMARY        P A R T 

  KNoWleDGe sTRUCTURe I   Newton’s laws 

  Circular kinematics
   Uniform circular motion:  

   T = 2pr/v = 2p/v
uf = ui + v�t
ar = v 2/r = v2r
vt = vr

     Nonuniform circular motion:  

   vf = vi + a�t

uf = ui + vi �t +
1
2 a(�t)2

vf 

2 = vi 

2 + 2a�u      

Summary    803

     s U M M A R Y 
 The goal of  Chapter   27    has been to understand and apply Gauss’s law. 

  Gauss’s law 
 For any  closed  surface enclosing net charge    Qin   , the net electric flux through 
the surface is 

    �e = C E
u # dA

u

=
Qin 

P0
    

 The electric flux    �e    is the same for  any  closed surface enclosing charge    Qin.     

  symmetry 
 The symmetry of the electric field must match the 
symmetry of the charge distribution. 

 In practice,    �e    is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.   

  General Principles     

     symmetric    
    Gaussian surface    

    electric flux,    �e        

    area vector,    A
u

       

    surface integral    
    Gauss’s law    

    screening      

  Terms and Notation 

     Charge  creates the electric field that 
is responsible for the electric flux.             

  Important Concepts       

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

     Flux  is the amount of electric field 
passing through a surface of area  A :   

    �e = E
u # A

u

   

 where    A
u

    is the  area vector.  

  
         For closed surfaces:  
 A net flux in or out indicates that 
the surface encloses a net charge. 

Field lines through but with no 
 net  flux mean that the surface 
encloses no  net  charge.     
        

     Surface integrals  calculate the flux by summing the fluxes 
through many small pieces of the surface:   

    �e = a E
u # dA

u

 S 3E
u # dA

u

   

  
         Two important situations:  
 If the electric field is everywhere 
tangent to the surface, then 

    �e = 0   

 If the electric field is everywhere 
perpendicular to the surface  and  has 
the same strength  E  at all points, then   

    �e = E A              

u

A

E

r

r dA
E

r

r

     Conductors in electrostatic equilibrium  

   •   The electric field is zero at all points within the conductor.  

  •   Any excess charge resides entirely on the exterior surface.  

  •   The external electric field is perpendicular to the surface and of magnitude    h/P0   , where    h    is the 
surface charge density.  

  •   The electric field is zero inside any hole within a conductor unless there is a charge in the hole.                   

  Applications   
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Introduction

Said Alice to the Cheshire cat,
“Cheshire-Puss, would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to go,” said the Cat.
“I don’t much care where—” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

—Lewis Carroll, Alice in Wonderland

Have you ever wondered about questions such as

	 Why is the sky blue?

	 Why is glass an insulator but metal a conductor?

	 What, really, is an atom?

These are the questions of which physics is made. Physicists try to understand the 
universe in which we live by observing the phenomena of nature—such as the sky 
being blue—and by looking for patterns and principles to explain these phenomena. 
Many of the discoveries made by physicists, from electromagnetic waves to nuclear 
energy, have forever altered the ways in which we live and think.

You are about to embark on a journey into the realm of physics. It is a journey in 
which you will learn about many physical phenomena and find the answers to ques-
tions such as the ones posed above. Along the way, you will also learn how to use 
physics to analyze and solve many practical problems.

As you proceed, you are going to see the methods by which physicists have come 
to understand the laws of nature. The ideas and theories of physics are not arbitrary; 
they are firmly grounded in experiments and measurements. By the time you finish 
this text, you will be able to recognize the evidence upon which our present knowledge 
of the universe is based.

Which Way Should We Go?
We are rather like Alice in Wonderland, here at the start of the journey, in that we must 
decide which way to go. Physics is an immense body of knowledge, and without spe-
cific goals it would not much matter which topics we study. But unlike Alice, we do 
have some particular destinations that we would like to visit.

The physics that provides the foundation for all of modern science and engineering 
can be divided into three broad categories:

■	 Particles and energy.
■	 Fields and waves.
■	 The atomic structure of matter.

A particle, in the sense that we’ll use the term, is an idealization of a physical 
object. We will use particles to understand how objects move and how they interact 
with each other. One of the most important properties of a particle or a collection of 
particles is energy. We will study energy both for its value in understanding physical 
processes and because of its practical importance in a technological society.

Journey into Physics

xxix

A scanning tunneling microscope allows  
us to “see” the individual atoms on a 
surface. One of our goals is to understand 
how an image such as this is made.



Particles are discrete, localized objects. Although many phenomena can be under
stood in terms of particles and their interactions, the long-range interactions of gravity, 
electricity, and magnetism are best understood in terms of fields, such as the gravita
tional field and the electric field. Rather than being discrete, fields spread continuously 
through space. Much of the second half of this book will be focused on understanding 
fields and the interactions between fields and particles.

Certainly one of the most significant discoveries of the past 500 years is that matter 
consists of atoms. Atoms and their properties are described by quantum physics, but 
we cannot leap directly into that subject and expect that it would make any sense. To 
reach our destination, we are going to have to study many other topics along the way—
rather like having to visit the Rocky Mountains if you want to drive from New York to 
San Francisco. All our knowledge of particles and fields will come into play as we end 
our journey by studying the atomic structure of matter.

The Route Ahead
Here at the beginning, we can survey the route ahead. Where will our journey take us? 
What scenic vistas will we view along the way?

Parts I and II, Newton’s Laws and Conservation Laws, form the basis of what is 
called classical mechanics. Classical mechanics is the study of motion. (It is called 
classical to distinguish it from the modern theory of motion at the atomic level, which 
is called quantum mechanics.) The first two parts of this textbook establish the basic 
language and concepts of motion. Part I will look at motion in terms of particles and 
forces. We will use these concepts to study the motion of everything from accelerating 
sprinters to orbiting satellites. Then, in Part II, we will introduce the ideas of momentum 
and energy. These concepts—especially energy—will give us a new perspective on 
motion and extend our ability to analyze motion.

Part III, Applications of Newtonian Mechanics, will 
pause to look at four important applications of classi-
cal mechanics: Newton’s theory of gravity, rotational 
motion, oscillatory motion, and the motion of fluids. 
Only oscillatory motion is a prerequisite for later 
chapters. Your instructor may choose to cover some 
or all of the other chapters, depending upon the time 
available, but your study of Parts IV–VII will not be 
hampered if these chapters are omitted.

Part IV, Thermodynamics, extends the ideas of par-
ticles and energy to systems such as liquids and gases 
that contain vast numbers of particles. Here we will 
look for connections between the microscopic behavior of large numbers of atoms and 
the macroscopic properties of bulk matter. You will find that some of the properties 
of gases that you know from chemistry, such as the ideal gas law, turn out to be direct 
consequences of the underlying atomic structure of the gas. We will also expand the 
concept of energy and study how energy is transferred and utilized.
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Waves are ubiquitous in nature, whether they be large-scale oscillations like ocean waves, 
the less obvious motions of sound waves, or the subtle undulations of light waves and 
matter waves that go to the heart of the atomic structure of matter. In Part V, Waves 
and Optics, we will emphasize the unity of wave physics and find that many diverse 
wave phenomena can be analyzed with the same concepts and mathematical language. 
Light waves are of special interest, and we will end this portion of our journey with an 
exploration of optical instruments, ranging from microscopes and telescopes to that most 
important of all optical instruments—your eye.

Part VI, Electricity and Magnetism, is devoted 
to the electromagnetic force, one of the most 
important forces in nature. In essence, the elec
tromagnetic force is the “glue” that holds 
atoms together. It is also the force that makes 
this the “electronic age.” We’ll begin this part 
of the journey with simple observations of sta
tic electricity. Bit by bit, we’ll be led to the 
basic ideas behind electrical circuits, to mag-
netism, and eventually to the discovery of elec
tromagnetic waves.

Part VII is Relativity and Quantum Physics. 
We’ll start by exploring the strange world 
of Einstein’s theory of relativity, a world in 
which space and time aren’t quite what they 
appear to  be. Then we will enter the micro-
scopic domain of atoms, where the behaviors 

of light and matter are at complete odds with what our common sense tells us is pos-
sible. Although the mathematics of quantum theory quickly gets beyond the level of 
this text, and time will be running out, you will see that the quantum theory of atoms 
and nuclei explains many of the things that you learned simply as rules in chemistry.

We will not have visited all of physics on our travels. There just isn’t time. Many 
exciting topics, ranging from quarks to black holes, will have to remain unexplored. 
But this particular journey need not be the last. As you finish this text, you will have 
the background and the experience to explore new topics further in more advanced 
courses or for yourself.

With that said, let us take the first step.
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1

Overview

Why Things Change
Each of the seven parts of this book opens with an overview to give you a look ahead, 
a glimpse at where your journey will take you in the next few chapters. It’s easy to 
lose sight of the big picture while you’re busy negotiating the terrain of each chapter. 
In Part I, the big picture, in a word, is change.

Simple observations of the world around you show that most things change, few 
things remain the same. Some changes, such as aging, are biological. Others, such as 
sugar dissolving in your coffee, are chemical. We’re going to study change that in-
volves motion of one form or another—the motion of balls, cars, and rockets.

There are two big questions we must tackle:

	■	 How do we describe motion? It is easy to say that an object moves, but it’s not 
obvious how we should measure or characterize the motion if we want to analyze it 
mathematically. The mathematical description of motion is called kinematics, and 
it is the subject matter of Chapters 1 through 4.

	■	 How do we explain motion? Why do objects have the particular motion they do? 
Why, when you toss a ball upward, does it go up and then come back down rather 
than keep going up? Are there “laws of nature” that allow us to predict an object’s 
motion? The explanation of motion in terms of its causes is called dynamics, and it 
is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accelera-
tion (the “effect”). A variety of pictorial and graphical tools will be developed in 
Chapters 1 through 5 to help you develop an intuition for the connection between force 
and acceleration. You’ll then put this knowledge to use in Chapters 5 through 8 as you 
analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely complicated. 
We would never be able to develop a science if we had to keep track of every little de-
tail of every situation. A model is a simplified description of reality—much as a model 
airplane is a simplified version of a real airplane—used to reduce the complexity of 
a problem to the point where it can be analyzed and understood. We will introduce 
several important models of motion, paying close attention, especially in these earlier 
chapters, to where simplifying assumptions are being made, and why.

The “laws of motion” were discovered by Isaac Newton roughly 350 years ago, so 
the study of motion is hardly cutting-edge science. Nonetheless, it is still extremely 
important. Mechanics—the science of motion—is the basis for much of engineering 
and applied science, and many of the ideas introduced here will be needed later to un-
derstand things like the motion of waves and the motion of electrons through circuits. 
Newton’s mechanics is the foundation of much of contemporary science, thus we will 
start at the beginning.
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Calculations in physics 
are most commonly 
done using SI units–
known more informally 
as the metric system. 
The basic units needed 
in the study of motion 
are the meter (m), the second (s), and the 
kilogram (kg).

Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, 
that have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation 
that outlines the big ideas and the organiza-
tion of the chapter that is to come.

The chapter previews not only let you 
know what is coming, they also help you 
make connections with material you have 
already seen.

 Looking Back
Each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. Reviewing this material 
will enhance your learning.
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You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Concepts of Motion1
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are an example of translational 
motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter you’ll learn 
to describe motion with
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■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.
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The Chapter Preview
Each chapter will start with an overview of 
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the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

 Looking Ahead The goal of Chapter 1 is to introduce the fundamental concepts of motion.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.

You will learn to 
use a graphical 
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Calculations in physics 
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metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
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A significant figure is a digit that is reliably 
known. You will learn the rules for using 
significant figures correctly.
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1.1  Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire book. 
Although we all have intuition about motion, based on our experiences, some of 
the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing motion and becoming familiar with the concepts needed to describe a 
moving object. Our goal is to lay the foundations for understanding motion.

As a starting point, let’s define motion as the change of an object’s position with 
time. Figure 1.1 shows four basic types of motion that we will study in this book. The 
first three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, whether 
straight or curved, is called the object’s trajectory. Rotational motion is somewhat 
different in that rotation is a change of the object’s angular position. We’ll defer rota-
tional motion until later and, for now, focus on translational motion.

Making a Motion Diagram
An easy way to study motion is to make a movie of a moving object. A movie camera, 
as you probably know, takes photographs at a fixed rate, typically 30 photographs every 
second. Each separate photo is called a frame, and the frames are all lined up one after 
the other in a filmstrip. As an example, Figure 1.2 shows four frames from the movie of a 
car going past. Not surprisingly, the car is in a somewhat different position in each frame.

Suppose we cut the individual frames of the filmstrip apart, stack them on top of 
each other, and project the entire stack at once onto a screen for viewing. The result 
is shown in Figure 1.3. This composite photo, showing an object’s position at several 
equally spaced instants of time, is called a motion diagram. As the example below 
shows, we can define concepts such as at rest, constant speed, speeding up, and slow-
ing down in terms of how an object appears in a motion diagram.

Note  It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object. 

Linear motion Circular motion

Projectile motion Rotational motion

Figure 1.1  Four basic types of motion.

Figure 1.2  Four frames from the movie 
of a car.

Figure 1.3  A motion diagram of the car 
shows all the frames simultaneously.

The same amount of time elapses
between each image and the next.



Car A Car B
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Examples of motion diagrams

An object that occupies only a single position 
in a motion diagram is at rest.

A stationary ball on the ground.

Images that are equally spaced indicate an 
object moving with constant speed.

A skateboarder rolling down the sidewalk.

An increasing distance between the images 
shows that the object is speeding up.

A sprinter starting the 100 meter dash.

A decreasing distance between the images 
shows that the object is slowing down.

A car stopping for a red light.

A more complex motion shows aspects of 
both slowing down (as the ball rises) and 
speeding up (as the ball falls).

A jump shot from center court.

Stop To Think 1.1 
  Which car is going faster, A or B? Assume there are equal intervals of time between 

the frames of both movies.

Note  Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the chapter, but you should make a serious effort to 
think about these questions before turning to the answers. If you answer correctly, 
and are sure of your answer rather than just guessing, you can proceed to the next 
section with confidence. But if you answer incorrectly, it would be wise to reread 
the preceding sections before proceeding onward. 

1.2  The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All 
we really need to keep track of is the motion of a single point on the object, so we can 
treat the object as if all its mass were concentrated into this single point. An object 
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(b) 0

1

2

3
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0
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(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were exposed.

The same amount of time elapses
between each image and the next.

4

1 2 3 4

Figure 1.4  Motion diagrams in which 
the object is represented as a particle.
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that can be represented as a mass at a single point in space is called a particle. A 
particle has no size, no shape, and no distinction between top and bottom or between 
front and back.

If we treat an object as a particle, we can represent the object in each frame of a 
motion diagram as a simple dot rather than having to draw a full picture. Figure 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were exposed.

Using the Particle Model
Treating an object as a particle is, of course, a simplification of reality. As we noted in 
the Part I Overview, such a simplification is called a model. Models allow us to focus 
on the important aspects of a phenomenon by excluding those aspects that play only a 
minor role. The particle model of motion is a simplification in which we treat a mov-
ing object as if all of its mass were concentrated at a single point. The particle model 
is an excellent approximation of reality for the translational motion of cars, planes, 
rockets, and similar objects. In later chapters, we’ll find that the motion of more com-
plex objects, which cannot be treated as a single particle, can often be analyzed as if 
the object were a collection of particles.

Not all motions can be reduced to the motion of a single point. Consider a rotating 
gear. The center of the gear doesn’t move at all, and each tooth on the gear is moving 
in a different direction. Rotational motion is qualitatively different than translational 
motion, and we’ll need to go beyond the particle model later when we study rotational 
motion.

Stop To Think 1.2   Three motion diagrams are 
shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a de-
scending rocket slowing to make a soft landing 
on Mars?

1.3  Position and Time
As we look at a motion diagram, it would be useful to know where the object is (i.e., 
its position) and when the object was at that position (i.e., the time). Position measure-
ments can be made by laying a coordinate system grid over a motion diagram. You 
can then measure the (x, y) coordinates of each point in the motion diagram. Of course, 
the world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins. Likewise, you can choose the 
orientation of the x-axis and y-axis to be helpful for that particular problem. The con-
ventional choice is for the x-axis to point to the right and the y-axis to point upward, 
but there is nothing sacred about this choice. We will soon have many occasions to tilt 
the axes at an angle.

Time, in a sense, is also a coordinate system, although you may never have thought of 
time this way. You can pick an arbitrary point in the motion and label it ;t = 0 seconds.” 



The frame at t � 0 s is frame 0.

A coordinate
system has been
added to the
motion diagram.

The ball’s
position in
frame 4 can be
specified with 
coordinates.

(x4,  y4 ) � (12 m, 9 m)

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0.0 s

3

12

9

6

3

0
60 9 12 15

(a)

y (m)

x (m)

Alternatively, the position
vector specifies the distance
and direction from the origin.

Frame 4

(b)

37�

y

x 

r4 � (15 m, 37�)r

Figure 1.5  Position and time 
measurements made on the motion 
diagram of a basketball.
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This is simply the instant you decide to start your clock or stopwatch, so it is the origin 
of your time coordinate. Different observers might choose to start their clocks at differ-
ent moments. A movie frame labeled ;t = 4 seconds” was taken 4 seconds after you 
started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as nega-
tive times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, Figure 1.5a shows an xy-coordinate system and time information su-
perimposed over the motion diagram of a basketball. You can see that the ball’s 
position is (x4, y4) = (12 m, 9 m) at time t4 = 2.0 s. Notice how we’ve used sub-
scripts to indicate the time and the object’s position in a specific frame of the motion 
diagram.

Note  The frame at t = 0 is frame 0. That is why the fifth frame is labeled 4. 

Another way to locate the ball is to draw an arrow from the origin to the point repre-
senting the ball. You can then specify the length and direction of the arrow. An arrow 
drawn from the origin to an object’s position is called the position vector of the object, 
and it is given the symbol r 

u
. Figure 1.5b shows the position vector r 

u

4 = (15 m, 37�).
The position vector r 

u
 does not tell us anything different than the coordinates (x, y). 

It simply provides the information in an alternative form. Although you’re more fa-
miliar with coordinates than with vectors, you will find that vectors are a useful way 
to describe many concepts in physics.

A Word About Vectors and Notation
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg and 
its temperature is 30�C. A physical quantity described by a single number (with a unit) 
is called a scalar quantity. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional quality and cannot be de-
scribed by a single number. To describe the motion of a car, for example, you must 
specify not only how fast it is moving, but also the direction in which it is moving. A 
vector quantity is a quantity having both a size (the “How far?” or “How fast?”) and 
a direction (the “Which way?”). The size or length of a vector is called its magnitude. 
The magnitude of a vector can be positive or zero, but it cannot be negative. Vec-
tors will be studied thoroughly in Chapter 3, so all we need for now is a little basic 
information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r 

u
 and A

u

 are symbols for vectors, whereas r and A, without the arrows, are 
symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very impor-
tant because we will often use both r and r 

u
, or both A and A

u

, in the same problem, and 
they mean different things! Without the arrow, you will be using the same symbol with 
two different meanings and will likely end up making a mistake. Note that the arrow 
over the symbol always points to the right, regardless of which direction the actual 
vector points. Thus we write r 

u
 or A

u

, never r
z
 or A

z

.

Displacement
Consider the following:

Sam is standing 50 feet (ft) east of the corner of 12th Street and Vine. He then walks 
northeast for 100 ft to a second point. What is Sam’s change of position?
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2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A � B.
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r r
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r
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A
r

B
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B
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r
B

A�B
r r

3. Sam’s displacement �r is
the vector drawn from his
starting position to his ending
position.

End

Start
12th Street

V
in

e

r

2. After Sam walks 100 ft
northeast, his new position is   .1. The origin is chosen to be

at the corner. Position
vectors are drawn from the
origin.

50 feet

Origin

r1

N

r1
r

�r

r0
r

r

r

Figure 1.6  Sam undergoes a displacement �r 
u from position r 

u

0 to position r 
u

1.
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Figure 1.6 shows Sam’s motion in terms of position vectors. Sam’s initial position is 
the vector r 

u

0 drawn from the origin to the point where he starts walking. Vector r 
u

1  
is his position after he finishes walking. You can see that Sam has changed position, 
and a change of position is called a displacement. His displacement is the vector 
labeled  �r 

u
. The Greek letter delta (�) is used in math and science to indi cate the 

change in a quantity. Here it indicates a change in the position r 
u

.

Note  �r 
u

 is a single symbol. You cannot cancel out or remove the � in algebraic 
operations. 

Tactics
B o x  1 . 1 

  Vector addition

Displacement is a vector quantity; it requires both a length and a direction to de-
scribe it. Specifically, the displacement �r 

u
 is a vector drawn from a starting position 

to an ending position. Sam’s displacement is written

	 �r 
u

= (100 ft, northeast)

The length, or magnitude, of a displacement vector is simply the straight-line distance 
between the starting and ending positions.

Sam’s final position in Figure 1.6, vector r 
u

1, can be seen as a combination of where 
he started, vector r 

u

0, plus the vector �r 
u

 representing his change of position. In fact, r 
u

1 
is the vector sum of vectors r 

u

0 and �r 
u

. This is written

	 r 
u

1 = r 
u

0 + �r 
u

	 (1.1)

Notice, however, that we are adding vector quantities, not numbers. Vector addition is 
a different process from “regular” addition. We’ll explore vector addition more thor-
oughly in Chapter 3, but for now you can add two vectors A

u

 and B
u

 with the three-step 
procedure shown in Tactics Box 1.1.



To subtract B from A: Draw A.

Place the tail of
�B at the tip of A.

Draw an arrow from
the tail of A to the
tip of �B. This is
vector A � B.
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3

r
A

r
B

�B
r
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r
A

r
A

A�B
r r

�B
r

r
B
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r

Vector –B has the same length as
B but points in the opposite direction.

r

r

The zero vector 0 has no length.
r

B � (–B) � 0 because the sum 
returns to the starting point.

r r r

Figure 1.8  The negative of a vector.

End

Start

The displacement vector
is not affected by the 
choice of origin.

50 feet New origin

r3
r�rr

r2
r

Figure 1.7  Sam’s displacement �r 
u 

is unchanged by using a different 
coordinate system.
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If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r 

u

0 and �r 
u

 are added to give r 
u

1.

Note  A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vec-
tor B

u

 is not changed by sliding it to where its tail is at the tip of A
u

. 

In Figure 1.6, we chose arbitrarily to put the origin of the coordinate system at 
the corner. While this might be convenient, it certainly is not mandatory. Figure 1.7 
shows a different choice of where to place the origin. Notice something interesting. 
The initial and final position vectors r 

u

0 and r 
u

1 have become new vectors r 
u

2 and r 
u

3, 
but the displacement vector �r 

u
 has not changed! The displacement is a quantity 

that is independent of the coordinate system. In other words, the arrow drawn from 
one position of an object to the next is the same no matter what coordinate system 
you choose.

This observation suggests that the displacement, rather than the actual position, is 
what we want to focus on as we analyze the motion of an object. Equation 1.1 told us 
that r 

u

1 = r 
u

0 + �r 
u

. This is easily rearranged to give a more precise definition of dis-
placement: The displacement � ru of an object as it moves from an initial position 
rui to a final position ruf is

	 �r 
u

= r 
u

f - r 
u

i	 (1.2)

Graphically, � ru is a vector arrow drawn from position r 
u

i to position r 
u

f. The dis-
placement vector is independent of the coordinate system.

Note  To be more general, we’ve written Equation 1.2 in terms of an initial posi-
tion and a final position, indicated by subscripts i and f. We’ll frequently use i and f 
when writing general equations, then use specific numbers or values, such as 0 and 
1, when working a problem. 

This definition of �r 
u

 involves vector subtraction. With numbers, subtraction is 
the same as the addition of a negative number. That is, 5 - 3 is the same as 5 + (-3). 
Similarly, we can use the rules for vector addition to find A

u

- B
u

= A
u

+ (-B
u

) if we 
first define what we mean by -B

u

. As Figure 1.8 shows, the negative of vector B
u

 is 
a vector with the same length but pointing in the opposite direction. This makes 
sense because B

u

- B
u

= B
u

+ (-B
u

) = 0
u

, where 0
u

, a vector with zero length, is called 
the zero vector.

Tactics
B o x  1 . 2 

  Vector subtraction



(a) Rocket launch

(b) Car stopping 
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Figure 1.10  Motion diagrams with the 
displacement vectors.
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Application to Motion Diagrams
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors. As Figure 1.9 shows, the displacement vectors are simply the arrows connect-
ing each dot to the next. Label each arrow with a vector symbol �r 

u

n  , starting with 
n = 0. Figure 1.10 shows the motion diagrams of Figure 1.4 redrawn to include the 
displacement vectors. You do not need to show the position vectors.

Note  When an object either starts from rest or ends at rest, the initial or final 
dots are as close together as you can draw the displacement vector arrow connect-
ing them. In addition, just to be clear, you should write “Start” or “Stop” beside 
the initial or final dot. It is important to distinguish stopping from merely slowing 
down. 

Now we can conclude, more precisely than before, that, as time proceeds:

	■	 An object is speeding up if its displacement vectors are increasing in length.
	■	 An object is slowing down if its displacement vectors are decreasing in length.

Example	1.1    Headfirst into the snow
Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst 
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion dia-
gram for Alice. Show and label all displacement vectors.

Model  Use the particle model to represent Alice as a dot.

Visualize  Figure 1.11 shows Alice’s motion diagram. The problem statement suggests 
that Alice’s speed is very nearly constant until she hits the snowbank. Thus her displace-
ment vectors are of equal length as she slides along the icy road. She begins slowing 
when she hits the snowbank, so the displacement vectors then get shorter until she stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

�r0
r �r1

r �r2
r �r3

r �r4
r �r5

r �r6
r

Figure 1.11  Alice’s motion diagram.

Figure 1.9 uses the vector subtraction rules of Tactics Box 1.2 to prove that the dis-
placement �r 

u
 is simply the vector connecting the dots of a motion diagram.



The victory goes to the runner with the 
highest average speed.

A stopwatch is used to measure a time 
interval.
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Time Interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of film might be t1 and t2. The specific values are arbitrary because they are 
timed relative to an arbitrary instant that you chose to call t = 0. But the time interval 
�t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to move from 
one position to the next. All observers will measure the same value for �t, regardless 
of when they choose to start their clocks.

The time interval �t � tf � ti measures the elapsed time as an object moves 
from an initial position rui at time ti to a final position ruf at time tf  . The value of 
�t is independent of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements �r 

u
 and the time intervals �t because these are 

independent of the specific coordinate system used to measure them.

1.4  Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

	 average speed =
distance traveled

time interval spent traveling
=

d

�t
	 (1.3)

If you drive 15 miles (mi) in 30 minutes (1
2 h), your average speed is

	 average speed =
15 mi

1
2 h

= 30 mph	 (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier is 
moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply knowing 
that the boat’s speed is 20 mph is not enough information!

It’s the displacement �r 
u

, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d/�t is the ratio �r 

u
/�t. This ratio is a vector because �r 

u
 is a vector, so 

it has both a magnitude and a direction. The size, or magnitude, of this ratio will be 
larger for a fast object than for a slow object. But in addition to measuring how fast an 
object moves, this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it has 
the symbol v  

u

avg. The average velocity of an object during the time interval �t, in 
which the object undergoes a displacement � ru, is the vector

	 v  

u

avg =
�r 

u

�t
	 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector �ru. This is the direction of motion.



(a)

vavg A � (20 mph, north)

vavg B � (20 mph, east)

(b)

A

B

�rA � (5 mi, north)r

�rB � (5 mi, east)r

r

r

The velocity vectors point
in the direction of motion.

Figure 1.12  The displacement vectors 
and velocities of ships A and B.

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

rv

Figure 1.14  Motion diagram of a car 
accelerating up a hill.

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average
velocity vectors.

Hare

Tortoise

v0
r v1

r v2
r

v0
r v1

r v2
r

Figure 1.13  Motion diagram of the 
tortoise racing the hare.
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Note    In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language. 

As an example, Figure 1.12a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with �t = 0.25 h, we find

	  v  

u

avg  A = (20 mph, north)	
		  (1.6)
	  v  

u

avg  B = (20 mph, east)	

Both ships have a speed of 20 mph, but their velocities are different. Notice how the 
velocity vectors in Figure 1.12b point in the direction of motion.

Note  Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show 
on motion diagrams, is the average velocity v  

u

avg. But to allow the motion diagram 
to be a useful tool, we will drop the subscript and refer to the average velocity 
as simply v  

u
. Our definitions and symbols, which somewhat blur the distinction 

between average and instantaneous quantities, are adequate for visualization pur-
poses, but they’re not the final word. We will refine these definitions in Chapter 2, 
where our goal will be to develop the mathematics of motion. 

Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement �r 

u
, and the length 

of v  

u
 is directly proportional to the length of �r 

u
. Consequently, the vectors connecting 

each dot of a motion diagram to the next, which we previously labeled as displace-
ments, could equally well be identified as velocity vectors.

This idea is illustrated in Figure 1.13, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v  

u
. The length of a velocity vector represents the average speed 

with which the object moves between the two points. Longer velocity vectors indi-
cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 
direction. We say the hare is moving with constant velocity. The tortoise is also mov-
ing with its own constant velocity.

Example 1.2    Accelerating up a hill
The light turns green and a car accelerates, starting from rest, up a 
20� hill. Draw a motion diagram showing the car’s velocity.

Model  Use the particle model to represent the car as a dot.

Visualize  The car’s motion takes place along a straight line, but 
the line is neither horizontal nor vertical. Because a motion dia-
gram is made from frames of a movie, it will show the object mov-
ing with the correct orientation—in this case, at an angle of 20�. 
Figure 1.14 shows several frames of the motion diagram, where we 
see the car speeding up. The car starts from rest, so the first arrow 
is drawn as short as possible and the first dot is labeled “Start.” 
The displacement vectors have been drawn from each dot to the 
next, but then they are identified and labeled as average velocity 
vectors v  

u
.

Note  Rather than label every single vector, it’s easier to give 
one label to the entire row of velocity vectors. You can see this in 
Figure 1.14. 
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x

Figure 1.15  Motion diagram of a ball 
traveling from Jake to Jose.

Jake Jose
vr

The velocity vectors are straight,
not curved to follow the trajectory.
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Stop To Think 1.3 
  A particle moves from position 1 to position 2 during the interval 

�t. Which vector shows the particle’s average velocity?

1.5  Linear Acceleration
The goal of this chapter is to find a set of concepts with which to describe motion. 
Position, time, and velocity are important concepts, and at first glance they might 
appear to be sufficient. But that is not the case. Sometimes an object’s velocity is con-
stant, as it was in Figure 1.13. More often, an object’s velocity changes as it moves, 
as in Figure 1.14 and 1.15. We need one more motion concept, one that will describe 
a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

	 1.	The magnitude can change, indicating a change in speed; or
	 2.	The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accelerating 
up a hill in Figure 1.14 was an example in which the magnitude of the velocity vector 
changed but not the direction. We’ll return to the second case in Chapter 4.

When we wanted to measure changes in position, the ratio �r 
u

/�t was useful. This 
ratio is the rate of change of position. By analogy, consider an object whose velocity 
changes from v  

u

1 to v  

u

2 during the time interval �t. Just as �r 
u

= r 
u

2 - r 
u

1 is the change 
of position, the quantity �v  

u
= v  

u

2 - v  

u

1   is the change of velocity. The ratio �v  

u
/�t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 
quickly and a small magnitude for objects that speed up slowly.

Example 1.3   I t’s a hit!
Jake hits a ball at a 60� angle above horizontal. It is caught by Jose. 
Draw a motion diagram of the ball.

Model  This example is typical of how many problems in science 
and engineering are worded. The problem does not give a clear 
statement of where the motion begins or ends. Are we interested 
in the motion of the ball just during the time it is in the air between 
Jake and Jose? What about the motion as Jake hits it (ball rapidly 
speeding up) or as Jose catches it (ball rapidly slowing down)? The 
point is that you will often be called on to make a reasonable in-
terpretation of a problem statement. In this problem, the details of 
hitting and catching the ball are complex. The motion of the ball 
through the air is easier to describe, and it’s a motion you might 
expect to learn about in a physics class. So our interpretation is that 
the motion diagram should start as the ball leaves Jake’s bat (ball 
already moving) and should end the instant it touches Jose’s hand 
(ball still moving). We will model the ball as a particle.

Visualize  With this interpretation in mind, Figure 1.15 shows 
the motion diagram of the ball. Notice how, in contrast to the car 

of Figure 1.14, the ball is already moving as the motion diagram 
movie begins. As before, the average velocity vectors are found 
by connecting the dots with straight arrows. You can see that the 
average velocity vectors get shorter (ball slowing down), get lon-
ger (ball speeding up), and change direction. Each v  

u
 is different, 

so this is not constant-velocity motion.



The Audi TT accelerates from 0 to 60 mph 
in 6 s.

1

2

3

4 Return to the original motion 
diagram. Draw a vector at the 
middle point in the direction of
�v; label it a. This is the average
acceleration at the midpoint
between vn and vn�1. 

Draw the velocity vector vn�1.

Draw �vn at the tip of vn�1.

Draw �v � vn�1 � vn

 � vn�1 � (�vn)
This is the direction of a.  

To find the acceleration as the
velocity changes from vn to vn�1,
we must determine the change
of velocity �v � vn�1 � vn.
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Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.

1.5 . Linear Acceleration    13

Tactics
B o x  1 . 3 

  Finding the acceleration vector

Exercises 21–24 

The ratio �v  

u
/�t is called the average acceleration, and its symbol is a

u

avg. The 
average acceleration of an object during the time interval �t, in which the object’s 
velocity changes by �v  

u, is the vector

	 a
u

avg =
�v  

u

�t
	 (1.7)

The average acceleration vector points in the same direction as the vector �v 
u.

Acceleration is a fairly abstract concept. Yet it is essential to develop a good intuition 
about acceleration because it will be a key concept for understanding why objects move 
as they do. Motion diagrams will be an important tool for developing that intuition.

Note  As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply a

u
. This is adequate for visualization purposes, but not the 

final word. We will refine the definition of acceleration in Chapter 2. 

Finding the Acceleration Vectors on a Motion Diagram
Let’s look at how we can determine the average acceleration vector a

u
 from a motion 

diagram. From its definition, Equation 1.7, we see that a
u
 points in the same direction as 

�v  

u
, the change of velocity. This critical idea is the basis for a technique to find a

u
.

Notice that the acceleration vector goes beside the middle dot, not beside the veloc-
ity vectors. This is because each acceleration vector is determined as the difference 
between the two velocity vectors on either side of a dot. The length of a

u
 does not have 

to be the exact length of �v  

u
; it is the direction of a

u
 that is most important.


	Front Cover
	Useful Reference Pages I
	Table of Problem-Solving Strategies
	Brief Contents
	Title Page
	Copyright Page
	About the Author
	Guided Tour
	Builds problem-solving skills and confidence…
	Promotes deeper understanding…
	Provides research-enhanced problems…
	Make a difference with MasteringPhysics…

	Preface to the Instructor
	Acknowledgments

	Preface to the Student
	Detailed CONTENTS
	INTRODUCTION: Journey into Physics
	PART I: Newton’s Laws
	OVERVIEW: Why Things Change
	Chapter 1 Concepts of Motion
	1.1 Motion Diagrams
	1.2 The Particle Model
	1.3 Position and Time
	1.4 Velocity
	1.5 Linear Acceleration





