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TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to
what you might believe, almost everything in a typical college-level mathematics
text is written for you, and not the instructor. True, the topics covered in the text are
chosen to appeal to instructors because they make the decision on whether to use it
in their classes, but everything written in it is aimed directly at you, the student. So I
want to encourage you—no, actually I want to tell you—to read this textbook! But
do not read this text like you would a novel; you should not read it fast and you
should not skip anything. Think of it as a workbook. By this I mean that mathemat-
ics should always be read with pencil and paper at the ready because, most likely, you
will have to work your way through the examples and the discussion. Before attempt-
ing any of the exercises, work all the examples in a section; the examples are con-
structed to illustrate what I consider the most important aspects of the section, and
therefore, reflect the procedures necessary to work most of the problems in the exer-
cise sets. I tell my students when reading an example, copy it down on a piece of
paper, and do not look at the solution in the book. Try working it, then compare your
results against the solution given, and, if necessary, resolve any differences. I have
tried to include most of the important steps in each example, but if something is not
clear you should always try—and here is where the pencil and paper come in
again—to fill in the details or missing steps. This may not be easy, but that is part of
the learning process. The accumulation of facts followed by the slow assimilation of
understanding simply cannot be achieved without a struggle.

Specifically for you, a Student Resource Manual (SRM) is available as an
optional supplement. In addition to containing worked-out solutions of selected
problems from the exercises sets, the SRM contains hints for solving problems, extra
examples, and a review of those areas of algebra and calculus that I feel are particu-
larly important to the successful study of differential equations. Bear in mind you do
not have to purchase the SRM; by following my pointers given at the beginning of
most sections, you can review the appropriate mathematics from your old precalculus
or calculus texts.

In conclusion, I wish you good luck and success. I hope you enjoy the text and
the course you are about to embark on—as an undergraduate math major it was one
of my favorites because I liked mathematics with a connection to the physical
world. If you have any comments, or if you find any errors as you read/work your
way through the text, or if you come up with a good idea for improving either it or
the SRM, please feel free to contact me through my editor at Cengage Learning:

molly.taylor@cengage.com

TO THE INSTRUCTOR

In case you are examining this textbook for the first time, A First Course in
Differential Equations with Modeling Applications, Tenth Edition, is intended for
either a one-semester or a one-quarter course in ordinary differential equations. The
longer version of the textbook, Differential Equations with Boundary-Value Problems,
Eighth Edition, can be used for either a one-semester course, or a two-semester
course covering ordinary and partial differential equations. This longer book includes six
additional chapters that cover plane autonomous systems of differential equations,
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stability, Fourier series, Fourier transforms, linear partial differential equations and
boundary-value problems, and numerical methods for partial differential equations.
For a one semester course, I assume that the students have successfully completed at
least two semesters of calculus. Since you are reading this, undoubtedly you have
already examined the table of contents for the topics that are covered. You will not
find a “suggested syllabus” in this preface; I will not pretend to be so wise as to tell
other teachers what to teach. I feel that there is plenty of material here to pick from
and to form a course to your liking. The textbook strikes a reasonable balance be-
tween the analytical, qualitative, and quantitative approaches to the study of differ-
ential equations. As far as my “underlying philosophy” it is this: An undergraduate
textbook should be written with the student’s understanding kept firmly in mind,
which means to me that the material should be presented in a straightforward, read-
able, and helpful manner, while keeping the level of theory consistent with the notion
of a “first course.

For those who are familiar with the previous editions, I would like to mention a
few of the improvements made in this edition.

• Eight new projects appear at the beginning of the book. Each project includes
a related problem set, and a correlation of the project material with a section
in the text. 

• Many exercise sets have been updated by the addition of new problems—
especially discussion problems—to better test and challenge the students. In
like manner, some exercise sets have been improved by sending some prob-
lems into retirement.

• Additional examples have been added to many sections.
• Several instructors took the time to e-mail me expressing their concerns

about my approach to linear first-order differential equations. In response,
Section 2.3, Linear Equations, has been rewritten with the intent to simplify
the discussion.

• This edition contains a new section on Green’s functions in Chapter 4 for
those who have extra time in their course to consider this elegant application
of variation of parameters in the solution of initial-value and boundary-value
problems. Section 4.8 is optional and its content does not impact any other
section. 

• Section 5.1 now includes a discussion on how to use both trigonometric forms 

in describing simple harmonic motion.
• At the request of users of the previous editions, a new section on the review

of power series has been added to Chapter 6. Moreover, much of this chapter
has been rewritten to improve clarity. In particular, the discussion of the
modified Bessel functions and the spherical Bessel functions in Section 6.4
has been greatly expanded.

STUDENT RESOURCES

• Student Resource Manual (SRM), prepared by Warren S. Wright and Carol
D. Wright (ISBN 9781133491927 accompanies A First Course in
Differential Equations with Modeling Applications, Tenth Edition and
ISBN 9781133491958 accompanies Differential Equations with Boundary-
Value Problems, Eighth Edition), provides important review material from
algebra and calculus, the solution of every third problem in each exercise
set (with the exception of the Discussion Problems and Computer Lab
Assignments), relevant command syntax for the computer algebra systems
Mathematica and Maple, lists of important concepts, as well as helpful
hints on how to start certain problems.

y � Asin(vt � f)  and  y � Acos(vt � f)
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INSTRUCTOR RESOURCES

• Instructor’s Solutions Manual (ISM) prepared by Warren S. Wright and
Carol D. Wright (ISBN 9781133602293) provides complete, worked-out
solutions for all problems in the text.

• Solution Builder is an online instructor database that offers complete,
worked-out solutions for all exercises in the text, allowing you to create
customized, secure solutions printouts (in PDF format) matched exactly to
the problems you assign in class. Access is available via 

www.cengage.com/solutionbuilder
• ExamView testing software allows instructors to quickly create, deliver, and

customize tests for class in print and online formats, and features automatic
grading. Included is a test bank with hundreds of questions customized di-
rectly to the text, with all questions also provided in PDF and Microsoft
Word formats for instructors who opt not to use the software component.

• Enhanced WebAssign is the most widely used homework system in higher
education. Available for this title, Enhanced WebAssign allows you to assign,
collect, grade, and record assignments via the Web. This proven homework
system includes links to textbook sections, video examples, and problem spe-
cific tutorials. Enhanced WebAssign is more than a homework system—it is
a complete learning system for students. 
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Is AIDS an Invariably 
Fatal Disease?
by Ivan Kramer

This essay will address and answer the question: Is the acquired immunodeficienc
syndrome (AIDS), which is the end stage of the human immunodeficiency virus
(HIV) infection, an invariably fatal disease?

Like other viruses, HIV has no metabolism and cannot reproduce itself outside of
a living cell. The genetic information of the virus is contained in two identical strands
of RNA. To reproduce, HIV must use the reproductive apparatus of the cell it invades
and infects to produce exact copies of the viral RNA. Once it penetrates a cell, HIV
transcribes its RNA into DNA using an enzyme (reverse transcriptase) contained in the
virus. The double-stranded viral DNA migrates into the nucleus of the invaded cell and
is inserted into the cell’s genome with the aid of another viral enzyme (integrase). The
viral DNA and the invaded cell’s DNA are then integrated, and the cell is infected.
When the infected cell is stimulated to reproduce, the proviral DNA is transcribed into
viral DNA, and new viral particles are synthesized. Since anti-retroviral drugs like zi-
dovudine inhibit the HIV enzyme reverse transcriptase and stop proviral DNA chain
synthesis in the laboratory, these drugs, usually administered in combination, slow
down the progression to AIDS in those that are infected with HIV (hosts).

What makes HIV infection so dangerous is the fact that it fatally weakens a
host’s immune system by binding to the CD4 molecule on the surface of cells vital
for defense against disease, including T-helper cells and a subpopulation of natural
killer cells. T-helper cells (CD4 T-cells, or T4 cells) are arguably the most important
cells of the immune system since they organize the body’s defense against antigens.
Modeling suggests that HIV infection of natural killer cells makes it impossible for
even modern antiretroviral therapy to clear the virus [1]. In addition to the CD4
molecule, a virion needs at least one of a handful of co-receptor molecules (e.g., CCR5
and CXCR4) on the surface of the target cell in order to be able to bind to it, pene-
trate its membrane, and infect it. Indeed, about 1% of Caucasians lack coreceptor
molecules, and, therefore, are completely immune to becoming HIV infected.

Once infection is established, the disease enters the acute infection stage, lasting
a matter of weeks, followed by an incubation period, which can last two decades or
more! Although the T-helper cell density of a host changes quasi-statically during the
incubation period, literally billions of infected T4 cells and HIV particles are
destroyed—and replaced—daily. This is clearly a war of attrition, one in which the
immune system invariably loses.

A model analysis of the essential dynamics that occur during the incubation
period to invariably cause AIDS is as follows [1]. Because HIV rapidly mutates, its
ability to infect T4 cells on contact (its infectivity) eventually increases and the
rate T4 cells become infected increases. Thus, the immune system must increase the
destruction rate of infected T4 cells as well as the production rate of new, uninfected
ones to replace them. There comes a point, however, when the production rate of T4
cells reaches its maximum possible limit and any further increase in HIV’s infectiv-
ity must necessarily cause a drop in the T4 density leading to AIDS. Remarkably,
about 5% of hosts show no sign of immune system deterioration for the first ten years
of the infection; these hosts, called long-term nonprogressors, were originally
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thought to be possibly immune to developing AIDS, but modeling evidence suggests
that these hosts will also develop AIDS eventually [1].

In over 95% of hosts, the immune system gradually loses its long battle with the
virus. The T4 cell density in the peripheral blood of hosts begins to drop from normal
levels (between 250 over 2500 cells/mm3) towards zero, signaling the end of the
incubation period. The host reaches the AIDS stage of the infection either when one
of the more than twenty opportunistic infections characteristic of AIDS develops
(clinical AIDS) or when the T4 cell density falls below 250 cells/mm3 (an additional
definition of AIDS promulgated by the CDC in 1987). The HIV infection has now
reached its potentially fatal stage.

In order to model survivability with AIDS, the time t at which a host develops
AIDS will be denoted by t � 0. One possible survival model for a cohort of AIDS
patients postulates that AIDS is not a fatal condition for a fraction of the cohort,
denoted by Si, to be called the immortal fraction here. For the remaining part of the
cohort, the probability of dying per unit time at time t will be assumed to be a con-
stant k, where, of course, k must be positive. Thus, the survival fraction S(t) for this
model is a solution of the linear first-order di ferential equation

(1)

Using the integrating-factor method discussed in Section 2.3, we see that the 
solution of equation (1) for the survival fraction is given by

(2)

Instead of the parameter k appearing in (2), two new parameters can be defined for
a host for whom AIDS is fatal: the average survival time Taver given by Taver � k�1 and
the survival half-life T1�2 given by T1�2 � ln(2)�k. The survival half-life, defined as the
time required for half of the cohort to die, is completely analogous to the half-life in
radioactive nuclear decay. See Problem 8 in Exercise 3.1. In terms of these parameters
the entire time-dependence in (2) can be written as

(3)

Using a least-squares program to fit the survival fraction function in (2) to the
actual survival data for the 159 Marylanders who developed AIDS in 1985 produces
an immortal fraction value of Si � 0.0665 and a survival half life value of T1�2 �
0.666 year, with the average survival time being Taver � 0.960 years [2]. See Figure 1.
Thus only about 10% of Marylanders who developed AIDS in 1985 survived three
years with this condition. The 1985 Maryland AIDS survival curve is virtually iden-
tical to those of 1983 and 1984. The first antiretroviral drug found to be effective
against HIV was zidovudine (formerly known as AZT). Since zidovudine was not
known to have an impact on the HIV infection before 1985 and was not common

e�kt � e�t>Taver � 2�t>T1>2

S(t) � Si � [1 � Si]e�kt.

dS(t)
dt

� �k[S(t) � Si].
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therapy before 1987, it is reasonable to conclude that the survival of the 1985
Maryland AIDS patients was not significantly influenced by zidovudine therap .

The small but nonzero value of the immortal fraction Si obtained from the
Maryland data is probably an artifact of the method that Maryland and other states
use to determine the survivability of their citizens. Residents with AIDS who
changed their name and then died or who died abroad would still be counted as alive
by the Maryland Department of Health and Mental Hygiene. Thus, the immortal
fraction value of Si � 0.0665 (6.65%) obtained from the Maryland data is clearly an
upper limit to its true value, which is probably zero.

Detailed data on the survivability of 1,415 zidovudine-treated HIV-infected
hosts whose T4 cell densities dropped below normal values were published by
Easterbrook et al. in 1993 [3]. As their T4 cell densities drop towards zero, these peo-
ple develop clinical AIDS and begin to die. The longest survivors of this disease live
to see their T4 densities fall below 10 cells/mm3. If the time t � 0 is redefined to
mean the moment the T4 cell density of a host falls below 10 cells/mm3, then the
survivability of such hosts was determined by Easterbrook to be 0.470, 0.316, and
0.178 at elapsed times of 1 year, 1.5 years, and 2 years, respectively.

A least-squares fit of the survival fraction function in (2) to the Easterbrook
data for HIV-infected hosts with T4 cell densities in the 0–10 cells/mm3 range yields
a value of the immortal fraction of Si � 0 and a survival half-life of T1�2 � 0.878 year
[4]; equivalently, the average survival time is Taver � 1.27 years. These results clearly
show that zidovudine is not effective in halting replication in all strains of HIV,
since those who receive this drug eventually die at nearly the same rate as those who
do not. In fact, the small difference of 2.5 months between the survival half-life
for 1993 hosts with T4 cell densities below 10 cells/mm3 on zidovudine therapy
(T1�2 � 0.878 year) and that of 1985 infected Marylanders not taking zidovudine
(T1�2 � 0.666 year) may be entirely due to improved hospitalization and improve-
ments in the treatment of the opportunistic infections associated with AIDS over the
years. Thus, the initial ability of zidovudine to prolong survivability with HIV dis-
ease ultimately wears off, and the infection resumes its progression. Zidovudine
therapy has been estimated to extend the survivability of an HIV-infected patient by
perhaps 5 or 6 months on the average [4].

Finally, putting the above modeling results for both sets of data together, we fin
that the value of the immortal fraction falls somewhere within the range 0 � Si � 0.0665
and the average survival time falls within the range 0.960 years � Taver � 1.27 years.
Thus, the percentage of people for whom AIDS is not a fatal disease is less than 6.65%
and may be zero. These results agree with a 1989 study of hemophilia-associated AIDS
cases in the USA which found that the median length of survival after AIDS diagno-
sis was 11.7 months [5]. A more recent and comprehensive study of hemophiliacs
with clinical AIDS using the model in (2) found that the immortal fraction was Si �
0, and the mean survival times for those between 16 to 69 years of age varied be-
tween 3 to 30 months, depending on the AIDS-defining condition [6]. Although
bone marrow transplants using donor stem cells homozygous for CCR5 delta32
deletion may lead to cures, to date clinical results consistently show that AIDS is
an invariably fatal disease.

Related Problems
1. Suppose the fraction of a cohort of AIDS patients that survives a time t after

AIDS diagnosis is given by S(t) � exp(�kt). Show that the average survival
time Taver after AIDS diagnosis for a member of this cohort is given by
Taver � 1�k.

2. The fraction of a cohort of AIDS patients that survives a time t after AIDS
diagnosis is given by S(t) � exp(�kt). Suppose the mean survival for a cohort
of hemophiliacs diagnosed with AIDS before 1986 was found to be Taver � 6.4
months. What fraction of the cohort survived 5 years after AIDS diagnosis?

PROJECTS IS AIDS AN INVARIABLY FATAL DISEASE? ● P-3
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3. The fraction of a cohort of AIDS patients that survives a time t after AIDS diag-
nosis is given by S(t) � exp(�kt). The time it takes for S(t) to reach the value of
0.5 is defined as the survival half-life and denoted by T1�2.
(a) Show that S(t) can be written in the form .
(b) Show that T1�2 � Taver ln(2), where Taver is the average survival time define

in problem (1). Thus, it is always true that T1�2 � Taver.
4. About 10% of lung cancer patients are cured of the disease, i.e., they survive

5 years after diagnosis with no evidence that the cancer has returned. Only 14%
of lung cancer patients survive 5 years after diagnosis. Assume that the fraction
of incurable lung cancer patients that survives a time t after diagnosis is given
by exp(�kt). Find an expression for the fraction S(t) of lung cancer patients that
survive a time t after being diagnosed with the disease. Be sure to determine the
values of all of the constants in your answer. What fraction of lung cancer patients
survives two years with the disease?
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The Allee Effect
by Jo Gascoigne

The top five most famous Belgians apparently include a cyclist, a punk singer, the in-
ventor of the saxophone, the creator of Tintin, and Audrey Hepburn. Pierre François
Verhulst is not on the list, although he should be. He had a fairly short life, dying at
the age of 45, but did manage to include some excitement—he was deported from
Rome for trying to persuade the Pope that the Papal States needed a written constitu-
tion. Perhaps the Pope knew better even then than to take lectures in good gover-
nance from a Belgian. . . .

Aside from this episode, Pierre Verhulst (1804–1849) was a mathematician who
concerned himself, among other things, with the dynamics of natural populations—
fish, rabbits, buttercups, bacteria, or whatever. (I am prejudiced in favour of fish, so
we will be thinking fish from now on.) Theorizing on the growth of natural popula-
tions had up to this point been relatively limited, although scientists had reached the
obvious conclusion that the growth rate of a population (dN�dt, where N(t) is the
population size at time t) depended on (i) the birth rate b and (ii) the mortality rate m,
both of which would vary in direct proportion to the size of the population N:

(1)

After combining b and m into one parameter r, called the intrinsic rate of natural
increase—or more usually by biologists without the time to get their tongues around
that, just r—equation (1) becomes

(2)

This model of population growth has a problem, which should be clear to you—if
not, plot dN�dt for increasing values of N. It is a straightforward exponential growth
curve, suggesting that we will all eventually be drowning in fish. Clearly, something
eventually has to step in and slow down dN�dt. Pierre Verhulst’s insight was that this
something was the capacity of the environment, in other words, 

How many fish can an ecosystem actually suppor ?

He formulated a differential equation for the population N(t) that included both
r and the carrying capacity K:

(3)

Equation (3) is called the logistic equation, and it forms to this day the basis of much
of the modern science of population dynamics. Hopefully, it is clear that the term
(1 � N�K), which is Verhulst’s contribution to equation (2), is (1 � N�K) � 1 when
N � 0, leading to exponential growth, and (1 � N�K) : 0 as N : K, hence it causes
the growth curve of N(t) to approach the horizontal asymptote N(t) � K. Thus the size
of the population cannot exceed the carrying capacity of the environment.

dN

dt
� rN�1 �

N

K�,  r � 0.

dN

dt
� rN.

dN

dt
� bN � mN.
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P-6 ● PROJECTS THE ALLEE EFFECT

The logistic equation (3) gives the overall growth rate of the population, but the
ecology is easier to conceptualize if we consider per capita growth rate—that is, the
growth rate of the population per the number of individuals in the population—some
measure of how “well” each individual in the population is doing. To get per capita
growth rate, we just divide each side of equation (3) by N:

This second version of (3) immediately shows (or plot it) that this relationship is a

straight line with a maximum value of (assuming that negative popu-

lation sizes are not relevant) and dN�dt � 0 at N � K.

Er, hang on a minute . . . “a maximum value of ” Each shark in

the population does best when there are . . . zero sharks? Here is clearly a flaw in the
logistic model. (Note that it is now a model—when it just presents a relationship be-
tween two variables dN�dt and N, it is just an equation. When we use this equation
to try and analyze how populations might work, it becomes a model.)

The assumption behind the logistic model is that as population size decreases, indi-
viduals do better (as measured by the per capita population growth rate). This assump-
tion to some extent underlies all our ideas about sustainable management of natural
resources—a fish population cannot be fished indefinitely unless we assume that when
a population is reduced in size, it has the ability to grow back to where it was before.

This assumption is more or less reasonable for populations, like many fish pop-
ulations subject to commercial fisheries, which are maintained at 50% or even 20%
of K. But for very depleted or endangered populations, the idea that individuals keep
doing better as the population gets smaller is a risky one. The Grand Banks popula-
tion of cod, which was fished down to 1% or perhaps even 0.1% of K, has been pro-
tected since the early 1990s, and has yet to show convincing signs of recovery.

Warder Clyde Allee (1885–1955) was an American ecologist at the University
of Chicago in the early 20th century, who experimented on goldfish, brittlestars, flou
beetles, and, in fact, almost anything unlucky enough to cross his path. Allee showed
that, in fact, individuals in a population can do worse when the population becomes
very small or very sparse.* There are numerous ecological reasons why this might
be—for example, they may not find a suitable mate or may need large groups to fin
food or express social behavior, or in the case of goldfish they may alter the water
chemistry in their favour. As a result of Allee’s work, a population where the per
capita growth rate declines at low population size is said to show an Allee effect. The
jury is still out on whether Grand Banks cod are suffering from an Allee effect, but
there are some possible mechanisms—females may not be able to find a mate, or a
mate of the right size, or maybe the adult cod used to eat the fish that eat the juvenile
cod. On the other hand, there is nothing that an adult cod likes more than a snack of
baby cod—they are not fish with very picky eating habits—so these arguments may
not stack up. For the moment we know very little except that there are still no cod.

Allee effects can be modelled in many ways. One of the simplest mathematical
models, a variation of the logistic equation, is:

(4)

where A is called the Allee threshold. The value N (t) � A is the population size below
which the population growth rate becomes negative due to an Allee effect—situated at

 
dN

dt
� rN�1 �

N

K��
N

A
� 1�.

1
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dN

dt
 at N � 0?!

1
N

 
dN

dt
 at N � 0

1
N

 
dN

dt
� r�1 �

N

K� � r �
r

K
N.

*Population size and population density are mathematically interchangeable, assuming a fixed area i
which the population lives (although they may not necessarily be interchangeable for the individuals in
question).
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a value of N somewhere between N � 0 and N � K, that is, 0 � A � K, depending on
the species (but for most species a good bit closer to 0 than K, luckily).

Equation (4) is not as straightforward to solve for N(t) as (3), but we don’t need
to solve it to gain some insights into its dynamics. If you work through Problems 2
and 3, you will see that the consequences of equation (4) can be disastrous for endan-
gered populations.

Related Problems
1. (a) The logistic equation (3) can be solved explicitly for N(t) using the technique

of partial fractions. Do this, and plot N(t) as a function of t for 0 t 10.
Appropriate values for r, K, and N(0) are r � 1, K � 1, N(0) � 0.01 (fish per
cubic metre of seawater, say). The graph of N(t) is called a sigmoid growth
curve.

(b) The value of r can tell us a lot about the ecology of a species—sardines,
where females mature in less than one year and have millions of eggs, have
a high r, while sharks, where females bear a few live young each year, have
a low r. Play with r and see how it affects the shape of the curve. Question:
If a marine protected area is put in place to stop overfishing, which species
will recover quickest—sardines or sharks?

2. Find the population equilibria for the model in (4). [Hint: The population is at
equilibrium when dN�dt � 0, that is, the population is neither growing nor
shrinking. You should find three values of N for which the population is at equi-
librium.]

3. Population equilibria can be stable or unstable. If, when a population deviates a
bit from the equilibrium value (as populations inevitably do), it tends to return to
it, this is a stable equilibrium; if, however, when the population deviates from
the equilibrium it tends to diverge from it ever further, this is an unstable equi-
librium. Think of a ball in the pocket of a snooker table versus a ball balanced on
a snooker cue. Unstable equilibria are a feature of Allee effect models such as
(4). Use a phase portrait of the autonomous equation (4) to determine whether
the nonzero equilibria that you found in Problem 2 are stable or unstable. [Hint:
See Section 2.1 of the text.]

4. Discuss the consequences of the result above for a population N(t) fluctuatin
close to the Allee threshold A.
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Copper sharks and bronze whaler sharks
feeding on a bait ball of sardines off the
east coast of South Africa
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Project for Section 3.3

Wolf Population Dynamics
by C. J. Knickerbocker

Early in 1995, after much controversy, public debate, and a 70-year absence, gray
wolves were re introduced into Yellowstone National Park and Central Idaho. During
this 70-year absence, significant changes were recorded in the populations of other
predator and prey animals residing in the park. For instance, the elk and coyote pop-
ulations had risen in the absence of influence from the larger gray wolf. With the
reintroduction of the wolf in 1995, we anticipated changes in both the predator and
prey animal populations in the Yellowstone Park ecosystem as the success of the
wolf population is dependent upon how it influences and is influenced by the other
species in the ecosystem.

For this study, we will examine how the elk (prey) population has been influ
enced by the wolves (predator). Recent studies have shown that the elk population
has been negatively impacted by the reintroduction of the wolves. The elk population
fell from approximately 18,000 in 1995 to approximately 7,000 in 2009. This article
asks the question of whether the wolves could have such an effect and, if so, could
the elk population disappear?

Let’s begin with a more detailed look at the changes in the elk population inde-
pendent of the wolves. In the 10 years prior to the introduction of wolves, from 1985
to 1995, one study suggested that the elk population increased by 40% from 13,000
in 1985 to 18,000 in 1995. Using the simplest differential equation model for popu-
lation dynamics, we can determine the growth rate for elks (represented by the vari-
able r) prior to the reintroduction of the wolves.

(1)

In this equation, E(t) represents the elk population (in thousands) where t is measured
in years since 1985. The solution, which is left as an exercise for the reader, finds the
combined birth/death growth rate r to be approximately 0.0325 yielding:

In 1995, 21 wolves were initially released, and their numbers have risen. In
2007, biologists estimated the number of wolves to be approximately 171.

To study the interaction between the elk and wolf populations, let’s consider the
following predator-prey model for the interaction between the elk and wolf within
the Yellowstone ecosystem:

(2)

where E(t) is the elk population and W(t) is the wolf population. All populations are
measured in thousands of animals. The variable t represents time measured in years
from 1995. So, from the initial conditions, we have 18,000 elk and 21 wolves in the
year 1995. The reader will notice that we estimated the growth rate for the elk to be
the same as that estimated above r � 0.0325.

 E(0) � 18.0, W(0) � 0.021

 
dW

dt
 � �0.6W � 0.05EW

 
dE

dt
 � 0.0325E � 0.8EW

 E(t) � 13.0 e0.0325t

 E(10) � 18.0E(0) � 13.0,
dE

dt
� rE,

A gray wolf in the wild
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Before we attempt to solve the model (2), a qualitative analysis of the system
can yield a number of interesting properties of the solutions. The first equation
shows that the growth rate of the elk is positively impacted by the size of
the herd (0.0325E). This can be interpreted as the probability of breeding in-
creases with the number of elk. On the other hand the nonlinear term (0.8EW) has
a negative impact on the growth rate of the elk since it measures the interaction
between predator and prey. The second equation 
shows that the wolf population has a negative effect on its own growth which can
be interpreted as more wolves create more competition for food. But, the interac-
tion between the elk and wolves (0.05EW) has a positive impact since the wolves
are finding more food.

Since an analytical solution cannot be found to the initial-value problem (2), we
need to rely on technology to find approximate solutions. For example, below is a set
of instructions for finding a numerical solution of the initial-value problem using the
computer algebra system MAPLE.

e1 := diff(e(t),t)- 0.0325 * e(t) + 0.8 * e(t)*w(t) :
e2 := diff(w(t),t)+ 0.6 * w(t) - 0.05 * e(t)*w(t) :
sys := {e1,e2} :
ic := {e(0)=18.0,w(0)=0.021} :
ivp := sys union ic :
H:= dsolve(ivp,{e(t),w(t)},numeric) :

The graphs in Figures 1 and 2 show the populations for both species between 1995
and 2009. As predicted by numerous studies, the reintroduction of wolves into
Yellowstone had led to a decline in the elk population. In this model, we see the popula-
tion decline from 18,000 in 1995 to approximately 7,000 in 2009. In contrast, the wolf
population rose from an initial count of 21 in 1995 to a high of approximately 180 in
2004.

dW>dt � �0.6W � 0.05EW

(dE>dt)

The alert reader will note that the model also shows a decline in the wolf popu-
lation after 2004. How might we interpret this? With the decline in the elk population
over the first 10 years, there was less food for the wolves and therefore their popula-
tion begins to decline.

Figure 3 below shows the long-term behavior of both populations. The interpre-
tation of this graph is left as an exercise for the reader.

Information on the reintroduction of wolves into Yellowstone Park and central
Idaho can be found on the Internet. For example, read the U.S. Fish and Wildlife
Service news release of November 23, 1994, on the release of wolves into
Yellowstone National Park.
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Related Problems
1. Solve the pre-wolf initial-value problem (1) by first solving the differential

equation and applying the initial condition. Then apply the terminal condition to
find the growth rate

2. Biologists have debated whether the decrease in the elk from 18,000 in 1995 to
7,000 in 2009 is due to the reintroduction of wolves. What other factors might
account for the decrease in the elk population?

3. Consider the long-term changes in the elk and wolf populations. Are these cyclic
changes reasonable? Why is there a lag between the time when the elk begins to
decline and the wolf population begins to decline? Are the minimum values for
the wolf population realistic? Plot the elk population versus the wolf population
and interpret the results.

4. What does the initial-value problem (1) tell us about the growth of the elk pop-
ulation without the influence of the wolves? Find a similar model for the intro-
duction of rabbits into Australia in 1859 and the impact of introducing a prey
population into an environment without a natural predator population.
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Bungee Jumping
by Kevin Cooper

Suppose that you have no sense. Suppose that you are standing on a bridge above the
Malad River canyon. Suppose that you plan to jump off that bridge. You have no sui-
cide wish. Instead, you plan to attach a bungee cord to your feet, to dive gracefully
into the void, and to be pulled back gently by the cord before you hit the river that is
174 feet below. You have brought several different cords with which to affix your
feet, including several standard bungee cords, a climbing rope, and a steel cable. You
need to choose the stiffness and length of the cord so as to avoid the unpleasantness
associated with an unexpected water landing. You are undaunted by this task, because
you know math!

Each of the cords you have brought will be tied off so as to be 100 feet long
when hanging from the bridge. Call the position at the bottom of the cord 0, and
measure the position of your feet below that “natural length” as x(t), where x increases
as you go down and is a function of time t. See Figure 1. Then, at the time you
jump, x(0) = -100, while if your six-foot frame hits the water head first, at that time
x(t) = 174 - 100 - 6 = 68. Notice that distance increases as you fall, and so your
velocity is positive as you fall and negative when you bounce back up. Note also
that you plan to dive so your head will be six feet below the end of the chord when
it stops you. 

You know that the acceleration due to gravity is a constant, called g, so that the
force pulling downwards on your body is mg. You know that when you leap from the
bridge, air resistance will increase proportionally to your speed, providing a force in
the opposite direction to your motion of about bv, where b is a constant and v is your
velocity. Finally, you know that Hooke’s law describing the action of springs says
that the bungee cord will eventually exert a force on you proportional to its distance
past its natural length. Thus, you know that the force of the cord pulling you back
from destruction may be expressed as

The number k is called the spring constant, and it is where the stiffness of the cord
you use influences the equation. For example, if you used the steel cable, then k
would be very large, giving a tremendous stopping force very suddenly as you passed
the natural length of the cable. This could lead to discomfort, injury, or even a
Darwin award. You want to choose the cord with a k value large enough to stop you
above or just touching the water, but not too suddenly. Consequently, you are inter-
ested in finding the distance you fall below the natural length of the cord as a func-
tion of the spring constant. To do that, you must solve the differential equation that
we have derived in words above: The force mx� on your body is given by

mx� � mg + b(x) - bx	.

Here mg is your weight, 160 lb., and x	 is the rate of change of your position below
the equilibrium with respect to time; i.e., your velocity. The constant b for air resis-
tance depends on a number of things, including whether you wear your skin-tight
pink spandex or your skater shorts and XXL T-shirt, but you know that the value
today is about 1.0.

b(x) � �0
�kx

x � 0
x � 0
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This is a nonlinear differential equation, but inside it are two linear differential
equations, struggling to get out. We will work with such equations more extensively
in later chapters, but we already know how to solve such equations from our past
experience. When x � 0, the equation is mx� = mg - bx	, while after you pass the
natural length of the cord it is mx� = mg - kx - bx	. We will solve these separately,
and then piece the solutions together when x(t) = 0.

In Problem 1 you find an expression for your position t seconds after you step off
the bridge, before the bungee cord starts to pull you back. Notice that it does not
depend on the value for k, because the bungee cord is just falling with you when you
are above x(t) = 0. When you pass the natural length of the bungee cord, it does start
to pull back, so the differential equation changes. Let t1 denote the first time for which
x(t1) = 0, and let v1 denote your speed at that time. We can thus describe the motion
for x(t) � 0 using the problem x� = g - kx - bx	, x(t1) = 0, x	(t1) = v1. An illustration
of a solution to this problem in phase space can be seen in Figure 2.

This will yield an expression for your position as the cord is pulling on you. All
we have to do is to find out the time t2 when you stop going down. When you stop
going down, your velocity is zero, i.e., x	(t2) = 0. 

As you can see, knowing a little bit of math is a dangerous thing. We remind
you that the assumption that the drag due to air resistance is linear applies only for
low speeds. By the time you swoop past the natural length of the cord, that approx-
imation is only wishful thinking, so your actual mileage may vary. Moreover,
springs behave nonlinearly in large oscillations, so Hooke’s law is only an approx-
imation. Do not trust your life to an approximation made by a man who has been
dead for 200 years. Leave bungee jumping to the professionals.

Related Problems
1. Solve the equation mx� + bx	 = mg for x(t), given that you step off the bridge—no

jumping, no diving! Stepping off means x(0) = -100, x	(0) = 0. You may use
mg = 160, b = 1, and g = 32.

2. Use the solution from Problem 1 to compute the length of time t1 that you freefall
(the time it takes to go the natural length of the cord: 100 feet).

3. Compute the derivative of the solution you found in Problem 1 and evaluate it at
the time you found in Problem 2. Call the result v1. You have found your down-
ward speed when you pass the point where the cord starts to pull.

4. Solve the initial-value problem

For now, you may use the value k = 14, but eventually you will need to replace
that with the actual values for the cords you brought. The solution x(t) repre-
sents the position of your feet below the natural length of the cord after it starts
to pull back.

5. Compute the derivative of the expression you found in Problem 4 and solve for
the value of t where it is zero. This time is t2. Be careful that the time you compute
is greater than t1—there are several times when your motion stops at the top and
bottom of your bounces! After you find t2, substitute it back into the solution you
found in Problem 4 to find your lowest position

6. You have brought a soft bungee cord with k = 8.5, a stiffer cord with k = 10.7, and
a climbing rope for which k = 16.4. Which, if any, of these may you use safely
under the conditions given?

7. You have a bungee cord for which you have not determined the spring constant.
To do so, you suspend a weight of 10 lb. from the end of the 100-foot cord, caus-
ing the cord to stretch 1.2 feet. What is the k value for this cord? You may neglect
the mass of the cord itself.

x	(t1) � v1.x(t1) � 0, mx� � bx	 � kx � mg,

FIGURE 2 An example plot of x(t)
against x	(t) for a bungee jump
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The Collapse of the Tacoma
Narrows Suspension Bridge
by Gilbert N. Lewis

In the summer of 1940, the Tacoma Narrows Suspension Bridge in the State of
Washington was completed and opened to traffic.Almost immediately, observers no-
ticed that the wind blowing across the roadway would sometimes set up large verti-
cal vibrations in the roadbed. The bridge became a tourist attraction as people came
to watch, and perhaps ride, the undulating bridge. Finally, on November 7, 1940, dur-
ing a powerful storm, the oscillations increased beyond any previously observed, and
the bridge was evacuated. Soon, the vertical oscillations became rotational, as ob-
served by looking down the roadway. The entire span was eventually shaken apart by
the large vibrations, and the bridge collapsed. Figure 1 shows a picture of the bridge
during the collapse. See [1] and [2] for interesting and sometimes humorous anec-
dotes associated with the bridge. Or, do an Internet search with the key words
“Tacoma Bridge Disaster” in order to find and view some interesting videos of the
collapse of the bridge.

The noted engineer von Karman was asked to determine the cause of the col-
lapse. He and his coauthors [3] claimed that the wind blowing perpendicularly across
the roadway separated into vortices (wind swirls) alternately above and below the
roadbed, thereby setting up a periodic, vertical force acting on the bridge. It was this
force that caused the oscillations. Others further hypothesized that the frequency of
this forcing function exactly matched the natural frequency of the bridge, thus lead-
ing to resonance, large oscillations, and destruction. For almost fifty years, resonance
was blamed as the cause of the collapse of the bridge, although the von Karman
group denied this, stating that “it is very improbable that resonance with alternating
vortices plays an important role in the oscillations of suspension bridges” [3].

As we can see from equation (31) in Section 5.1.3, resonance is a linear phe-
nomenon. In addition, for resonance to occur, there must be an exact match between
the frequency of the forcing function and the natural frequency of the bridge.
Furthermore, there must be absolutely no damping in the system. It should not be
surprising, then, that resonance was not the culprit in the collapse.

If resonance did not cause the collapse of the bridge, what did? Recent research
provides an alternative explanation for the collapse of the Tacoma Narrows Bridge.
Lazer and McKenna [4] contend that nonlinear effects, and not linear resonance,
were the main factors leading to the large oscillations of the bridge (see [5] for a good
review article). The theory involves partial differential equations. However, a simpli-
fied model leading to a nonlinear ordinary differential equation can be constructed.

The development of the model below is not exactly the same as that of Lazer and
McKenna, but it results in a similar differential equation. This example shows an-
other way that amplitudes of oscillation can increase.

Consider a single vertical cable of the suspension bridge. We assume that it acts
like a spring, but with different characteristics in tension and compression, and with
no damping. When stretched, the cable acts like a spring with Hooke’s constant, b,
while, when compressed, it acts like a spring with a different Hooke’s constant, a. We
assume that the cable in compression exerts a smaller force on the roadway than
when stretched the same distance, so that 0 � a � b. Let the vertical deflectio
(positive direction downward) of the slice of the roadbed attached to this cable be

The rebuilt Tacoma Narrows bridge (1950)
and new parallel bridge (2009)

Collapse of the Tacoma Narrows Bridge
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denoted by y(t), where t represents time, and y � 0 represents the equilibrium posi-
tion of the road. As the roadbed oscillates under the influence of an applied vertical
force (due to the von Karman vortices), the cable provides an upward restoring force
equal to by when y � 0 and a downward restoring force equal to ay when y � 0. This
change in the Hooke’s Law constant at y � 0 provides the nonlinearity to the differ-
ential equation. We are thus led to consider the differential equation derived from
Newton’s second law of motion 

my � f(y) � g(t),

where f(y) is the nonlinear function given by 

g(t) is the applied force, and m is the mass of the section of the roadway. Note that
the differential equation is linear on any interval on which y does not change sign.

Now, let us see what a typical solution of this problem would look like. We will
assume that m � 1 kg, b � 4 N/m, a � 1N/m, and g(t) � sin(4t) N. Note that the fre-
quency of the forcing function is larger than the natural frequencies of the cable in
both tension and compression, so that we do not expect resonance to occur. We also
assign the following initial values to y: y(0) � 0, y	(0) � 0.01, so that the roadbed
starts in the equilibrium position with a small downward velocity.

Because of the downward initial velocity and the positive applied force, y(t) will
initially increase and become positive. Therefore, we first solve this initial-value
problem

y � 4y � sin(4t), y(0) � 0, y	(0) � 0.01. (1)

The solution of the equation in (1), according to Theorem 4.1.6, is the sum of the
complementary solution, yc(t), and the particular solution, yp(t). It is easy to see
that yc(t) � c1cos(2t) � c2sin(2t) (equation (9), Section 4.3), and yp(t) � �
(Table 4.4.1, Section 4.4). Thus,

y(t) � c1cos(2t) � c2 sin(2t) . (2)

The initial conditions give
y(0) � 0 � c1,

y	(0) � 0.01 � 2c2 � ,

so that c2 � (0.01 � )�2. Therefore, (2) becomes

(3)

We note that the first positive value of t for which y(t) is again equal to zero is .
At that point, Therefore, equation (3) holds on [0, ].

After becomes negative, so we must now solve the new problem

(4)

Proceeding as above, the solution of (4) is

(5)
 � cos t��0.01 �

2
5� �

4
15 sin t cos(2t)�.

 y(t) � �0.01 �
2
5�cos t �

1
15

sin(4t)

 y� � y � sin(4t),  y�p2� � 0,  y	�p2� � ��0.01 �
2
3�.

t � p

2 , y
p>2y	(p2) � �(0.01 � 2

3).
t � p

2

 � sin(2t)�1
2�0.01 �

1
3� �

1
6 cos(2t)�.

 y(t) �
1
2�0.01 �

1
3�sin(2t) �

1
12

sin(4t)

1
3

1
3

�
1

12
sin(4t)

1
12 sin(4t)

�

f(y) � �by  if y  0
ay  if y � 0	,

�
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The next positive value of t after at which y(t) � 0 is at which point
so that equation (5) holds on .

At this point, the solution has gone through one cycle in the time interval 
During this cycle, the section of the roadway started at the equilibrium with positive
velocity, became positive, came back to the equilibrium position with negative ve-
locity, became negative, and finally returned to the equilibrium position with positive
velocity. This pattern continues indefinitel , with each cycle covering time units.
The solution for the next cycle is

(6)

It is instructive to note that the velocity at the beginning of the second cycle is
(0.01 ), while at the beginning of the third cycle it is (0.01 � ). In fact, the
velocity at the beginning of each cycle is greater than at the beginning of the pre-
vious cycle. It is not surprising then that the amplitude of oscillations will increase
over time, since the amplitude of (one term in) the solution during any one cycle is
directly related to the velocity at the beginning of the cycle. See Figure 2 for a
graph of the deflection function on the interval [0, 3p]. Note that the maximum
deflection on [3p�2, 2p] is larger than the maximum deflection on [0, p�2], while
the maximum deflection on [2p, 3p] is larger than the maximum deflection on
[p�2, 3p�2].

It must be remembered that the model presented here is a very simplified one-
dimensional model that cannot take into account all of the intricate interactions of
real bridges. The reader is referred to the account by Lazer and McKenna [4] for a
more complete model. More recently, McKenna [6] has refined that model to provide
a different viewpoint of the torsional oscillations observed in the Tacoma Bridge.

Research on the behavior of bridges under forces continues. It is likely that
the models will be refined over time, and new insights will be gained from the
research. However, it should be clear at this point that the large oscillations caus-
ing the destruction of the Tacoma Narrows Suspension Bridge were not the result
of resonance.

2
15

4
15� 2

15

 y(t) � sin t���0.01 �
8

15� � 
4

15
 cos t cos(2t)�  on  [2p, 3p].

 y(t) � sin(2t)��1
2�0.01 �

7
15� �

1
6
 cos(2t)�  on  [3p>2, 2p],

3p
2

[0, 3p2 ].
[p>2, 3p>2]y	(3p

2 ) � 0.01 � 2
15,

t � 3p
2 ,t � p

2

0.2

y

t0.0
2 4 6 8

−0.2

−0.4

−0.6

FIGURE 2 Graph of deflection function y(t) 

Related Problems
1. Solve the following problems and plot the solutions for 0 t 6p. Note that reso-

nance occurs in the first problem but not in the second
(a)
(b) y� � y � cos(2t), y(0) � 0, y	(0) � 0.

y� � y � �cos t, y(0) � 0, y	(0) � 0.

��
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2. Solve the initial-value problem where

and 
(a) b � 1, a � 4, (Compare your answer with the example in this project.)
(b) b � 64, a � 4,
(c) b � 36, a � 25.
Note that, in part (a), the condition b � a of the text is not satisfied. Plot the solu-
tions. What happens in each case as t increases? What would happen in each case
if the second initial condition were replaced with y	(0) � 0.01? Can you make any
conclusions similar to those of the text regarding the long-term solution?

3. What would be the effect of adding damping (�cy	, where c � 0) to the system?
How could a bridge design engineer incorporate more damping into the bridge?
Solve the problem where

and
(a) c � 0.01
(b) c � 0.1 
(c) c � 0.5
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f(y) � �4y if y  0
y if y � 0	,

y� � cy	 � f(y) � sin(4t), y(0) � 0, y	(0) � 1,

f(y) � �by if y  0
ay if y � 0	,

y� � f(y) � sin(4t), y(0) � 0, y	(0) � 1,
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Murder at the Mayfair Diner
by Tom LoFaro

Dawn at the Mayfair Diner. The amber glow of streetlights mixed with the violent
red flash of police cruisers begins to fade with the rising of a furnace orange sun.
Detective Daphne Marlow exits the diner holding a steaming cup of hot joe in one
hand and a summary of the crime scene evidence in the other. Taking a seat on the
bumper of her tan LTD, Detective Marlow begins to review the evidence.

At 5:30 a.m. the body of one Joe D. Wood was found in the walk in refrigerator in
the diner’s basement. At 6:00 a.m. the coroner arrived and determined that the core body
temperature of the corpse was 85 degrees Fahrenheit. Thirty minutes later the coroner
again measured the core body temperature. This time the reading was 84 degrees
Fahrenheit. The thermostat inside the refrigerator reads 50 degrees Fahrenheit.

Daphne takes out a fading yellow legal pad and ketchup-stained calculator from
the front seat of her cruiser and begins to compute. She knows that Newton’s Law of
Cooling says that the rate at which an object cools is proportional to the difference
between the temperature T of the body at time t and the temperature Tm of the envi-
ronment surrounding the body. She jots down the equation

(1)

where k is a constant of proportionality, T and Tm are measured in degrees Fahrenheit,
and t is time measured in hours. Because Daphne wants to investigate the past using
positive values of time, she decides to correspond t � 0 with 6:00 a.m., and so, for
example, t � 4 is 2:00 a.m. After a few scratches on her yellow pad, Daphne realizes
that with this time convention the constant k in (1) will turn out to be positive. She
jots a reminder to herself that 6:30 a.m. is now t � �1�2.

As the cool and quiet dawn gives way to the steamy midsummer morning,
Daphne begins to sweat and wonders aloud, “But what if the corpse was moved into
the fridge in a feeble attempt to hide the body? How does this change my estimate?”
She re-enters the restaurant and finds the grease-streaked thermostat above the empty
cash register. It reads 70 degrees Fahrenheit.

“But when was the body moved?” Daphne asks. She decides to leave this ques-
tion unanswered for now, simply letting h denote the number of hours the body has
been in the refrigerator prior to 6:00 a.m. For example, if h � 6, then the body was
moved at midnight.

Daphne flips a page on her legal pad and begins calculating. As the rapidly cooling
coffee begins to do its work, she realizes that the way to model the environmental tem-
perature change caused by the move is with the unit step function �(t). She writes

Tm(t) � 50 � 20�(t � h) (2)

and below it the differential equation

(3)

Daphne’s mustard-stained polyester blouse begins to drip sweat under the blaze
of a midmorning sun. Drained from the heat and the mental exercise, she fires up
her cruiser and motors to Boodle’s Café for another cup of java and a heaping plate

dT

dt
� k(T – Tm(t)).

dT

dt
� k(T � Tm),  t � 0,
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of scrapple and fried eggs. She settles into the faux leather booth. The intense
air-conditioning conspires with her sweat-soaked blouse to raise goose flesh on her
rapidly cooling skin. The intense chill serves as a gruesome reminder of the tragedy
that occurred earlier at the Mayfair.

While Daphne waits for her breakfast, she retrieves her legal pad and quickly
reviews her calculations. She then carefully constructs a table that relates refrigeration
time h to time of death while eating her scrapple and eggs.

Shoving away the empty platter, Daphne picks up her cell phone to check in with
her partner Marie. “Any suspects?” Daphne asks.

“Yeah,” she replies, “we got three of ’em. The first is the late Mr. Wood’s ex-wife,
a dancer by the name of Twinkles. She was seen in the Mayfair between 5 and 6 p.m.
in a shouting match with Wood.” 

“When did she leave?” 
“A witness says she left in a hurry a little after six. The second suspect is a South

Philly bookie who goes by the name of Slim. Slim was in around 10 last night
having a whispered conversation with Joe. Nobody overheard the conversation, but
witnesses say there was a lot of hand gesturing, like Slim was upset or something.”

“Did anyone see him leave?”
“Yeah. He left quietly around 11. The third suspect is the cook.” 
“The cook?”
“Yep, the cook. Goes by the name of Shorty. The cashier says he heard Joe and

Shorty arguing over the proper way to present a plate of veal scaloppine. She said
that Shorty took an unusually long break at 10:30 p.m. He took off in a huff when the
restaurant closed at 2:00 a.m. Guess that explains why the place was such a mess.”

“Great work, partner. I think I know who to bring in for questioning.”

Related Problems
1. Solve equation (1), which models the scenario in which Joe Wood is killed in the

refrigerator. Use this solution to estimate the time of death (recall that normal liv-
ing body temperature is 98.6 degrees Fahrenheit).

2. Solve the differential equation (3) using Laplace transforms. Your solution T(t)
will depend on both t and h. (Use the value of k found in Problem 1.)

3. (CAS) Complete Daphne’s table. In particular, explain why large values of h give
the same time of death.

h time body moved time of death
12 6:00 p.m.
11
10
9
8
7
6
5
4
3
2

4. Who does Daphne want to question and why?

5. Still Curious? The process of temperature change in a dead body is known as
algor mortis (rigor mortis is the process of body stiffening), and although it is not
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perfectly described by Newton’s Law of Cooling, this topic is covered in most
forensic medicine texts. In reality, the cooling of a dead body is determined by
more than just Newton’s Law. In particular, chemical processes in the body con-
tinue for several hours after death. These chemical processes generate heat, and
thus a near constant body temperature may be maintained during this time before
the exponential decay due to Newton’s Law of Cooling begins.

A linear equation, known as the Glaister equation, is sometimes used to give
a preliminary estimate of the time t since death. The Glaister equation is

(4)

where T0 is measured body temperature (98.4� F is used here for normal living
body temperature instead of 98.6� F). Although we do not have all of the tools to
derive this equation exactly (the 1.5 degrees per hour was determined experimen-
tally), we can derive a similar equation via linear approximation.

Use equation (1) with an initial condition of T(0) � T0 to compute the equa-
tion of the tangent line to the solution through the point (0, T0). Do not use the
values of Tm or k found in Problem 1. Simply leave these as parameters. Next, let
T � 98.4 and solve for t to get

(5)
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t �
98.4 � T0

k(T0 � Tm)
.

t �
98.4 � T0
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Earthquake Shaking of 
Multistory Buildings
by Gilbert N. Lewis

Large earthquakes typically have a devastating effect on buildings. For example,
the famous 1906 San Francisco earthquake destroyed much of that city. More re-
cently, that area was hit by the Loma Prieta earthquake that many people in the
United States and elsewhere experienced second-hand while watching on televi-
sion the Major League Baseball World Series game that was taking place in San
Francisco in 1989.

In this project, we attempt to model the effect of an earthquake on a multi-story
building and then solve and interpret the mathematics. Let xi represent the horizontal
displacement of the ith floor from equlibrium. Here, the equilibrium position will be
a fixed point on the ground, so that x0 � 0. During an earthquake, the ground moves
horizontally so that each floor is considered to be displaced relative to the ground.
We assume that the ith floor of the building has a mass mi, and that successive floor
are connected by an elastic connector whose effect resembles that of a spring.
Typically, the structural elements in large buildings are made of steel, a highly
elastic material. Each such connector supplies a restoring force when the floors are
displaced relative to each other. We assume that Hooke’s Law holds, with propor-
tionality constant ki between the ith and the (i � 1)st floors. That is, the restoring
force between those two floors i

F � ki(xi�1 � xi),

where xi�1 � xi is the displacement (shift) of the (i � 1)st floor relative to the ith floo .
We also assume a similar reaction between the first floor and the ground, with pro-
portionality constant k0 . Figure 1 shows a model of the building, while Figure 2
shows the forces acting on the ith floo .

mn

mn�1

�

m2
m1

ground

kn�1
kn�2

�

k1
k0

FIGURE 1 Floors of building

mi�1
mi

mi�1

ki(xi�1 � xi)

FIGURE 2 Forces on ith floo

ki�1(xi � xi�l)
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Collapsed apartment building in San
Francisco, October 18, 1989, the day after
the massive Loma Prieta earthquake
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We can apply Newton’s second law of motion (Section 5.1), F � ma, to each
floor of the building to arrive at the following system of linear differential equations.

As a simple example, consider a two-story building with each floor having
mass m � 5000 kg and each restoring force constant having a value of k � 10000 kg/s2.
Then the differential equations are

The solution by the methods of Section 8.2 is

where and Now suppose that 
the following initial conditions are applied: 

(0) � 0. These correspond to a building in the equilibrium position with the firs
floor being given a horizontal speed of 0.2 m/s. The solution of the initial value
problem is

where See Figures 3 and 4 for
graphs of x1(t) and x2(t). Note that initially x1 moves to the right but is slowed by the
drag of x2, while x2 is initially at rest, but accelerates, due to the pull of x1, to over-
take x1 within one second. It continues to the right, eventually pulling x1 along until
the two-second mark. At that point, the drag of x1 has slowed x2 to a stop, after which
x2 moves left, passing the equilibrium point at 3.2 seconds and continues moving left,
draging x1 along with it. This back-and-forth motion continues. There is no damping
in the system, so that the oscillatory behavior continues forever.

c2 � �4 � v2
2�0.1>[�v2

1 � v2
2�v1] � 0.0317 � c4.

 x2(t) � �4 � v2
1�c2 sin v1t � �4 � v2

2�c4 sin v2t,

 x1(t) � 2c2 sin v1t � 2c4 sin v2t,

x2	
x1(0) � 0, x1	(0) � 0.2, x2(0) � 0,

v2 � 23 � 15 � 0.874.v1 � 23 � 15 � 2.288,

 � �4 � v2
2�c4 sin v2t,

 x2(t) � �4 � v2
1�c1 cos v1t � �4 � v2

1�c2 sin v1t � �4 � v2
2�c3 cos v2 t

 x1(t) � 2c1 cos v1t � 2c2 sin v1t � 2c3 cos v2t � 2c4 sin v2t,

  
d2x2

dt2  � 2x1 � 2x2.

 
d2x1

dt2  � �4x1 � 2x2

m1
d 2x1

dt 2 � �k0x1 � k1(x2 � x1)

m2
d 2x2

dt 2 � �k1(x2 � x1) � k2(x3 � x2)

o o

mn

d 2xn

dt2 � �kn�1(xn � xn�1).
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If a horizontal oscillatory force of frequency or is applied, we have a sit-
uation analogous to resonance discussed in Section 5.1.3. In that case, large oscil-
lations of the building would be expected to occur, possibly causing great damage
if the earthquake lasted an appreciable length of time.

Let’s define the following matrices and vector

Then the system of differential equations can be written in matrix form

Note that the matrix M is a diagonal matrix with the mass of the ith floor being
the ith diagonal element. Matrix M has an inverse given by

.

We can therefore represent the matrix differential equation by

Where the matrix M is called the mass matrix, and the matrix K is the
stiffness matrix.

The eigenvalues of the matrix A reveal the stability of the building during an earth-
quake. The eigenvalues of A are negative and distinct. In the first example, the eigen-
values are and The natural frequencies
of the building are the square roots of the negatives of the eigenvalues. If is the ith eigen-
value, then is the ith frequency, for i � 1, 2, . . . , n. During an earth-
quake, a large horizontal force is applied to the first floo . If this is oscillatory in
nature, say of the form F(t) � G cosgt, then large displacements may develop in the
building, especially if the frequency g of the forcing term is close to one of the natural
frequencies of the building. This is reminiscent of the resonance phenomenon studied
in Section 5.1.3.

vi � 1�li

li

�3 � 15 � �5.236.�3 � 15 � �0.764

A � M�1K,

X� � (M�1K)X  or  X� � AX.

M�1 � �
m�1

1

0
o

0

0
m�1

2

0

0
0

0

. . .

. . .

. . .

0
0
o

m�1
n

�

M
d2X
dt2 � KX  or  MX� � KX.

 X(t) � �
x1(t)
x2(t)

o

xn(t)
�

K � �
�(k0 � k1)

k1

0
o

0
0

k1

�(k1 � k2)
k2

0
0

0
k2

�(k2 � k3)

0
0

0
0
k3

0
0

. . .

. . .

. . .

. . .

. . .

0
0
0

kn�2

0

0
0
0

�(kn�2 � kn�1)
kn�1

0
0
0
o

kn�1

�kn�1

�
 M � �

m1

0
o

1

0
m2

0

0
0

0

. . .

. . .

. . .

0
0
o

mn

�,

v2v1
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As another example, suppose we have a 10-story building, where each floor has a
mass 10000 kg, and each ki value is 5000 kg/s2. Then

The eigenvalues of A are found easily using Mathematica or another similar computer
package. These values are �1.956, �1.826, �1.623, �1.365, �1.075, �0.777,
�0.5, �0.267, �0.099, and �0.011, with corresponding frequencies 1.399, 1.351,
1.274, 1.168, 1.037, 0.881, 0.707, 0.517, 0.315, and 0.105 and periods of oscillation
(2p/v) 4.491, 4.651, 4.932, 5.379, 6.059, 7.132, 8.887, 12.153, 19.947, and 59.840.
During a typical earthquake whose period might be in the range of 2 to 3 seconds, this
building does not seem to be in any danger of developing resonance. However, if
the k values were 10 times as large (multiply A by 10), then, for example, the sixth
period would be 2.253 seconds, while the fifth through seventh are all on the order of
2–3 seconds. Such a building is more likely to suffer damage in a typical earthquake
of period 2–3 seconds.

Related Problems
1. Consider a three-story building with the same m and k values as in the first exam-

ple. Write down the corresponding system of differential equations. What are the
matrices M, K, and A? Find the eigenvalues for A. What range of frequencies of
an earthquake would place the building in danger of destruction?

2. Consider a three-story building with the same m and k values as in the second
example. Write down the corresponding system of differential equations. What
are the matrices M, K, and A? Find the eigenvalues for A. What range of fre-
quencies of an earthquake would place the building in danger of destruction?

3. Consider the tallest building on your campus. Assume reasonable values for the
mass of each floor and for the proportionality constants between floors. If you
have trouble coming up with such values, use the ones in the example problems.
Find the matrices M, K, and A, and find the eigenvalues of A and the frequen-
cies and periods of oscillation. Is your building safe from a modest-sized period-
2 earthquake? What if you multiplied the matrix K by 10 (that is, made the
building stiffer)? What would you have to multiply the matrix K by in order to
put your building in the danger zone?

4. Solve the earthquake problem for the three-story building of Problem 1:

,

where F(t) = G cosgt, G = EB, B = [1 0 0]T, E = 10,000 lbs is the amplitude
of the earthquake force acting at ground level, and g = 3 is the frequency of the
earthquake (a typical earthquake frequency). See Section 8.3 for the method of
solving nonhomogeneous matrix differential equations. Use initial conditions
for a building at rest.

MX� � KX � F(t)

A � M�1K � � 
�1
0.5
0
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Modeling Arms Races
by Michael Olinick

The last hundred years have seen numerous dangerous, destabilizing, and expensive
arms races. The outbreak of World War I climaxed a rapid buildup of armaments
among rival European powers. There was a similar mutual accumulation of conven-
tional arms just prior to World War II. The United States and the Soviet Union en-
gaged in a costly nuclear arms race during the forty years of the Cold War. Stockpiling
of ever-more deadly weapons is common today in many parts of the world, including
the Middle East, the Indian subcontinent, and the Korean peninsula.

British meteorologist and educator Lewis F. Richardson (1881–1953) developed
several mathematical models to analyze the dynamics of arms races, the evolution
over time of the process of interaction between countries in their acquisition of
weapons. Arms race models generally assume that each nation adjusts its accumula-
tion of weapons in some manner dependent on the size of its own stockpile and the
armament levels of the other nations.

Richardson’s primary model of a two country arms race is based on mutual
fear: A nation is spurred to increase its arms stockpile at a rate proportional to the
level of armament expenditures of its rival. Richardson’s model takes into account
internal constraints within a nation that slow down arms buildups: The more a
nation is spending on arms, the harder it is to make greater increases, because it
becomes increasingly difficult to divert society’s resources from basic needs such
as food and housing to weapons. Richardson also built into his model other factors
driving or slowing down an arms race that are independent of levels of arms expen-
ditures.

The mathematical structure of this model is a linked system of two first-orde
linear differential equations. If x and y represent the amount of wealth being spent on
arms by two nations at time t, then the model has the form

where a, b, m, and n are positive constants while r and s are constants which can be
positive or negative. The constants a and b measure mutual fear; the constants m and
n represent proportionality factors for the “internal brakes” to further arms increases.
Positive values for r and s correspond to underlying factors of ill will or distrust that
would persist even if arms expenditures dropped to zero. Negative values for r and s
indicate a contribution based on goodwill.

The dynamic behavior of this system of differential equations depends on the
relative sizes of ab and mn together with the signs of r and s. Although the model
is a relatively simple one, it allows us to consider several different long-term out-
comes. It’s possible that two nations might move simultaneously toward mutual
disarmament, with x and y each approaching zero. A vicious cycle of unbounded
increases in x and y is another possible scenario. A third eventuality is that the arms
expenditures asymptotically approach a stable point (x*, y*) regardless of the initial
level of arms expenditures. In other cases, the eventual outcome depends on the
starting point. Figure 1 shows one possible situation with four different initial

 
dy

dt
� bx � ny � s

 
dx

dt
� ay � mx � r
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levels, each of which leads to a “stable outcome,” the intersection of the nullclines
dx�dt � 0 and dy�dt � 0.

Although “real world” arms races seldom match exactly with Richardson’s model,
his pioneering work has led to many fruitful applications of differential equation models
to problems in international relations and political science. As two leading researchers in
the field note in [3], “The Richardson arms race model constitutes one of the most impor-
tant models of arms race phenomena and, at the same time, one of the most influentia
formal models in all of the international relations literature.”

Arms races are not limited to the interaction of nation states. They can take place
between a government and a paramilitary terrorist group within its borders as, for ex-
ample, the Tamil Tigers in Sri Lanka, the Shining Path in Peru, or the Taliban in
Afghanistan. Arms phenomena have also been observed between rival urban gangs
and between law enforcement agencies and organized crime.

The “arms” need not even be weapons. Colleges have engaged in “amenities
arms races,” often spending millions of dollars on more luxurious dormitories,
state- of-the-art athletic facilities, epicurean dining options, and the like, to be more
competitive in attracting student applications. Biologists have identified the possi-
bility of evolutionary arms races between and within species as an adaptation in one
lineage may change the selection pressure on another lineage, giving rise to a counter-
adaptation. Most generally, the assumptions represented in a Richardson-type
model also characterize many competitions in which each side perceives a need to
stay ahead of the other in some mutually important measure.

Related Problems
1. (a) By substituting the proposed solutions into the differential equations, show

that the solution of the particular Richardson arms model

 
dy

dt
� 2x � 4y � 8

 
dx

dt
� y � 3x � 3
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FIGURE 1 Expenditures approaching a stable point
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with initial condition x(0) � 12, y(0) � 15 is

What is the long-term behavior of this arms race?
(b) For the Richardson arms race model (a) with arbitrary initial conditions

x(0) � A, y(0) � B, show that the solution is given by
x(t) � Ce�5t � De�2t � 2 C � (A � B � 1)�3where
y(t) � �2Ce�5t � De�2t � 3 D � (2A � B � 7)�3

Show that this result implies that the qualitative long-term behavior of such an
arms race is the same (x(t) : 2, y(t) : 3), no matter what the initial values of x
and y are.

2. The qualitative long-term behavior of a Richardson arms race model can, in
some cases, depend on the initial conditions. Consider, for example, the system

For each of the given initial conditions below, verify that the proposed solu-
tion works and discuss the long-term behavior:
(a) x(0) � 1, y(0) � 1 : x(t) � 10 � 9et, y(t) � 10 � 9et

(b) x(0) � 1, y(0) � 22 : x(t) � 10 � 9e�6t, y(t) � 10 � 12e�6t

(c) x(0) � 1, y(0) � 29 : x(t) � �12e�6t � 3et � 10, y(t) � 16e�6t � 3et � 10
(d) x(0) � 10, y(0) � 10 : x(t) � 10, y(t) � 10 for all t

3. (a) As a possible alternative to the Richardson model, consider a stock adjustment
model for an arms race. The assumption here is that each country sets a desired
level of arms expenditures for itself and then changes its weapons stock pro-
portionally to the gap between its current level and the desired one. Show that
this assumption can be represented by the system of differential equations

where x* and y* are desired constant levels and a, b are positive constants.
How will x and y evolve over time under such a model?

(b) Generalize the stock adjustment model of (a) to a more realistic one where
the desired level for each country depends on the levels of both countries. In
particular, suppose x* has the form x* � c � dy where c and d are positive
constants and that y* has a similar format. Show that, under these assump-
tions, the stock adjustment model is equivalent to a Richardson model.

4. Extend the Richardson model to three nations, deriving a system of linear differen-
tial equations if the three are mutually fearful: each one is spurred to arm by the ex-
penditures of the other two. How might the equations change if two of the nations
are close allies not threatened by the arms buildup of each other, but fearful of the
armaments of the third. Investigate the long-term behavior of such arms races.

5. In the real world, an unbounded runaway arms race is impossible since there is
an absolute limit to the amount any country can spend on weapons; e.g. gross na-
tional product minus some amount for survival. Modify the Richardson model to
incorporate this idea and analyze the dynamics of an arms race governed by
these new differential equations.

 
dx

dt
� b(y* � y)

 
dx

dt
� a(x* � x)

 
dy

dt
� 4x � 3y � 10

 
dx

dt
� 3y � 2x � 10

 y(t) �
32
3

e�2t �
4
3

e�5t � 3

 x(t) �
32
3

e�2t �
2
3

e�5t � 2
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