

 Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 DIGITAL
FUNDAMENTALS
A SYSTEMS APPROACH

 THOMAS L. FLOYD

 Editorial Director: Vernon R. Anthony
 Senior Acquisitions Editor: Lindsey Prudhomme
 Development Editor : Dan Trudden
 Editorial Assistant: Yvette Schlarman
 Director of Marketing: David Gesell
 Marketing Manager: Harper Coles
 Senior Marketing Coordinator: Alicia Wozniak
 Senior Marketing Assistant: Les Roberts
 Senior Managing Editor: JoEllen Gohr
 Senior Project Manager: Rex Davidson
 Senior Operations Supervisor: Pat Tonneman
 Creative Director: Andrea Nix
 Art Director: Diane Y. Ernsberger
 Text and Cover Designer: Candace Rowley
 Cover Image: Kayros Studio “Be Happy!”/Shutterstock.com
 Media Project Manager: Karen Bretz
 Full-Service Project Management: Penny Walker/Aptara®, Inc.
 Composition: Aptara®, Inc.
 Printer/Binder: R. R. Donnelley & Sons
 Cover Printer: Lehigh/Phoenix Color Hagerstown
 Text Font: Times Roman

 Credits and acknowledgments for materials borrowed from other sources and reproduced, with permission, in
this textbook appear on the appropriate page within text.

 Copyright © 2013 by Pearson Education, Inc. All rights reserved. Manufactured in the United States of
America. This publication is protected by Copyright, and permission should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

 Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designa-
tions have been printed in initial caps or all caps.

 Library of Congress Cataloging-in-Publication Data

 Floyd, Thomas L.
 Digital fundamentals: a systems approach / Thomas L. Floyd.
 p. cm.
 ISBN-13: 978-0-13-293395-7
 ISBN-10: 0-13-293395-0
 1. Digital electronics. I. Title.
 TK7868.D5F534 2013
 621.39'5—dc23
 2012020323

 10 9 8 7 6 5 4 3 2 1

 ISBN 10: 0-13-293395-0
 ISBN 13: 978-0-13-293395-7

 1

 INTRODUCTION TO DIGITAL SYSTEMS 1
 1–1 Digital and Analog Signals and Systems 2

 1–2 Binary Digits, Logic Levels, and Digital Waveforms 7

 1–3 Logic Operations 14

 1–4 Combinational and Sequential Logic Functions 16

 1–5 Programmable Logic 20

 1–6 Fixed-Function Logic Devices 25

 1–7 A System 28

 1–8 Measuring Instruments 30

 2

 NUMBER SYSTEMS, OPERATIONS,
AND CODES 45

 2–1 The Decimal Number System 46

 2–2 The Binary Number System 48

 2–3 Decimal-to-Binary Conversion 52

 2–4 Binary Arithmetic 55

 2–5 1’s and 2’s Complements of Binary Numbers 58

 2–6 Signed Numbers 60

 2–7 Arithmetic Operations with Signed Numbers 67

 2–8 Hexadecimal Numbers 74

 2–9 Octal Numbers 81

 2–10 Binary Coded Decimal (BCD) 84

 2–11 Digital Codes 87

 2–12 Error Detection Codes 94

 3

 LOGIC GATES AND GATE
COMBINATIONS 109

 3–1 Introduction to Boolean Algebra 110

 3–2 The Inverter 117

 3–3 The AND Gate 119

 3–4 The OR Gate 126

 3–5 The NAND Gate 130

 3–6 The NOR Gate 134

 3–7 The Exclusive-OR and Exclusive-NOR Gates 138

 3–8 Gate Performance Characteristics and Parameters 142

 3–9 Programmable Logic 145

 3–10 Troubleshooting 153

 CONTENTS

iii

iv CONTENTS

 4
 COMBINATIONAL LOGIC 173
 4–1 Basic Combinational Logic Circuits 174

 4–2 Boolean Expressions and Truth Tables 178

 4–3 DeMorgan’s Theorems 185

 4–4 The Universal Property of NAND and NOR Gates 187

 4–5 Pulse Waveform Operation 189

 4–6 Combinational Logic with VHDL and Verilog 192

 4–7 A System 198

 4–8 Troubleshooting 204

 5
 FUNCTIONS OF COMBINATIONAL
LOGIC 223
 5–1 A System 224

 5–2 Half and Full Adders 228

 5–3 Parallel Adders 232

 5–4 Ripple Carry and Look-Ahead Carry Adders 238

 5–5 Comparators 241

 5–6 Decoders 243

 5–7 Encoders 252

 5–8 Code Converters 255

 5–9 Multiplexers (Data Selectors) 258

 5–10 Demultiplexers 265

 5–11 Parity Generators/Checkers 267

 5–12 Logic Functions with VHDL and Verilog 270

 5–13 Troubleshooting 273

 6
 LATCHES, FLIP-FLOPS, AND TIMERS 290
 6–1 A System 291

 6–2 Latches 295

 6–3 Flip-Flops 300

 6–4 Flip-Flop Operating Characteristics 313

 6–5 Timers 315

 6–6 Bistable Logic with VHDL and Verilog 322

 6–7 Traffic Signal Control System with VHDL and Verilog 324

 6–8 Troubleshooting 331

 7
 SHIFT REGISTERS 352
 7–1 A System 353

 7–2 Basic Shift Register Operations 355

 7–3 Types of Shift Registers 356

 7–4 Bidirectional Shift Registers 367

 7–5 Shift Register Counters 368

CONTENTS v

 7–6 Security System with VHDL and Verilog 374

 7–7 Troubleshooting 377

 8
 COUNTERS 392
 8–1 A System 393

 8–2 Finite State Machines 395

 8–3 Asynchronous Counters 397

 8–4 Synchronous Counters 404

 8–5 Up/Down Synchronous Counters 411

 8–6 Cascaded Counters 414

 8–7 Counter Decoding 419

 8–8 Counters with VHDL and Verilog 422

 8–9 Troubleshooting 425

 9
 PROGRAMMABLE LOGIC 439
 9–1 Simple Programmable Logic Devices (SPLDs) 440

 9–2 Complex Programmable Logic Devices (CPLDs) 445

 9–3 Macorocell Modes 452

 9–4 Field-Programmable Gage Arrays (FPGAs) 454

 9–5 Programmable Logic Software 462

 9–6 Boundary Scan Logic 471

 9–7 Troubleshooting 479

 10
 MEMORY AND STORAGE 496
 10–1 Memory System Hierarchy 497

 10–2 Semiconductor Memory Basics 500

 10–3 The Random-Access Memory (RAM) 505

 10–4 The Read-Only Memory (ROM) 517

 10–5 Programmable ROMs 522

 10–6 The Flash Memory 525

 10–7 Memory Expansion 530

 10–8 Special Types of Memories 535

 10–9 Magnetic and Optical Storage 539

 10–10 Troubleshooting 545

 11
 DATA TRANSMISSION 558
 11–1 Data Transmission Media 559

 11–2 Methods and Modes of Data Transmission 563

 11–3 Modulation of Analog Signals with Digital Data 568

 11–4 Modulation of Digital Signals with Analog Data 572

vi CONTENTS

 11–5 Multiplexing and Demultiplexing 579

 11–6 Effects of Transmission Media on Data Quality 584

 12
 SIGNAL CONVERSION AND
PROCESSING 598
 12–1 A System 599

 12–2 Converting Analog Signals to Digital 604

 12–3 Analog-to-Digital Conversion Methods 611

 12–4 Digital-to-Analog Conversion Methods 620

 12–5 Digital Signal Processing 628

 12–6 The Digital Signal Processor (DSP) 629

 13
 DATA PROCESSING AND CONTROL 644
 13–1 The Basic Computer System 645

 13–2 Practical Computer System Considerations 649

 13–3 The CPU: Basic Operation 655

 13–4 The CPU: Addressing Modes 661

 13–5 The CPU: Special Operations 666

 13–6 Operating Systems and Hardware 671

 13–7 Programming 674

 13–8 Microcontrollers and Embedded Systems 680

 14
 BUSES, NETWORKS, AND INTERFACING 693
 14–1 Bus Basics 694

 14–2 Bus Interfacing 700

 14–3 Parallel Buses 703

 14–4 The Universal Serial Bus (USB) 711

 14–5 Other Serial Buses 714

 14–6 Network Topologies 720

 14–7 Network Protocol Technologies 723

 APPENDICES

 Appendix A Conversions 739

 Appendix B Security System Component Programs 741

 ANSWERS TO ODD-NUMBERED PROBLEMS 745

 GLOSSARY 773

 INDEX 785

 This fi rst edition of Digital Fundamentals: A Systems Approach provides a unique coverage
of digital technology with a system emphasis. This textbook provides a fundamental ground-
ing in the basic concepts of digital technology and systems reinforced by an abundance of
illustrations, examples, applications, and exercises. There are system examples and system
notes throughout many chapters in addition to traditional worked examples. Many chapters
have a system section that presents a certain type of system and discusses its operation as
related to topics covered in that chapter and to its implementation in programmable logic.
Most chapters include a troubleshooting section that emphasizes the system approach. Addi-
tionally, system level chapters cover digital data transmission; data processing and control;
and buses, networks, and interfacing.

 Core fundamentals and basic logic functions are presented using a practical approach
with emphasis on operation and application rather than on analysis and design. Mathemat-
ical topics are limited to only essential coverage that a technician or technologist will need
to understand the basic concepts. Programmable logic is emphasized whereas fi xed-func-
tion logic is introduced on a limited basis.

 Features
 • Core fundamentals are presented without being intermingled with more advanced

topics.

 • Many chapters feature an entire section devoted to a specifi c type of system.

 • System examples are used to illustrate how basic concepts and logic elements are
applied in a system application.

 • System notes present interesting facts and information about system-related issues.

 • Multisim is used in selected examples, fi gures, and problems to provide practice in
simulating logic circuits and systems and in troubleshooting.

 • Worked examples illustrate core fundamentals and logic functions and require some
basic analytical thought.

 • Related problems in each worked example relate to the coverage of the example.

 • Hands-on-tips (HOT) provide useful and practical information.

 • Many chapters include a section on hardware description languages (VHDL and Ver-
ilog), which are used to show how logic functions and systems can be described and
implemented in a programmable logic device (PLD).

• Many chapters have a troubleshooting section that relates to topics covered in the
chapter and emphasizes troubleshooting techniques, and the use of instrumentation,
and circuit simulation (Multisim).

 • Each chapter begins with a list of sections (Outline), chapter objectives, introduction,
key terms list, and website reference.

 • Each section within a chapter begins with an introduction and objectives.

 • Each section concludes with Checkup exercises that emphasize the main concepts
presented in the section.

 • Each chapter ends with a summary, key term glossary, true/false quiz, self-test, and
sectionalized problem set.

 • Answers to related problems, section checkups, true/false quiz, and self-test are at the
end of each chapter.

 • An end-of-book glossary contains all bold and color terms in the text.

 PREFACE

vii

viii PREFACE

 • Answers to odd-numbered problems are at the end of the book

 • Website (www.pearsonhighered.com) includes fi les related to the text such as tutorials
and Multisim fi les.

 Student Resources
 • Experiments in Digital Fundamentals: A Systems Approach (ISBN 0132989840) by

David Buchla and Doug Joksch. Lab exercises are coordinated with the text.

• Multisim Experiments for the DC/AC, Digital, and Devices Courses (ISBN 0132113880)
by Gary Snyder and David Buchla. Students take data, analyze results, and write a
conclusion to simulate an actual laboratory experience.

 • Multisim Files Available on the Website Circuit fi les coordinated with this text in
Versions 11 and 12 of Multisim are available for download from www.pearsonhigh-
ered.com/fl oyd . Circuit fi les with prefi x F are fi gure circuits and fi les with prefi x P
are problem circuits. Also, a few fi les are prefi xed with E or T, represesting examples
or tables.

 In order to use the Multisim circuit fi les, you must have Multisim software installed
on your computer. Multisim software is available at www.ni.com/Multisim . Although the
Multisim circuit fi les are intended to complement classroom, textbook, and laboratory
study, these fi les are not essential to successfully using this text.

 Instructor Resources
 Instructor resources are available from Pearson’s Instructor’s Resource Center.

• PowerPoint® slides (ISBN 013298962x) support the topics in each chapter.

• Instructor’s Resource Manual (ISBN 0132989832) contains the solutions to the text
problems and the solutions to the lab manual.

• TestGen (ISBN 0132988615) This electronic bank of test questions can be used to
develop customized quizzes, tests, and/or exams.

To access supplementary materials online, instructors need to request an instructor
access code. Go to www.pearsonhighered.com/irc, where you can register for an instruc-
tor access code. Within 48 hours after registering, you will receive a confi rming e-mail,
including an instructor access code. Once you have received your code, go to the site and
log on for full instructions on downloading the materials you wish to use.

 Illustrations of Textbook Features
 Chapter Opener A typical chapter opener is shown in Figure P–1.

 Worked Example and Related Problem Worked-out examples illustrate basic con-
cepts or specifi c procedures. A Related Problem reinforces or expands on the content of the
example. A typical worked-out example with a Related Problem is shown in Figure P–2.

 Section Opener Each section in a chapter begins with a brief introduction that includes a
general overview and section objectives, as shown in Figure P–2.

 Section Checkup A typical Section Checkup is shown in Figure P–2. (Answers to the
Section Checkups are at the end of the chapter.)

Hands On Tip A typical Hands On Tip is shown in Figure P–2.

 System Section Typical pages from a System Section are shown in Figure P–3.

www.pearsonhighered.com
www.pearsonhighered.com/floyd
www.pearsonhighered.com/floyd
www.ni.com/Multisim
www.pearsonhighered.com/irc

PREFACE ix

 PROGRAMMABLE LOGIC

 CHAPTER 9

 OUTLINE
 9–1 Simple Programmable Logic Devices (SPLDs)

 9–2 Complex Programmable Logic Devices
(CPLDs)

 9–3 Macrocell Modes

 9–4 Field-Programmable Gate Arrays (FPGAs)

 9–5 Programmable Logic Software

 9–6 Boundary Scan Logic

 9–7 Troubleshooting

 KEY TERMS
 PAL
 GAL
 Macrocell
 Registered
 CPLD
 LAB
 LUT
 FPGA
 CLB
 Intellectual property

 Design fl ow
 Target device
 Schematic entry
 Text entry
 Functional simulation
 Compiler
 Timing simulation
 Downloading
 Break point
 Boundary scan

 OBJECTIVES
 • Discuss the types of programmable logic, SPLDs

and CPLDs, and explain their basic structure

 • Describe the basic architecture of two types of
SPLDs—the PAL and the GAL

 • Explain the basic structure of a programmable
logic array (PLA)

 • Discuss the operation of macrocells

 • Distinguish between CPLDs and FPGAs

 • Explain the basic operation of a look-up table (LUT)

 • Defi ne intellectual property and platform FPGA

 • Discuss embedded functions

 • Show a basic software design fl ow for a program-
mable device

 • Explain the design fl ow elements of design entry,
functional simulation, synthesis, implementation,
timing simulation, and downloading

 • Discuss several methods of testing a programma-
ble logic device, including boundary scan logic

 VISIT THE WEBSITE
 Study aids for this chapter are available at

 http://pearsonhighered.com/fl oyd

 INTRODUCTION
 The distinction between hardware and software is hazy.
Today, new digital circuits are programmed into hard-
ware using languages like VHDL and Verilog. The den-
sity (number of equivalent gates on a single chip) has
increased dramatically over the past few years. The max-
imum number of gates in an FPGA (a type of PLD known
as a fi eld-programmable gate array) is over 500,000 and
doubling every 18 months, according to Moore’s law. At
the same time, the price for a PLD is decreasing.

 PLDs, such as the FPGA, can be used in conjunc-
tion with processors and software in an embedded sys-
tem, or the FPGA can be the sole component with all the

FIGURE P–1 Chapter
opener.

5–6 DECODERS 243

the highest-order bits (MSBs). When such an inequality is found, the relationship of the
two numbers is established, and any other inequalities in lower-order bit positions must be
ignored because it is possible for an opposite indication to occur; the highest-order indica-
tion must take precedence.

 E X A M P L E 5 – 6

 Determine the A = B, A 7 B, and A 6 B out-
puts for the input numbers shown on the compa-
rator in Figure 5–26 .

 S O L U T I O N

 The number on the A inputs is 0110 and the
number on the B inputs is 0011. The A + B
 output is HIGH and the other outputs are
LOW.

 R E L A T E D P R O B L E M

 What are the comparator outputs when
 A3A2A1A0 = 1001 and B3B2B1B0 = 1010?

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

 FIGURE 5–26

 h a n d s o n t i p
 Most CMOS devices contain
protection circuitry to guard
against damage from high static
voltages or electric fi elds.
However, precautions must be
taken to avoid applications of
any voltages higher than
maximum rated voltages. For
proper operation, input and
output voltages should be
between ground and VCC. Also,
remember that unused inputs
must always be connected to an
appropriate logic level (ground
or VCC). Unused outputs may be
left open.

 1. The binary numbers A = 1011 and B = 1010 are applied to
the inputs of the comparator in Figure 5–25 . Determine the
outputs.

 2. The binary numbers A = 11001011 and B = 11010100 are
applied to an 8-bit comparator. Determine the states of the
outputs.

 SECTION 5–5 CHECKUP

 5–6 DECODERS
 A decoder is a digital circuit that detects the presence of a specifi ed combination of bits (code)
on its inputs and indicates the presence of that code by a specifi ed output level. In its general
form, a decoder has n input lines to handle n bits and from one to 2n output lines to indicate the
presence of one or more n -bit combinations. In this section, several decoders are introduced.
The basic principles can be extended to other types of decoders.

 After completing this section, you should be able to

 • Defi ne decoder

 • Develop a logic circuit to decode any combination of bits

 • Expand decoders to accommodate larger numbers of bits in a code

 • Discuss zero suppression in 7-segment displays

 • Apply decoders to specifi c applications

 The Basic Binary Decoder
 Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-
cuit. An AND gate can be used as the basic decoding element because it produces a HIGH
output only when all of its inputs are HIGH. Therefore, you must make sure that all of the

FIGURE P–2 Worked example with Related Problem, Hands
On Tip, Section Checkup, and Section Opener.

Worked Example with
Related Problem

Hands On Tip

Section Checkup

Section Opener

http://pearsonhighered.com/floyd

x PREFACE

 System Example A typical System Example is shown in Figure P–4.

 The Sunlight Sensors
 The sun tracker system tracks the movement of the sun through the day using photosensi-
tive devices. As illustrated in Figure 12–1 , the sunlight sensor consists of two photoresis-
tors separated by a plate that optically isolates the photoresistors from each other. The
resistance of a photoresistor decreases as the light intensity increases. Other light-sensitive
devices, such as the photodiode and phototransistor, could also be used. The sensor assem-
bly is attached to the solar panel so that it is always pointing in the same direction as the
panel. When the sensor arrangement and solar panel are not pointing directly at the sun,
the photoresistor R 2 gets more sunlight than R 1 , as illustrated in part (a) of the fi gure. When
the sensors and solar panel are pointing directly at the sun, R1 and R2 get the same amount
of sunlight, as shown in part (b). The voltages across the sensors depend on the orientation
of the panel. After being processed through the system, the sensor voltages cause the panel
to rotate to follow the sun’s movement, as shown in Figure 12–2 . When the solar panel and

 12–1 A SYSTEM
 In this section, a system for tracking the movement of the sun in order to control the position of a
solar panel, Fresnel mirror array, or other type of solar collection device is discussed. The system
senses the orientation of the solar panel relative to the sun’s position in the sky and produces a
signal that causes the solar panel to rotate until it is directly aligned with the sun. Analog-to-digital
converters (ADCs), which are covered later in the chapter, are an important part of this system.

 After completing this section, you should be able to

 • Describe the overall system

 • Discuss how ADCs are used in the system

 • Use VHDL to implement a portion of the system

R1

+V GND

Sunlight Sunlight

+ VR1 – + VR2 –

R2

GND

R1

+V

+ VR1 – + VR2 –

R2

(a) VR1 > VR2 (b) VR1 = VR2

 FIGURE 12–1 Sunlight
sensor arrangement. The
orientation produces voltages
proportional to the incident
sunlight.

Solar panel

Sensor
assembly

(a) When panel and sensor are not
 aligned with sun, they rotate
 clockwise.

(b) When panel and sensor are aligned
 with sun, they stop rotating.

 FIGURE 12–2 The sensors
are mounted to the solar panel.
When the panel is not pointing
directly at the sun, it rotates
until it is aligned.

600 CHAPTER 12 • SIGNAL CONVERSION AND PROCESSING

 The A/D processing block receives the digitized light level inputs from the ADCs
and compares the two values to determine the required direction of rotation. If the ADC1
output is greater than the ADC2 output (VR1 7 VR2), a start bit is issued, and the motor
control initiates a bit sequence to produce the motor stepping action, which causes the
solar panel to rotate clockwise. If the ADC outputs are equal (VR1 = VR2), the solar panel
will stop because it is pointing directly at the sun. As the sun moves further west, the sys-
tem follows until the light level of both sensors decreases below a certain threshold value,
and a reset signal is generated. At that point, the panel has reached its western-most posi-
tion and the sunlight is greatly diminished. The motor control reverses the bit sequence to
the stepper motor, and the solar panel is rotated counterclockwise back to its eastern-most
position. When the sun rises the next day, the cycle repeats.

 Stepper Motor Operation
 The interface between the stepper motor control and the motor converts low-level cur-
rents produced by the motor control to currents that are suffi cient to drive the motor
windings. The stepper motor divides a single rotation of its output shaft into a fi xed
number of steps, as shown in Figure 12–4 . Pulses (1s) are applied sequentially to the
four motor windings to drive the stepping operation. For each pulse, the motor advances
a set number of degrees, D�, clockwise. After a full cycle of four pulses, the motor has

sensor arrangement are pointed directly at the sun, the light levels for both photoresistors
are balanced. The solar panel does not rotate until the sun’s position changes by a certain
amount, and the photoresistors begin to receive different amounts of sunlight.

 The Complete System
 The complete sun tracker system is shown in block diagram form in Figure 12–3 . The sys-
tem consists of the sunlight sensor, analog-to-digital converters, frequency divider, analog-
to-digital processor, motor control, motor interface, and stepper motor. If the resistance of
 R1 in Figure 12–1 is less than that of R2, VR2 is less than VR1, and the resulting direction
signal (acting through the A/D processing block) causes the motor to turn the solar panel
clockwise. If R1 and R2 are equal, the voltages are equal and the motor stops because the
panel is directly aligned with the sun. The frequency divider divides the system clock down
to a frequency compatible with the rate at which the stepper motor can be advanced.

ADC 1

Reset (low light limit switch)

System clock

ADC 2

Stepper
motor

Solar
panel

A/D
processing

Sunlight
sensors

Frequency
divider

Stepper motor
control

Direction

Start/Stop

Interface

 FIGURE 12–3 The complete sun tracker system block diagram.

FIGURE P–3 Partial System Section.

718 CHAPTER 14 • BUSES, NETWORKS, AND INTERFACING

 The CAN Bus
 The controller area network (CAN) bus, a differential serial bus, was developed for auto-
motive applications and is also commonly used in aerospace systems as well as other
applications. The bus consists of a terminated twisted pair of signal lines, called CAN H
and CAN L, plus ground. Vehicles sold in the United States are required by the SAE
(Society of Automotive Engineers) to use the CAN bus protocol. The European Union
has similar requirements.

 Devices, called nodes , can be connected to the bus but are not assigned specifi c
addresses as in the I 2 C bus. There are two CAN specifi cations in use. The standard or basic
CAN 2.0A has 11-bit message identifi ers and can operate up to 250 kbps, and the full CAN
has 29-bit message identifi ers and can be used up to 1 Mbps. The message identifi er is a
label for the contents of a message and goes to each node on the bus. Each receiving node
performs a test on the identifi er to determine if it is relevant to that node and is used to
arbitrate the bus to determine if the message is of highest priority. All of the nodes on the
bus can transmit and receive messages. The bus is available to a node with a message with
the highest priority (dominant) and can override a message with lower priority (recessive).
When the dominant message has been processed, the recessive message is retransmitted.

 DATA FRAME The standard data frame is shown in Figure 14–36 . Data is transmitted in
NRZ format. The frame begins with a start-of-frame (SOF) bit followed by an arbitration fi eld
and a control fi eld. The arbitration fi eld contains the message identifi er and a remote transmis-
sion request (RTR) bit. The control fi eld has two reserve bits and a data length code (DLC)
that specifi es the length of the data fi eld that follows and can contain up to eight bytes. The
cyclic redundancy check (CRC) fi eld provides for error detection. The acknowledge (ACK)
verifi es the receipt of correct data, and the frame ends with the end-of-frame fi eld (EOF).

SOF Arbitration field Control field Data field CRC field ACK EOF

(1 bit) Identifier (11bits)
RTR (1 bit)

(0–8 bytes) (16 bits) (2 bits) (7 bits)Reserve (2 bits)
DLC (4 bits)

 FIGURE 14–36 Standard CAN data frame format.

 AN AUTOMOBILE CONTROL SYSTEM
 A modern automobile typically has many control units (usually several dozen) for various
subsystems, which include the engine control unit and other control units for transmission;
ABS; cruise control; power steering; audio system; window, door, and mirror controls;
airbags; and others. Figure 14–37 is a block diagram of a partial automotive control system
using two CAN buses, one low-speed and one high-speed to control various functions
throughout the vehicle.

 Each unit connected to the bus contains sensors and other functions that allow it to
carry out its unique purpose. For example, the ABS (antilock braking system) can receive
a message from sensors in each wheel, indicating that the brake is about to lock up. A sud-
den and rapid deceleration in the wheel indicates an imminent lock-up condition. The ABS
unit then sends a message that causes the valve in the brake line to release pressure to
allow acceleration. Then, when acceleration is sensed, the unit causes a pump to restore the
pressure. A rapid release-and-restore cycle occurs until the brakes are brought under con-
trol. A pulsing of the brake pedal can be felt when the operation occurs.

 As another example, part of the engine control unit’s operation is to sense parame-
ters, such as engine temperature, oil pressure, fuel consumption, and rpm, and send mes-
sages to the driver unit. All of the units on the bus operate as a system to keep the vehicle
running as smoothly and as safely as possible, while providing a comfortable environment
for the driver and passengers.

 S Y S T E M E X A M P L E 1 4 – 3

14–5 OTHER SERIAL BUSES 719

 The Firewire Bus
 Firewire , also known as IEEE-1394 and iLink, is a high-speed external serial bus devel-
oped by Apple Inc. Firewire is used in high-speed communications and real-time data
transfer. It is used in professional audio and video equipment, camcorders, DVD players,
external hard drives, computers, and in some auto and aircraft applications. It works very
similar to the USB except that it has a higher data rate and can handle more data.

 Three types of connectors are used in the Firewire standard: a 4-pin connector, a
6-pin connector, and a 9-pin connector. The cable for the 4-pin connector consists of two
twisted pairs that carry data. The cable for the 6-pin connector has the two twisted pairs
for data plus a power line and a ground line. The cable for the 9-pin connector has the
same wires as the 6-pin confi guration plus two wires that provide for a grounded shield
and one wire that is currently unused. The Firewire symbol is shown in Figure 14–38 (a).
End views of the three connector types are shown in part (b), and the pin designations are
shown in part (c).

 The Firewire bus address has a total of 64 bits. Ten are for bus ID, six are for node
ID, and 48 are for individual addresses. This allows up to 1023 buses each having up to
63 nodes. There are six transfer modes in the IEEE-1394 standard and its revisions: S100,
S200, S400, S800, S1600, and S3200. The S100 is the base rate of 98.304 Mbps. The
S200 is twice the base rate at 196.608 Mbps, and the S400 is four times the base rate at
393.216 Mbps. The S800 is 786.432 Mbps, and the S1600 and S3200 are 16 and 32 times
the base rate respectively (1.6 Gbps and 3.2 Gbps). Firewire cable length cannot exceed
15 ft (4.572 m). To increase this length, up to 16 cables can be connected together.

 FIREWIRE VERSUS USB In general, any capable node can control the bus in a
Firewire system, but a single host is used to control the bus in USB. USB networks use a
tiered-star topology, and Firewire uses a tree topology. (Network topologies are covered
in section 14–6 .) A Firewire device can communicate with any node at any time if the

Microcontroller

CAN controller

Transceivers

Engine
control unit

Transmission
control unit

ABS control
unit

Airbag
control unit

Cruise
control unit

Termination

Termination

Climate
control unit

Door
control unit

Proximity
warning

control unit

Lighting
control unit

Window
control unit

Mirror
control unit

Driver
information

unit

CAN 2.0B

CAN 2.0A

CAN H

CAN H

CAN L

CAN L

 FIGURE 14–37

FIGURE P–4 System Example.

PREFACE xi

 Pulse Amplitude Modulation
 In pulse amplitude modulation, PAM, the heights or amplitudes of the pulses are
varied according to the modulating analog signal, and each pulse represents a value
of the analog signal. PAM is the simplest, but least used, type of pulse modulation
although it is used in the Ethernet communications standard. A simple PAM sequence
is shown in Figure 11–27 .

 11–4 MODULATION OF DIGITAL SIGNALS
WITH ANALOG DATA

 As you learned in the last section, analog signals are commonly used to carry digital data. In
this section, you will see that digital signals can be used to carry analog information. These
techniques are usually referred to as pulse modulation. A pulse parameter such as amplitude
or pulse width is varied to represent an analog quantity. The details of related topics such as
sampling and analog-to-digital conversion are covered in Chapter 12 .

 After completing this section, you should be able to

 • Describe pulse amplitude modulation

 • Describe pulse width modulation

 • Discuss the basic concept of sampling

 • Explain delta modulation

Amplitude

t

 FIGURE 11–27 A simple
PAM signal.

 Ethernet is a family of computer networking protocols described by the IEEE 802.3 standard.
Systems that communicate using Ethernet divide the data into individual packets called frames.
Each frame contains source and destination addresses and error-checking bits. The Ethernet
standard includes several variations that specify both media and signaling standards, including
type of wire or cable, data format, and data rates.

 S Y S T E M N O T E

 GENERATION OF A PAM SIGNAL A basic method of producing a PAM repre-
sentation of an analog signal is to use a constant-amplitude pulse source to sample the
analog wave that has a frequency lower than the pulses, as shown in Figure 11–28 for a
sine wave input, although any form of analog signal can be converted to a PAM output.
The pulses turn the switch on (closed) and off (open) to sample the waveform. When there

Sample Hold

PAM output

Sample points

 FIGURE 11–28 Basic method of pulse amplitude modulation.

FIGURE P–5 System Note

System Note

System Notes A typical System Note is shown in Figure P–5.

 Programmable Logic Coverage The hardware description languages VHDL and Verilog
are used in programmable logic applications. Figure P–6 shows two typical pages.

6–7 TRAFFIC SIGNAL CONTROL SYSTEM WITH VHDL AND VERILOG 325

 The Timing Circuits Block
 The two parts of the Timing circuits block are the Frequency divider (FD) and the Timer
circuits (TC). A system clock frequency of 24 MHz is assumed. The Frequency divider part
divides the 24 MHz system clock down to a 1 Hz clock. The Timer circuits part simulates the
one-shot outputs described in Section 6–1 to produce outputs of TS = 4 s and TL = 25 s.

 FREQUENCY DIVIDER The purpose of the frequency divider is to produce a 1 Hz
clock for the timer circuits. The input ClkIn in this application is a 24.00 MHz oscillator
that drives the program code. SetCount is used to initialize the count for a 1 Hz interval.
The program FreqDivide counts up from zero to the value assigned to SetCount (one-half
the oscillator speed) and inverts the output identifi er ClkOut.

 The integer value Cnt is set to zero prior to operation. The clock pulses are counted
and compared to the value assigned to SetCount. When the number of pulses counted
reaches the value in SetCount, the output ClkOut is checked to see if it is currently set to a
1 or 0. If ClkOut is currently 0, ClkOut is assigned a 1; otherwise, ClkIn is set to 1. Cnt is
assigned a value of 0 and the process repeats. Toggling the output ClkOut each time the
value of SetCount is reached creates a 1 Hz clock output with a 50% duty cycle.

 VHDL FOR THE FREQUENCY DIVIDER

24 MHz

Combinational logic

Trigger logic

State decoder
(SD)

MR = Sig3 or Sig4
Light output logic

MY = Sig2

SR = Sig2 or Sig1

Sig 2

S1

S2

S3

S4

Sig 3

Sig 4

MG = Sig1

SY = Sig4;

SG = Sig3

LongTime LongTime = Sig1 or Sig3;

Side

Main

Red

Yellow

Green

Red

Yellow

Green

Sig 1

ShortTime
LongTrig

ShortTrig ShortTime = not(Sig1 or Sig3)

Vehicle sensor

Frequency divider
(FD)

System clock

VSin

Gray1

Gray0

ClkIn

Clock

ClkIn

ClkOut Clk

SequentialLogic
StateDecoder

Sequential logic
(SL)

Timing circuits TimerCircuits

1 Hz

FreqDivide

Timer circuits (TC)

G1G1

G0G0

SG

MR

MY

MG

SR

SY

TS TL

TS TL

TSin TLin

VS

Clk

 FIGURE 6–55 Programming model for the traffi c signal control system.

 A programming model for the traffi c signal control system is shown in Figure 6–55 ,
where all the input and output labels are given. Notice that the Timing circuits block is split
into two parts; the Frequency divider and the Timer circuits; and the Combinational logic
block is divided into the State decoder and two logic sections (Light output logic and Trig-
ger logic). This model will be used to develop VHDL and Verilog programs for the system.

 library ieee;
 use ieee.std_logic_1164.all;

 entity FreqDivide is
 port (Clkln, in std_logic;
 ClkOut: buffer std_logic);
 end entity FreqDivide;

 architecture FreqDivide Behavior of FreqDivide is
 begin
 FreqDivide: process (Clkln)
 variable Cnt: integer := 0;
 variable SetCount: integer;

 Clkln: 24.00 MHz clock driver
ClkOut: Output at 1 Hz

 Cnt: Counts up to value in SetCount
SetCount: Holds 1>2 timer interval value

326 CHAPTER 6 • LATCHES, FLIP-FLOPS, AND TIMERS

 begin
 SetCount := 12000000; -- 1/2 duty cycle
 if (ClkIn‘EVENT and ClkIn = ‘1’) then
 if (Cnt = SetCount) then
 if ClkOut = ‘0’ then
 ClkOut 6= ‘1’; --Output high 50%
 else
 ClkOut 6= ‘0’; --Output Low 50%
 end if;
 Cnt := 0;
 else
 Cnt := Cnt + 1;
 end if;
 end if;
 end process;
 end architecture FreqDivideBehavior;

SetCount is assigned a value equal to half the
system clock to produce a 1 Hz output. In this
case, a 24 MHz system clock is used.

 The if statement causes program to wait for a
clock event and clock = 1 to start operation.

Check that the terminal value in SetCount has
been reached at which time ClkOut is toggled
and Cnt is reset to 0.

∂
 If terminal value has not been reached, Cnt is incremented.

 VERILOG FOR THE FREQUENCY DIVIDER

 module FreqDivide (Clkln, ClkOut);
 input Clkln;
 inout ClkOut;
 integer Cnt = 0;
 integer SetCount = 12000000; //1>2 duty cycle
 reg [0:0] Q;

 always @(posedge Clkln)
 begin
 if (Cnt = = SetCount)
 begin
 if (ClkOut = = 0)
 begin
 Q = 1; //Output high 50%
 end
 else
 begin
 Q = 0; //Output Low 50%
 end
 Cnt = 0;
 end
 else
 begin
 Cnt = Cnt + 1; If terminal value has not been reached.
 end Cnt is incremented.
 end
 assign ClkOut = Q;
 endmodule

 Clkln: 24.00 MHz clock driver
 ClkOut: Output at 1 Hz
 Cnt: Counts up to value in SetCount
SetCount: Holds 1>2 timer interval value
 Q: Holds output value within the always block

 The always statement causes program to wait for a
positive edge clock event.

Check that the terminal value in SetCount has been
reached at which time ClkOut is toggled and Cnt is
reset to 0.

 Value stored in Q is assigned to ClkOut outside the
always block.

SetCount is assigned a value equal
to half the system clock to produce
a 1 Hz output. In this case a 24 MHz
system clock is used.

∂

 TIMER CIRCUITS The program TimerCircuits uses two one-shot instances consist-
ing of a 25 s timer (TLong) and a 4 s timer (TShort). The 25 s and the 4 s timers are trig-
gered by long trigger (LongTrig) and short trigger (ShortTrig). In the VHDL and Verilog
programs, countdown timers driven by a 1 Hz clock input (Clk) replicate the one-shot
components TLong and TShort. The values stored in SetCountLong and SetCountShort
are assigned to the Duration inputs of one-shot components TLong and TShort, setting the

FIGURE P–6 Example pages of system implementation with programmable logic.

xii PREFACE

 Troubleshooting Section A portion of a typical troubleshooting section is shown in
Figure P–7.

 Troubleshooting with Waveform Simulation
 As discussed, simulation waveform stimulus can be accomplished using a test bench pro-
gram or graphically using a waveform editor. The following illustration demonstrates sim-
ulation troubleshooting techniques applied to the SequentialLogic section of the traffi c
signal control system created in VHDL.

 FUNCTIONAL SIMULATION Prior to download to the target device, simulation
tools are useful to identify unexpected behavior. In the following illustration, the waveform
output in Figure 9–55 shows that the sequential logic Gray code output from identifi ers g0 and
g1 does not respond to the waveform test stimulus as expected. In a timing simulation, the
PLD chip libraries are loaded, and testing is conducted against a model of the target device
where typically outputs start at a zero state. In the functional simulation, the basic logic is
tested. Since functional simulation does not make assumptions about initial states, a circular
dependency could exist where the output of one function is used to determine the outcome of
a second where neither may be resolved. A break point can be inserted in the program code to
determine where undetermined states may exist, so they can be addressed in the program code
if needed. A break point is a fl ag placed within the program source code where the application
is stopped temporarily, allowing investigation of program identifi ers and the status of the I/O.

 9–7 TROUBLESHOOTING
 During program code development, simulation tools can be used to validate logic modules for
proper operation prior to PLD programming. Two basic ways to test a device that has been
programmed with a logic design are traditional and automated. In the traditional method,
common laboratory test instruments can be used to check the operation. In the automated
method, three fundamental approaches can be used for testing: bed-of-nails, fl ying probe, and
boundary scan. Bed-of-nails and fl ying probe were described in Chapter 6 , and boundary scan
is introduced now. In this section, the focus is on simulation prior to device programming and
boundary scan testing once the PLD has been programmed.

 After completing this section, you should be able to

 • Explain troubleshooting techniques using waveform simulation

 • Defi ne break point

 • Discuss boundary scan testing

 FIGURE 9–55

 To investigate this behavior, you can insert a break point into the program code, so
you can view the condition of identifi ers G0 and G1 as the simulation progresses.

 In the sequential logic component of the traffi c signal control system, identifi ers D0
and D1 are dependent on the output of fl ip-fl ops DFF0 and DFF1. Since D0 feeds DFF0,
for example, D0 could be in an undetermined state at startup, causing G0 to also be in an

480 CHAPTER 9 • PROGRAMMABLE LOGIC

undetermined state. The functional simulation would point this out as shown since G0 and
G1 are left in an undetermined state. As shown in Figure 9–56, in this case, a break point is
set by right-clicking line number 22 and selecting “Set Breakpoint 22”. Multiple break points
may be defi ned as needed to investigate the behavior of the program under simulation.

Hover over
identifiers to
view current
status

Simulation run
stopped at

break point
defined for

identifier D0.

 FIGURE 9–56

 The simulation has stopped at the predefi ned break point inserted at identifi er D0. By
examining the condition of the supporting identifi ers D0, TL, VS and G1, you determine
the problem to be related to the D fl ip-fl op components whose output value G1 is listed as
“U” or undefi ned. D0 is dependent on identifi er G1 and the fl ip-fl op. DFF1 is in turn
dependent on D1. The output of the fl ip-fl op does not allow resolution of the Boolean
expressions assigned to D0 or D1.

 Examining the D fl ip-fl op defi nition, you see that the fl ip-fl op simply writes the value
of the D input to output Q upon a rising clock edge. Figure 9–57 (a) shows that the output

Signal QT allows for
the pre-initialization
of a 0 to output Q

 FIGURE 9–57

 (a) (b)

FIGURE P–7 Partial Troubleshooting Section.

Other Features
 End of Chapter The following features are at the end of each chapter.

 • Summary

 • Key term glossary

 • True/False quiz

 • Self-test

 • Sectionalized and categorized problem set

 • Answers to section checkups, related problems for examples, true/false quiz, and
self-test

 End of Book The following features are at the end of book.

 • Appendices: Code conversions and Powers-of-two table; Security System Compo-
nent programs

 • Comprehensive glossary

 • Answers to odd-numbered problems

 • Index

 Website The website (www.pearsonhighered.com/fl oyd) offers the topics related to the
textbook for reference or advanced informations, as shown in Figure P–8.

www.pearsonhighered.com/floyd

PREFACE xiii

Website for
Digital Fundamentals: A Systems Approach

www.pearsonhighered.com/floyd

Multisim
tutorial

VHDL
tutorial

Verilog
tutorial

Altera Quartus
II tutorial

Xilinx ISE
tutorial

Multisim
circuit files

Karnaugh
maps

 FIGURE P–8 Website for Digital Fundamentals:
A Systems Approach.

 To the Student
 Today, it seems that digital technology pervades most everything and is continuously
changing. This makes it essential that you obtain a thorough grounding in the fundamen-
tals because even though technology continues to change, the fundamentals remain intact.
By fully understanding fundamental concepts, you can adapt to changing conditions.

 A digital system is a combination of many logic functions that operate together to
produce a desired result. This book not only covers the fundamentals of digital technology
but presents several basic systems and shows how fundamental concepts and individual
logic devices are used in them. Those working in electronics technology should have a basic
grasp of the system concept and a practical knowledge of how to apply the fundamentals.

 Today, logic devices are integrated circuits that can be programmed to perform a
desired function. Although some fi xed-function devices remain, the trend is mainly toward
the use and application of programmable logic devices (PLDs). Therefore, two major pro-
gramming languages used for logic programming are introduced in this text (VHDL and
Verilog). The coverage in this book is not intended to make you an expert on the program-
ming languages, but only to familiarize you with some basic concepts. Tutorials are avail-
able at the website, and more advanced coverage can be found from many sources.

 Anyone working in the fi eld needs to be able to troubleshoot systems. The trouble-
shooting methods and examples provided in this book will help you to get started as a
troubleshooter.

 To the Instructor
 Time limitations and/or program emphasis generally are major factors in the amount of
material and the topics covered in a course. It is not uncommon to omit or condense
selected topics or to alter the sequence of certain topics in order to accommodate the
requirements of a course. To this end, topics have been organized with a ”modular”
approach so that certain topics are not integrated or intermingled with the more basic core
topics. Topics such as programmable logic, PLD programming, and troubleshooting are
contained in separate chapters, dedicated sections within a chapter, or on the website to
permit more fl exible treatment.

 A fairly strong emphasis is placed on programmable logic devices because they are
so prevalent in the implementation of today’s systems. PLD and programming coverage
using VHDL and Verilog is introduced at a fundamental level to provide a basic founda-
tion and is not intended to be a comprehensive treatment. You may choose to cover either
VHDL or Verilog or both. Tutorials for PLD programming (VHDL, Verilog, Altera Quar-
tus II, and Xilinx ISE) are provided on the Internet to assist students in their study. Of
course, much more extensive coverage of these topics can be found at many Internet sites
if that is deemed necessary. Fixed-function logic devices (7400 series for example) are
introduced but given a very light treatment due to their declining availability and use.

www.pearsonhighered.com/floyd

xiv PREFACE

 Table P–1 • Some suggested combinations of topics. Many others are possible.

 OPTIONS CORE � SYSTEMS PLDS PLD PROG TROUBLESHOOTING CH 11 CH12 CH13 CH14

 1 Yes No No No No No No No

 2 Yes No No Yes Yes No No No

 3 Yes No No Yes Yes Yes No No

 4 Yes No No No Yes Yes Yes Yes

 5 Yes No No Yes Yes Yes Yes Yes

 6 Yes Yes No Yes No No No No

 7 Yes Yes Yes No No No No No

 8 Yes Yes Yes Yes Yes No No Yes

 9 Yes Yes Yes Yes Yes Yes Yes Yes

 Customizing the Contents You can structure your course around this text from a mini-
mal coverage to a full-blown coverage. Table P–1 provides some suggestions with Option
1 being minimal and Option 9 being full coverage. You can decide the best approach for
your course using one of these suggestions or you may decide to choose some other com-
bination of topics.

 Acknowledgments
 The concept of this series of systems-oriented textbooks is credited to suggestions and
discussions with senior instructional staff at ITT Schools and Vern Anthony at Pearson
Education. The staff and others at Pearson Education, by their hard work and dedication,
have helped make the textbook a reality. Lois Porter, who did the manuscript editing, has
done a great job and she has helped me to turn my original rough manuscript into a top
quality marketable product. Rex Davidson skillfully guided the work through its many
detailed phases of production to create the end product that you are now looking at. Lind-
sey Prudhomme, acquisitions editor, and Dan Trudden, development editor, have provided
effective overall guidance for this project.

 Many thanks also to Gary Snyder and Doug Joksch for their extensive contributions
to this book. Doug developed the VHDL and Verilog programs and much of the support-
ing text in the area of programmable logic. Gary provided the Multisim circuit fi les and
wrote much of the chapter on data processing and control.

 TOM FLOYD

 INTRODUCTION
TO DIGITAL SYSTEMS

 CHAPTER 1

 OUTLINE
 1–1 Digital and Analog Signals and Systems

 1–2 Binary Digits, Logic Levels, and Digital
Waveforms

 1–3 Logic Operations

 1–4 Combinational and Sequential Logic Functions

 1–5 Programmable Logic

 1–6 Fixed-Function Logic Devices

 1–7 A System

 1–8 Measuring Instruments

 OBJECTIVES
 • Explain the basic differences between digital and

analog quantities

 • Show how voltage levels are used to represent
digital quantities

 • Describe various parameters of a pulse waveform
such as rise time, fall time, pulse width, fre-
quency, period, and duty cycle

 • Explain the logic operations of NOT, AND,
and OR

 • Describe several types of logic functions

 • Describe programmable logic, discuss the
 various types, and describe how PLDs are
 programmed using VHDL and Verilog with
 system software

 • Describe the basics of a microcontroller

 • Identify fi xed-function digital integrated circuits
according to their technology and the type of
packaging

 KEY TERMS
 Key terms are in order of appearance in the chapter.

 • Discuss how various logic functions are used in
a digital system

 • Recognize various instruments and understand
how they are used in measurement and trouble-
shooting digital devices and systems

 VISIT THE WEBSITE
 Study aids for this chapter are available at

 http://pearsonhighered.com/fl oyd

 Analog
 Digital
 Digital system
 Binary
 Bit
 Pulse
 Duty cycle
 Clock
 Timing diagram
 Data
 Serial
 Parallel
 Logic
 Input
 Output
 Gate

 NOT
 Inverter
 AND
 OR
 Programmable logic
device
 SPLD
 CPLD
 FPGA
 Compiler
 Microcontroller
 Embedded system
 Integrated circuit (IC)
 Fixed-function logic
 Troubleshooting

http://pearsonhighered.com/floyd

2 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 INTRODUCTION
 The term digital is derived from the way operations are
performed, by counting digits. For many years, applica-
tions of digital electronics were confi ned to computer
systems. Today, digital technology is applied in a wide
range of systems in addition to computers. Such applica-
tions as television, communications systems, radar, nav-
igation and guidance systems, military systems, medical

instrumentation, industrial process control, and con-
sumer electronics use digital techniques. Over the years
digital technology has progressed from vacuum-tube cir-
cuits to fi xed-function integrated circuits to programma-
ble logic and embedded microcontrollers.

 This chapter introduces you to digital electronics
and provides a broad overview of many important con-
cepts, applications, and methods.

 1–1 DIGITAL AND ANALOG SIGNALS
AND SYSTEMS

 Electronic systems can be divided into two broad categories, digital and analog. Digital elec-
tronics involves quantities with discrete values, and analog electronics involves quantities with
continuous values. Although you will be studying digital fundamentals in this book, you should
also know something about analog because many applications require both; and interfacing
between analog and digital is important.

 After completing this section, you should be able to

 • Defi ne analog

 • Defi ne digital

 • Explain the difference between digital and analog signals

 • State the advantages of digital over analog

 • Discuss modulation methods

 • Describe two types of digital systems

 An analog * quantity is one having continuous values. A digital quantity is one hav-
ing a discrete set of values. Most things that can be measured quantitatively occur in
nature in analog form. For example, the air temperature changes over a continuous range
of values. During a given day, the temperature does not go from, say, 70° to 71° instan-
taneously; it takes on all the infi nite values in between. If you graphed the temperature
on a typical summer day, you would have a smooth, continuous curve similar to the
curve in Figure 1–1 . Other examples of analog quantities are time, pressure, distance,
and sound.

 Rather than graphing the temperature on a continuous basis, suppose you just take
a temperature reading every hour. Now you have sampled values representing the tem-
perature at discrete points in time (every hour) over a 24-hour period, as indicated in
 Figure 1–2 . You have effectively converted an analog quantity to a form that can now be
digitized by representing each sampled value by a digital code. It is important to realize
that Figure 1–2 itself is not the digital representation of the analog quantity.

 * All bold terms are important and are defi ned in the end-of-book glossary. The bold terms in color are key terms
and are included in a Key Term glossary at the end of each chapter.

1–1 DIGITAL AND ANALOG SIGNALS AND SYSTEMS 3

 THE DIGITAL ADVANTAGE Digital representation has certain advantages over
analog representation in electronics applications. For one thing, digital data can be pro-
cessed and transmitted more effi ciently and reliably than analog data. Also, digital data has
a great advantage when storage is necessary. For example, music when converted to digital
form can be stored more compactly and reproduced with greater accuracy and clarity than
is possible when it is in analog form. Noise (unwanted voltage fl uctuations) does not affect
digital data nearly as much as it does analog signals.

 Analog Signals
 An analog quantity, such as voltage, that is repetitive or varies in a certain manner is an
analog signal. An analog signal can be a repetitive waveform, such as the sine wave in
 Figure 1–3 (a), or a continuously varying audio signal that carries information (music, the
spoken word, or other sounds), as shown in part (b). Other examples of analog signals are
amplitude-modulated signals (AM) and frequency-modulated signals (FM), as illustrated
in parts (c) and (d). In AM, a lower-frequency information signal, such as voice, varies the
amplitude of a high-frequency sine wave. In FM, the information signal varies the fre-
quency of the sine wave.

1

100

A.M.

95

90

85

80

75

70

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
P.M.

Time of day

Temperature
(°F)

 FIGURE 1–2 Sampled-value representation (quantization) of the analog quantity in Figure 1–1 .
Each value represented by a dot can be digitized by representing it as a digital code that consists
of a series of 1s and 0s.

1

100

A.M.

95

90

85

80

75

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
P.M.

Temperature
(°F)

70

Time of day

 FIGURE 1–1 Graph of an analog quantity (temperature versus time).

4 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 Digital Signals
 A digital signal is a representation of a sequence of discrete values that are coded into a
stream of 1s and 0s. A bit stream appears as a train of pulses or voltage levels where a high
voltage level conveys a binary 1 and a low voltage level conveys a binary 0. Bit streams
are used in telecommunications, computers, and other system applications. Figure 1–4
illustrates one type of digital signal. The duration of each bit (bit time) is indicated by the
hash marks.

(a) Sine wave

(c) Amplitude-modulated signal (d) Frequency-modulated signal

Frequency-
modulated
carrier

(b) Audio

Amplitude-
modulated
envelope Carrier

 FIGURE 1–3 Examples of analog signals.

000000 11111111

 FIGURE 1–4 Example of a digital waveform.

 DIGITAL MODULATION In some applications,
analog and digital signals are combined with a sine wave,
called a carrier , by amplitude modulating the sine wave
with the digital waveform. A common example is a modem
that turns digital data from a computer into modulated sig-
nals in the voice frequency range for transmission over tele-
phone lines. A digital-modulated signal is shown in Figure
 1–5 where the digital signal (bit stream) in Figure 1–4 mod-
ulates the sine wave. Dashed lines mark the bit times. The

frequency of the sine wave is shown arbitrarily low in relation to the digital-modulating
signal for illustration.

 PULSE-CODE MODULATION (PCM) A PCM signal represents sampled ana-
log signals with a sequence of digital codes. It is used in computers for digital audio, in
Blu-ray, compact disc and DVD formats, and in digital telephone systems. The sampling
process results in a “stair-step” voltage as shown in Figure 1–6 . The analog signal is sam-
pled at each step, and each sampled value is converted (quantized) to a digital code. The

1 1 1 1 1 1 1 0 0 0 010 0

 FIGURE 1–5 Example of a digital-modulated signal.

1–1 DIGITAL AND ANALOG SIGNALS AND SYSTEMS 5

digital signal would be the time sequence of the digital codes where the
binary numbers shown for each step appear in sequence beginning at
the left. The more steps there are the more accurate is the digital repre-
sentation. The length of the code depends on the number of steps.

 Digital Systems
 A digital system is an arrangement of the individual logic functions
connected to perform a specifi ed operation or produce a defi ned output.
An example of a digital system is a computer, as shown in Figure 1–7 in
basic block diagram form. A computer processes, transfers, and stores
data in digital form (1s and 0s). To make a complete system, the com-
puter is interfaced with peripheral devices such as a modem, a mouse, a
keyboard, and a monitor.

0001
0000

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 FIGURE 1–6 Illustration of pulse-code modulation.

Central-
processing
unit (CPU)

Input
Memory and

storage
Output

 FIGURE 1–7 Basic block diagram of a computer.

Red

Yellow

Green

Main

Red

Yellow

Green

Side

Combinational logic

Sequential logic

Long trigger

Short trigger

G0

G1

Gray
code

Long
timer

Short
timer

Traffic signal control logic

Traffic light
interface unit

Vehicle
sensor
input

System
clock

Timing circuits

 FIGURE 1–8 A digital traffi c light controller.

 Figure 1–8 , another example of a digital system, shows the traffi c light controller that
you will study in Chapter 6 . All of the digital signals that the system uses to properly
sequence the traffi c light are internally generated, making the controller a type of fi nite
state machine.

6 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 Analog Systems
 An analog system is one that processes data in analog form only. One example is a public
address system, used to amplify sound so that it can be heard by a large audience. The
basic diagram in Figure 1–9 illustrates that sound waves, which are analog in nature, are
picked up by a microphone and converted to a small analog voltage called the audio signal.
This voltage varies continuously as the volume and frequency of the sound changes and is
applied to the input of a linear amplifi er. The output of the amplifi er, which is an increased
reproduction of input voltage, goes to the speaker(s). The speaker changes the amplifi ed
audio signal back to sound waves that have a much greater volume than the original sound
waves picked up by the microphone.

Audio signal

Amplified audio signal

Speaker

Microphone

Original sound waves

Reproduced
sound waves

Linear amplifier

 FIGURE 1–9 A basic audio public address system.

Mixer

Local
oscillator

RF
amplifier

88 MHz–108 MHz
electromagnetic
waves

IF
amplifier

Limiter Discriminator

De-emphasis
network

Audio and
power

amplifiers

Sound

Audio

Amplified
audio

Compensated
audio

FM fc

fc + 10.7 MHz

10.7 MHz FM
10.7 MHz

Amplified FM
10.7 MHz

Limited FM

 FIGURE 1–10 Block diagram of superheterodyne FM receiver.

 Another example of an analog system is the FM receiver. The system processes the
incoming frequency-modulated carrier signal, extracts the audio signal for amplifi cation,
and produces audible sound waves. A block diagram is shown in Figure 1–10 with a repre-
sentative signal shown at each point in the system.

 A Combination Digital and Analog System
 The compact disk (CD) player is an example of a system in which both digital and analog
elements are used. The simplifi ed block diagram in Figure 1–11 illustrates the basic system.
Music in digital form is stored on the compact disk. A laser diode optical system picks up

1–2 BINARY DIGITS, LOGIC LEVELS, AND DIGITAL WAVEFORMS 7

the digital data from the rotating disk and transfers it to the digital-to-analog converter
(DAC). The DAC changes the digital data into an analog signal that is an electrical repro-
duction of the original music. This signal is amplifi ed and sent to the speaker for you to
enjoy. When the music was originally recorded on the CD, a process, essentially the reverse
of the one described here, using an analog-to-digital converter (ADC) was used.

Digital data

CD drive

10110011101

Analog
reproduction
of music audio
signal

Speaker

Sound
waves

Digital-to-analog
converter

Linear amplifier

 FIGURE 1–11 Simplifi ed diagram of a compact disk player.

 1–2 BINARY DIGITS, LOGIC LEVELS,
AND DIGITAL WAVEFORMS

 Digital systems involve operations in which there are only two possible states. These states are
represented by two different voltage levels: A HIGH and a LOW. The two states can also be
represented by current levels or pits and lands on a CD or DVD. In digital systems such as com-
puters, combinations of the two states, called codes, are used to represent numbers, symbols,
alphabetic characters, and other types of information. The two-state number system is called
 binary, and its two digits are 0 and 1. A binary digit is called a bit.

 After completing this section, you should be able to

 • Defi ne binary

 • Defi ne bit

 • Name the bits in a binary system

 • Explain how voltage levels are used to represent bits

 • Explain how voltage levels are interpreted by a digital circuit

 • Describe the general characteristics of a pulse

 • Determine the amplitude, rise time, fall time, and width of a pulse

 • Identify and describe the characteristics of a digital waveform

 • Determine the amplitude, period, frequency, and duty cycle of a digital waveform

 • Explain what a timing diagram is and state its purpose

 • Explain serial and parallel data transfer and state the advantage and disadvantage of each

 1. Defi ne analog.

 2. Defi ne digital.

 3. Explain the difference between a digital quantity and an ana-
log quantity.

 4. Give an example of a system that is analog and one that is a
combination of both digital and analog. Name a system that is
entirely digital.

 SECTION 1–1 CHECKUP*

 *Answers are at the end of the chapter.

8 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 Binary Digits
 Each of the two digits in the binary system, 1 and 0, is called a bit , which is a contraction
of the words binary digit. In digital circuits, two different voltage levels are used to repre-
sent the two bits. Generally, 1 is represented by the higher voltage, which we will refer to
as a HIGH, and a 0 is represented by the lower voltage level, which we will refer to as a
LOW. This is called positive logic and will be used throughout the book.

 HIGH � 1 and LOW � 0

 Another system in which a 1 is represented by a LOW and a 0 is represented by a HIGH is
called negative logic.

 Groups of bits (combinations of 1s and 0s), called codes, are used to represent num-
bers, letters, symbols, instructions, and anything else required in a given application.

 The concept of a digital computer can be traced back to Charles Babbage, who developed a
crude mechanical computation device in the 1830s. John Atanasoff was the fi rst to apply elec-
tronic processing to digital computing in 1939. In 1946, an electronic digital computer called
ENIAC was implemented with vacuum-tube circuits. Even though it took up an entire room,
ENIAC didn’t have the computing power of your handheld calculator.

 S Y S T E M N O T E

 Logic Levels
 The voltages used to represent a 1 and a 0 are called logic levels. Ideally, one voltage level
represents a HIGH and another voltage level represents a LOW. In a practical digital cir-
cuit, however, a HIGH can be any voltage between a specifi ed minimum value and a spec-
ifi ed maximum value. Likewise, a LOW can be any voltage between a specifi ed minimum
and a specifi ed maximum. There can be no overlap between the accepted range of HIGH
levels and the accepted range of LOW levels.

 Figure 1–12 illustrates the general range of LOWs and HIGHs for a digital circuit.
The variable VH(max) represents the maximum HIGH voltage value, and VH(min) represents
the minimum HIGH voltage value. The maximum LOW voltage value is represented by
 VL(max), and the minimum LOW voltage value is represented by VL(min). The voltage val-
ues between VL(max) and VH(min) are unacceptable for proper operation. A voltage in the
unacceptable range can appear as either a HIGH or a LOW to a given circuit. For example,
the HIGH input values for a certain type of digital circuit technology called CMOS may
range from 2 V to 3.3 V and the LOW input values may range from 0 V to 0.8 V. If a volt-
age of 2.5 V is applied, the circuit will accept it as a HIGH or binary 1. If a voltage of 0.5 V
is applied, the circuit will accept it as a LOW or binary 0. For this type of circuit, voltages
between 0.8 V and 2 V are unacceptable.

 Digital Waveforms
 Digital waveforms consist of voltage levels that are changing back and forth between the
HIGH and LOW levels or states. Figure 1–13 (a) shows that a single positive-going pulse
is generated when the voltage (or current) goes from its normally LOW level to its HIGH
level and then back to its LOW level. The negative-going pulse in Figure 1–13 (b) is gener-
ated when the voltage goes from its normally HIGH level to its LOW level and back to its
HIGH level. A digital waveform is made up of a series of pulses.

 THE PULSE As indicated in Figure 1–13 , a pulse has two edges: a leading edge that
occurs fi rst at time t0 and a trailing edge that occurs last at time t1. For a positive-going
pulse, the leading edge is a rising edge, and the trailing edge is a falling edge. The pulses

HIGH
(binary 1)

LOW
(binary 0)

VH(max)

VH(min)

VL(max)

VL (min)

Unacceptable

 FIGURE 1–12 Logic level
ranges of voltage for a digital
circuit.

1–2 BINARY DIGITS, LOGIC LEVELS, AND DIGITAL WAVEFORMS 9

in Figure 1–13 are ideal because the rising and falling edges are assumed to change in zero
time (instantaneously). In practice, these transitions never occur instantaneously, although
for most digital work you can assume ideal pulses.

 Figure 1–14 shows a nonideal pulse. In reality, all pulses exhibit some or all of these
characteristics. The overshoot and ringing are sometimes produced by stray inductive and
capacitive effects. The droop can be caused by stray
capacitance and circuit resistance, forming an RC
circuit with a low time constant.

 The time required for a pulse to go from its
LOW level to its HIGH level is called the rise time
 (tr), and the time required for the transition from the
HIGH level to the LOW level is called the fall time
 (tf). In practice, it is common to measure rise time
from 10% of the pulse amplitude (height from
baseline) to 90% of the pulse amplitude and to
measure the fall time from 90% to 10% of the pulse
amplitude, as indicated in Figure 1–14 . The bottom
10% and the top 10% of the pulse are not included
in the rise and fall times because of the nonlineari-
ties in the waveform in these areas. The pulse width
 (tPW) is a measure of the duration of the pulse and is
often defi ned as the time interval between the 50%
points on the rising and falling edges, as indicated
in Figure 1–14 .

 WAVEFORM CHARACTERISTICS Most waveforms encountered in digital
systems are composed of series of pulses, sometimes called pulse trains, and can be classi-
fi ed as either periodic or nonperiodic. A periodic pulse waveform is one that repeats itself
at a fi xed interval, called a period (T). The frequency (f) is the rate at which it repeats
itself and is measured in hertz (Hz). A nonperiodic pulse waveform, of course, does not
repeat itself at fi xed intervals and may be composed of pulses of randomly differing pulse
widths and/or randomly differing time intervals between the pulses. An example of each
type is shown in Figure 1–15 .

Falling or
leading edge

(b) Negative–going pulse

HIGH

Rising or
trailing edge

LOW

(a) Positive–going pulse

HIGH

Rising or
leading edge

Falling or
trailing edge

LOW
t0 t1 t0 t1

 FIGURE 1–13 Ideal pulses.

90%

50%

10%

Base line

Pulse width

Rise time Fall time

Amplitude tPW

tr tf

Undershoot

Ringing

Overshoot

Ringing
Droop

 FIGURE 1–14 Nonideal pulse characteristics.

T1

Period = T1 = T2 = T3 = . . . = Tn

T2 T3

Frequency = 1
T

(a) Periodic (square wave)

(b) Nonperiodic

 FIGURE 1–15 Examples of digital waveforms.

10 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 The frequency (f) of a pulse (digital) waveform is the reciprocal of the period. The
relationship between frequency and period is expressed as follows:

 f �
1
T

 (1–1)

 T �
1
f

 (1–2)

 An important characteristic of a periodic digital waveform is its duty cycle, which is
the ratio of the pulse width (tPW) to the period (T). It can be expressed as a percentage.

 Duty cycle � ¢ tPW

T
≤100% (1–3)

10 10 11
t (ms)

T
tPW

 FIGURE 1–16

 E X A M P L E 1 – 1

 A portion of a periodic digital waveform is shown in Figure 1–16 . The measure-
ments are in milliseconds. Determine the following:

 (a) period (b) frequency (c) duty cycle

 S O L U T I O N

 (a) The period is measured from the edge of one pulse to the corresponding edge
of the next pulse. In this case T is measured from leading edge to leading
edge, as indicated. T equals 10 ms.

 (b) f =
1

T
=

1

10 ms
= 100 Hz

 (c) Duty cycle = ¢ tPW

T
≤100% = ¢ 1 ms

10 ms
≤100% = 10%

 R E L A T E D P R O B L E M *

 A periodic digital waveform has a pulse width of 25 ms and a period of 150 ms.
Determine the frequency and the duty cycle.

 *Answers are at the end of the chapter.

 A Digital Waveform Carries Binary Information
 Binary information that is handled by digital systems appears as waveforms that represent
sequences of bits. When the waveform is HIGH, a binary 1 is present; when the waveform
is LOW, a binary 0 is present. Each bit in a sequence occupies a defi ned time interval
called a bit time.

1–2 BINARY DIGITS, LOGIC LEVELS, AND DIGITAL WAVEFORMS 11

 THE CLOCK In digital systems, all waveforms are synchronized with a basic timing
waveform called the clock . The clock is a periodic waveform in which each interval
between pulses (the period) equals the time for one bit.

 An example of a clock waveform is shown in Figure 1–17 . Notice that, in this case,
each change in level of waveform A occurs at the leading edge of the clock waveform. In
other cases, level changes occur at the trailing edge of the clock. During each bit time of
the clock, waveform A is either HIGH or LOW. These HIGHs and LOWs represent a
sequence of bits as indicated. A group of several bits can be used as a piece of binary infor-
mation, such as a number or a letter. The clock waveform itself does not carry information.

 The speed at which a computer can operate depends on the type of microprocessor used in the
system. The speed specifi cation, for example 3.5 GHz, of a computer is the maximum clock
frequency at which the microprocessor can run.

 S Y S T E M N O T E

Bit
time

Bit sequence
represented by

waveform A

1

0

0

1
A

1 1 1 1 1 0

Clock

00000

 FIGURE 1–17 Example of a clock waveform synchronized with a waveform representation
of a sequence of bits.

Clock

A

B

C

1 2 3 4 5 6 7 8

A, B, and C HIGH

 FIGURE 1–18 Example of a timing diagram.

 TIMING DIAGRAMS A timing diagram is a graph of digital waveforms showing
the actual time relationship of two or more waveforms and how each waveform changes in
relation to the others. By looking at a timing diagram, you can determine the states (HIGH
or LOW) of all the waveforms at any specifi ed point in time and the exact time that a
waveform changes state relative to the other waveforms. Figure 1–18 is an example of a
timing diagram made up of four waveforms. From this timing diagram you can see, for
example, that the three waveforms A , B , and C are HIGH only during bit time 7 (shaded
area) and they all change back LOW at the end of bit time 7.

12 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 Data Transfer
 Data refers to groups of bits that convey some type of information. Binary data, which are
represented by digital waveforms, must be transferred from one circuit to another within a
digital system or from one system to another in order to accomplish a given purpose. For
example, numbers stored in binary form in the memory of a computer must be transferred
to the computer’s central processing unit in order to be added. The sum of the addition
must then be transferred to a monitor for display and/or transferred back to the memory. In
computer systems, as illustrated in Figure 1–19 , binary data are transferred in two ways:
serial and parallel.

Computer

Computer

1 0 1 1 0 0 1 0

t0 t1 t2 t3 t4 t5 t6 t7

0

t0 t1

1

0

0

1

1

0

1

t0 to t1 is first.
(a) Serial transfer of 8 bits of binary data from computer to modem. Interval

printer. The beginning time is t0.
(b) Parallel transfer of 8 bits of binary data from computer to

Modem

Printer

 FIGURE 1–19 Illustration of serial and parallel transfer of binary data. Only the data lines are shown.

 When bits are transferred in serial form from one point to another, they are sent one
bit at a time along a single line, as illustrated in Figure 1–19 (a) for the case of a computer-
to-modem transfer. During the time interval from t0 to t1, the fi rst bit is transferred. During
the time interval from t1 to t2, the second bit is transferred, and so on. To transfer eight bits
in series, it takes eight time intervals.

 Universal Serial Bus (USB) is a serial bus standard for device interfacing. It was originally
developed for the personal computer but has become widely used on many types of handheld
and mobile devices. USB is expected to replace other serial and parallel ports. USB operated
at 12 Mbps (million bits per second) when fi rst introduced in 1995, but it now operates at up to
5 Gbps.

 S Y S T E M N O T E

 When bits are transferred in parallel form, all the bits in a group are sent out on sepa-
rate lines at the same time. There is one line for each bit, as shown in Figure 1–19 (b) for the
example of eight bits being transferred from a computer to a printer or other device. To
transfer eight bits in parallel, it takes one time interval compared to eight time intervals for
the serial transfer.

 To summarize, an advantage of serial transfer of binary data is that a minimum of
only one line is required. In parallel transfer, a number of lines equal to the number of bits
to be transferred at one time is required. A disadvantage of serial transfer is that it can take
longer to transfer a given number of bits than with parallel transfer at the same clock fre-
quency. For example, if one bit can be transferred in 1 ms, then it takes 8 ms to serially
transfer eight bits but only 1 ms to parallel transfer eight bits. A disadvantage of parallel
transfer is that it takes more lines than serial transfer.

1–2 BINARY DIGITS, LOGIC LEVELS, AND DIGITAL WAVEFORMS 13

 E X A M P L E 1 – 2

 (a) Determine the total time required to serially transfer the eight bits contained
in waveform A of Figure 1–20 , and indicate the sequence of bits. The left-
most bit is the fi rst to be transferred. The 1 MHz clock is used as reference.

 (b) What is the total time to transfer the same eight bits in parallel?

Clock

A

 FIGURE 1–20

 S O L U T I O N

 (a) Since the frequency of the clock is 1 MHz, the period is

 T =
1

f
=

1

1 MHz
= 1 ms

 It takes 1 ms to transfer each bit in the waveform. The total transfer time for
8 bits is

 8 * 1 ms = 8 Ms

 To determine the sequence of bits, examine the waveform in Figure 1–20
during each bit time. If waveform A is HIGH during the bit time, a 1 is trans-
ferred. If waveform A is LOW during the bit time, a 0 is transferred. The bit
sequence is illustrated in Figure 1–21 . The left-most bit is the fi rst to be
transferred.

1 0 0 1 0 01 1

 FIGURE 1–21

 (b) A parallel transfer would take 1 m s for all eight bits.

 R E L A T E D P R O B L E M

 If binary data are transferred on a USB at the rate of 480 million bits per second
(480 Mbps), how long will it take to serially transfer 16 bits?

 1. Defi ne binary.

 2. What does bit mean?

 3. What are the bits in a binary system?

 4. How are the rise time and fall time of a pulse measured?

 5. Knowing the period of a waveform, how do you fi nd the
 frequency?

 6. Explain what a clock waveform is.

 7. What is the purpose of a timing diagram?

 8. What is the main advantage of parallel transfer over serial
transfer of binary data?

 SECTION 1–2 CHECKUP

 In logic operations, the true/false conditions mentioned earlier are represented by a
HIGH (true) and a LOW (false). Each of the three basic logic operations produces a unique
response to a given set of conditions.

 NOT
 The NOT operation changes one logic level to the opposite logic level, as indicated in
 Figure 1–23 . When the input is HIGH (1), the output is LOW (0). When the input is LOW,

 Several propositions, when combined, form propositional, or logic, functions. For
example, the propositional statement “The light is on” will be true if “The bulb is not
burned out” is true and if “The switch is on” is true. Therefore, this logical statement can
be made: The light is on only if the bulb is not burned out and the switch is on. In this
example the fi rst statement is true only if the last two statements are true. The fi rst state-
ment (“The light is on”) is then the basic proposition, and the other two statements are the
conditions on which the proposition depends.

 In the 1850s, the Irish logician and mathematician George Boole developed a math-
ematical system for formulating logic statements with symbols so that problems can be
written and solved in a manner similar to ordinary algebra. Boolean algebra, as it is known
today, is applied in the design and analysis of digital systems and will be covered in detail
in Chapter 3 .

 The term logic is applied to digital circuits used to implement logic functions. Several
kinds of digital logic circuits are the basic elements that form the building blocks for such
complex digital systems as the computer. We will now look at these elements and discuss
their functions in a very general way. Later chapters will cover these circuits in detail.

 Three basic logic operations (NOT, AND, and OR) are indicated by standard distinc-
tive shape symbols in Figure 1–22 . An alternate standard symbol for each of these logic
operations will be introduced in Chapter 3 . The lines connected to each symbol are the
 inputs and outputs . The inputs are on the left of each symbol and the output is on the right.
A circuit that performs a specifi ed logic operation (AND, OR) is called a logic gate . AND
and OR gates can have any number of inputs, as indicated by the dashes in the fi gure.

 In its basic form, logic is the realm of human reasoning that tells you a certain proposition
(declarative statement) is true if certain conditions are true. Propositions can be classifi ed as
true or false. Many situations and processes that you encounter in your daily life can be
expressed in the form of propositional, or logic, functions. Since such functions are true/false
or yes/no statements, digital circuits with their two-state characteristics are applicable.

 After completing this section, you should be able to

 • List three basic logic operations

 • Defi ne the NOT operation

 • Defi ne the AND operation

 • Defi ne the OR operation

 1–3 LOGIC OPERATIONS

NOT ORAND

 FIGURE 1–22 The basic logic operations and symbols.

HIGH (1) LOW (0) HIGH (1)LOW (0)

 FIGURE 1–23 The NOT operation.

1–3 LOGIC OPERATIONS 15

the output is HIGH. In either case, the output is not the same as the input. The NOT opera-
tion is implemented by a logic circuit known as an inverter.

 AND
 The AND operation produces a HIGH output only when all the inputs are HIGH, as indi-
cated in Figure 1–24 for the case of two inputs. When one input is HIGH and the other
input is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW.
The AND operation is implemented by a logic circuit known as an AND gate.

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
HIGH (1)

 FIGURE 1–25 The OR operation.

 OR
 The OR operation produces a HIGH output when one or more inputs are HIGH, as indi-
cated in Figure 1–25 for the case of two inputs. When one input is HIGH or the other input
is HIGH or both inputs are HIGH, the output is HIGH. When both inputs are LOW, the
output is LOW. The OR operation is implemented by a logic circuit known as an OR gate.

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

 FIGURE 1–24 The AND operation.

 1. When does the NOT operation produce a HIGH output?

 2. When does the AND operation produce a HIGH output?

 3. When does the OR operation produce a HIGH output?

 4. What is an inverter?

 5. What is a logic gate?

 SECTION 1–3 CHECKUP

 The Comparison Function
 Magnitude comparison is performed by a logic circuit called a comparator . A comparator
compares two quantities and indicates whether or not they are equal. For example, suppose
you have two numbers and wish to know if they are equal or not equal and, if not equal,
which is greater. The comparison function is represented in Figure 1–26 . One number in
binary form (represented by logic levels) is applied to input A , and the other number in
binary form (represented by logic levels) is applied to input B. The outputs indicate the
relationship of the two numbers by producing a HIGH level on the proper output line. Sup-
pose that a binary representation of the number 2 is applied to input A and a binary represen-
tation of the number 5 is applied to input B. (The binary representation of numbers and
symbols is discussed in Chapter 2 .) A HIGH level will appear on the A 6 B (A is less than
 B) output, indicating the relationship between the two numbers (2 is less than 5). The wide
arrows represent a group of parallel lines on which the bits are transferred.

 The three basic logic elements AND, OR, and NOT can be combined to form various types of
logic functions: comparison, arithmetic, code conversion, encoding, decoding, data selection,
counting, and storage. This section provides an overview of important logic functions and illus-
trates how they can be used in a specifi c system.

 After completing this section, you should be able to

 • List several types of logic functions

 • Describe comparison and list the four arithmetic functions

 • Describe code conversion, encoding, and decoding

 • Describe multiplexing and demultiplexing

 • Describe the counting function

 • Describe the storage function

 1–4 COMBINATIONAL AND SEQUENTIAL
LOGIC FUNCTIONS

Two
binary
numbers

Outputs

A

B
A < B

A = B

A > B
Comparator

(a) Basic magnitude comparator

A

B
A < B

A = B

A > BBinary
code for 2

HIGH

LOW
Comparator

(b) Example: A is less than B (2 < 5) as indicated by

LOW

Binary
code for 5

the HIGH output (A < B)

 FIGURE 1–26 The comparison function.

 The Arithmetic Functions
 ADDITION Addition is performed by a logic circuit called an adder . An adder adds
two binary numbers (on inputs A and B) with a carry input Cin and generates a sum (�) and
a carry output (Cout), as shown in Figure 1–27 (a). Figure 1–27 (b) illustrates the addition
of 3 and 9. You know that the sum is 12; the adder indicates this result by producing the
code for 2 on the sum output and 1 on the carry output. Assume that the carry input in this
example is 0.

 SUBTRACTION Subtraction is also performed by a logic circuit. A subtracter
requires three inputs: the two numbers that are to be subtracted and a borrow input. The

1–4 COMBINATIONAL AND SEQUENTIAL LOGIC FUNCTIONS 17

two outputs are the difference and the borrow output. When, for instance, 5 is subtracted
from 8 with no borrow input, the difference is 3 with no borrow output. You will see in
 Chapter 2 how subtraction can actually be performed by an adder because subtraction is
simply a special case of addition.

 MULTIPLICATION Multiplication is performed by a logic circuit called a multi-
plier. Numbers are always multiplied two at a time, so two inputs are required. The output
of the multiplier is the product. Because multiplication is simply a series of additions with
shifts in the positions of the partial products, it can be performed by using an adder in con-
junction with other circuits.

Adder Adder

A

B

Binary
code for 3

Cout

Cin

Binary
code for 9

Binary 0

Binary
code for 2

Binary 1

Binary
code for 12

Two
binary
numbers

Carry out

A

B
Cout

CinCarry in

Sum

(a) Basic adder

Σ Σ

(b) Example: A plus B (3 + 9 = 12)

 FIGURE 1–27 The addition function.

 In a microprocessor, the arithmetic logic unit (ALU) performs the operations of add, subtract,
multiply, and divide as well as the logic operations on digital data as directed by a series of
instructions. A typical ALU is constructed of many thousands of logic gates.

 S Y S T E M N O T E

 DIVISION Division can be performed with a series of subtractions, comparisons, and
shifts, and thus it can also be done using an adder in conjunction with other circuits. Two inputs
to the divider are required, and the outputs generated are the quotient and the remainder.

 The Code Conversion Function
 A code is a set of bits arranged in a unique pattern and used to represent specifi ed informa-
tion. A code converter changes one form of coded information into another coded form.
Examples are conversion between binary and other codes such as the binary coded decimal
(BCD) and the Gray code.

 The Encoding Function
 The encoding function is performed by a logic circuit called
an encoder . The encoder converts information, such as a dec-
imal number or an alphabetic character, into some coded
form. For example, one certain type of encoder converts each
of the decimal digits, 0 through 9, to a binary code. A HIGH
level on the input corresponding to a specifi c decimal digit
produces logic levels that represent the proper binary code on
the output lines.

 Figure 1–28 is a simple illustration of an encoder used
to convert (encode) a calculator keystroke into a binary code
that can be processed by the calculator circuits.

Encoder9

8 9

4 5 6

1 2 3

0 . +/–

7

Calculator keypad

8
7
6
5
4
3
2
1
0

HIGH

Binary
code for 9

 FIGURE 1–28 A calculator keystroke encoded into a binary
code for processing by the calculator system.

18 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 The Decoding Function
 The decoding function is performed by a logic circuit called a decoder . The decoder con-
verts coded information, such as a binary number, into a noncoded form, such as a decimal

form. For example, one particular type of decoder con-
verts a 4-bit binary code into the appropriate decimal
digit.

 Figure 1–29 is a simple illustration of one type of
decoder that is used to activate a 7-segment display. Each
of the seven segments of the display is connected to an
output line from the decoder. When a particular binary
code appears on the decoder inputs, the appropriate out-
put lines are activated and light the proper segments to
display the decimal digit corresponding to the binary
code.

 The Data Selection Function
 Two types of circuits that select data are the multiplexer and the demultiplexer. The multi-
plexer, or mux for short, is a logic circuit that switches digital data from several input lines
onto a single output line in a specifi ed time sequence. Functionally, a multiplexer can be
represented by an electronic switch operation that sequentially connects each of the input
lines to the output line. The demultiplexer (demux) is a logic circuit that switches digital
data from one input line to several output lines in a specifi ed time sequence. Essentially,
the demux is a mux in reverse.

 Multiplexing and demultiplexing are used when data from several sources are to be
transmitted over one line to a distant location and redistributed to several destinations.
 Figure 1–30 illustrates this type of application where digital data from three sources are
sent out along a single line to three terminals at another location.

Decoder

Binary-coded input

7-segment display

 FIGURE 1–29 A decoder used to convert a special binary code
into a 7-segment decimal readout.

 In Figure 1–30 , data from input A are connected to the output line during time inter-
val �t1 and transmitted to the demultiplexer that connects them to output D. Then, during
interval �t2, the multiplexer switches to input B and the demultiplexer switches to output
E. During interval �t3, the multiplexer switches to input C and the demultiplexer switches
to output F.

 To summarize, during the fi rst time interval, input A data go to output D. During the
second time interval, input B data go to output E. During the third time interval, input C
data go to output F. After this, the sequence repeats. Because the time is divided up among

Multiplexer
A

Switching
sequence

control input

B

C

Δt2

Δt3

Δt1

Δt2

Δt3

Δt1

Demultiplexer
D

E

F

Data from
 A to D

Data from
B to E

Data from
C to F

Data from
A to D

Δt1 Δt2 Δt3 Δt1

Switching
sequence

control input

 FIGURE 1–30 Illustration of a basic multiplexing/demultiplexing application.

1–4 COMBINATIONAL AND SEQUENTIAL LOGIC FUNCTIONS 19

 The Counting Function
 A counter is a sequential device and is a type of state machine because it has a unique
internal sequence of states. The counting function is important in digital systems. There
are many types of digital counters, but their basic purpose is to count events or to generate
sequences represented by changing levels or pulses. To count, the counter must “remember”
the present number so that it can go to the next proper number in sequence. Therefore,
storage capability is an important characteristic of all counters, and fl ip-fl ops are generally
used to implement them. Figure 1–31 illustrates the basic idea of counter operation.

several sources and destinations where each has its turn to send and receive data, this pro-
cess is called time division multiplexing (TDM).

 The Memory and Storage Functions
 Memory and storage are functions that are required in most digital systems, and their
purpose is to retain binary data for a period of time. Generally, memory refers to relatively
short-term data retention, and storage refers to long-term data retention. A storage device
can “memorize” a bit or a group of bits and retain the information as long as necessary.
Memories include fl ip-fl ops, registers, and semiconductor memory. Storage includes mag-
netic disks (hard drives), optical disks (CDs), and magnetic tape.

 FLIP-FLOPS A fl ip-fl op is a bistable (two stable states) logic circuit that can store
only one bit at a time, either a 1 or a 0. The output of a fl ip-fl op indicates which bit it is
storing. A HIGH output indicates that a 1 is stored and a LOW output indicates that a 0 is
stored. Flip-fl ops are implemented with logic gates and are covered in Chapter 6 .

 REGISTERS A register is formed by combining several fl ip-fl ops so that groups of
bits can be stored. For example, an 8-bit register is constructed from eight fl ip-fl ops. In
addition to storing bits, registers can be used to shift the bits from one position to another
within the register or out of the register to another circuit; therefore, these devices are
known as shift registers.

 The two basic types of shift registers are serial and parallel. The bits are stored in a
serial shift register one at a time. A good analogy to the serial shift register is loading pas-
sengers onto a bus single fi le through the door. They also exit the bus single fi le. The bits
are stored in a parallel register simultaneously from parallel lines. For this case, a good
analogy is loading and unloading passengers on a roller coaster where they enter all of the
cars in parallel and exit in parallel.

 SEMICONDUCTOR MEMORIES Semiconductor memories are devices typi-
cally used for storing large numbers of bits. In one type of memory, called the r ead- o nly
 m emory or ROM, the binary data are permanently or semipermanently stored and cannot
be readily changed. In the r andom- a ccess m emory or RAM, the binary data are temporar-
ily stored and can be easily changed. Memories are covered in Chapter 10 .

 MAGNETIC MEMORIES Magnetic disk memories are used for mass storage of
binary data. An example is the computer’s internal hard disk. Magneto-optical disks use
laser beams to store and retrieve data. Magnetic tape is still used in memory applications
and for backing up data from other storage devices.

 The internal computer memories, RAM and ROM, as well as the smaller caches are semicon-
ductor memories. The registers in a microprocessor are constructed of semiconductor fl ip-
fl ops. Opto-magnetic disk memories are used in the internal hard drive and for the CD-ROM.

 S Y S T E M N O T E

20 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

Counter

Parallel
output lines

1 2 3 4 5

Input pulses Sequence of binary codes that represent
the number of input pulses counted.

Binary
code
for 1

Binary
code
for 2

Binary
code
for 3

Binary
code
for 4

Binary
code
for 5

 FIGURE 1–31 Illustration of basic counter operation.

 1. What does a comparator do?

 2. What are the four basic arithmetic operations?

 3. Describe encoding and give an example.

 4. Describe decoding and give an example.

 5. Explain the basic purpose of multiplexing and demultiplexing.

 6. Name four types of memory and storage devices.

 7. What does a counter do?

 SECTION 1–4 CHECKUP

 A programmable logic device (PLD) is a type of integrated circuit (IC) that starts as a “blank
slate” and into which a logic design is programmed. Programmable logic requires both hard-
ware and software. PLDs can be programmed to perform specifi ed logic functions by the manu-
facturer or by the user. One advantage of programmable logic over fi xed-function logic is that
the devices use much less board space for an equivalent amount of logic. Another advantage is
that, with programmable logic, designs can be readily changed without rewiring or replacing
components. Also, a logic design can generally be implemented faster and with less cost with
programmable logic than with fi xed-function ICs.

 After completing this section, you should be able to

 • State the major types of programmable logic and discuss the differences

 • Discuss methods of programming

 • List the major programming languages used for programmable logic

 • Discuss the programmable logic design process

 1–5 PROGRAMMABLE LOGIC

 Types of Programmable Logic Devices (PLDs)
 Many types of programmable logic devices are available, ranging from small devices that
can replace a few fi xed-function devices to complex high-density devices that can replace
thousands of fi xed-function devices. Two major categories of user-programmable logic are
 PLD (programmable logic device) and FPGA (fi eld-programmable gate array), as indi-
cated in Figure 1–32 . PLDs are either SPLDs (simple PLDs) or CPLDs (complex PLDs).

 SIMPLE PROGRAMMABLE LOGIC DEVICE (SPLD) The SPLD was the
original PLD and is still available for small-scale applications. Generally, an SPLD can
replace up to ten fi xed-function ICs and their interconnections, depending on the type of
functions and the specifi c SPLD. Most SPLDs are in one of two categories: PAL and GAL.
A PAL (programmable array logic) is a device that can be programmed one time. It con-
sists of a programmable array of AND gates and a fi xed array of OR gates, as shown in
 Figure 1–33 (a). A GAL (generic array logic) is a device that is basically a PAL that can be

1–5 PROGRAMMABLE LOGIC 21

reprogrammed many times. It consists of a reprogrammable array of AND gates and a
fi xed array of OR gates with programmable ouputs, as shown in Figure 1–33 (b). A typical
SPLD package is shown in Figure 1–34 and generally has from 24 to 28 pins.

 COMPLEX PROGRAMMABLE LOGIC DEVICE (CPLD) As technology
progressed and the amount of circuitry that could be put on a chip (chip density) increased,
manufacturers were able to put more than one SPLD on a single chip and the CPLD was
born. Essentially, the CPLD is a device containing multiple SPLDs and can replace many
fi xed-function ICs. Figure 1–35 shows a basic CPLD block diagram with four logic array

SPLDs CPLDs

PLDs FPGAs

Programmable logic

 FIGURE 1–32 Programmable logic hierarchy.

Fixed OR
array and

output logic

Programmable
AND array

Fixed OR
array and

programmable
output logic

Reprogrammable
AND array

(a) PAL (b) GAL

 FIGURE 1–33 Block diagrams of simple programmable logic devices (SPLDs).

 FIGURE 1–34 A typical
SPLD package.

LAB LAB

LAB LAB

PIA

 FIGURE 1–35 General block diagram of a CPLD.

22 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

blocks (LABs) and a programmable interconnection array (PIA). Depending on the specifi c
CPLD, there can be from two to sixty-four LABs. Each logic array block is roughly equiva-
lent to one SPLD.

 Generally, CPLDs can be used to implement any of the logic functions discussed
earlier, for example, decoders, encoders, multiplexers, demultiplexers, and adders. They
are available in a variety of confi gurations, typically ranging from 44 to 160 pin packages.
Examples of CPLD packages are shown in Figure 1–36 .

(a) 80-pin PQFP (b) 128-pin PQFP

 FIGURE 1–36 Typical CPLD packages.

block

I/O
block

I/O
block

I/O
block

I/O
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

I/O I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

Programmable
interconnections

 FIGURE 1–37 Basic structure of an FPGA.

 FIELD-PROGRAMMABLE GATE ARRAY (FPGA) An FPGA is generally
more complex and has a much higher density than a CPLD, although their applications can
sometimes overlap. As mentioned, the SPLD and the CPLD are closely related because the
CPLD basically contains a number of SPLDs. The FPGA, however, has a different internal
structure (architecture), as illustrated in Figure 1–37 . The three basic elements in an FPGA
are the logic block, the programmable interconnections, and the input/output (I/O) blocks.

1–5 PROGRAMMABLE LOGIC 23

 The logic blocks in an FPGA are not as complex as the logic array blocks (LABs) in
a CPLD, but generally there are many more of them. When the logic blocks are relatively
simple, the FPGA architecture is called fi ne-grained. When the logic blocks are larger and
more complex, the architecture is called coarse-grained. The I/O blocks are on the outer
edges of the structure and provide individually selectable input, output, or bidirectional
access to the outside world. The distributed programmable interconnection matrix pro-
vides for interconnection of the logic blocks and connection to inputs and outputs. Large
FPGAs can have tens of thousands of logic blocks in addition to memory and other
resources. A typical FPGA ball-grid array package is shown in Figure 1–38 . These types
of packages can have over 1000 input and output pins.

(a) Top view (b) Bottom view

 FIGURE 1–38 A typical ball-grid array (BGA) package.

PLD development board

Programmable logic device

 FIGURE 1–39 Basic setup for programming a PLD or FPGA. (Photo courtesy of Digilent, Inc.)

 The Programming Process
 An SPLD, CPLD, or FPGA can be thought of as a “blank slate” on which you implement
a specifi ed system design using a certain process. This process requires a software devel-
opment package installed on a computer to implement a circuit design in the programma-
ble chip. The computer must be interfaced with a development board or programming
fi xture containing the device, as illustrated in Figure 1–39 .

 Several steps, called the design fl ow, are involved in the process of implementing a
digital logic design in a programmable logic device. A block diagram of a typical program-
ming process is shown in Figure 1–40 . As indicated, the design fl ow has access to a design
library.

24 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 DESIGN ENTRY This is the fi rst programming step. The circuit
or system design must be entered into the design application software
using text-based entry, graphic entry (schematic capture), or state dia-
gram description. Design entry is device independent. Text-based entry
is accomplished with a hardware description language (HDL) such as
VHDL, Verilog, or AHDL. Graphic (schematic) entry allows prestored
logic functions from a library to be selected, placed on the screen, and
then interconnected to create a logic design. State-diagram entry
requires specifi cation of both the states through which a sequential logic
circuit progresses and the conditions that produce each state change.

 Once a design has been entered, it is compiled. A compiler is a
program that controls the design fl ow process and translates source
code into object code in a format that can be logically tested or down-
loaded to a target device. The source code is created during design
entry, and the object code is the fi nal code that actually causes the
design to be implemented in the programmable device.

 FUNCTIONAL SIMULATION The entered and compiled
design is simulated by software to confi rm that the logic circuit func-
tions as expected. The functional simulation will verify that correct
outputs are produced for a specifi ed set of inputs. A device-independent
software tool for doing this is generally called a waveform editor. Any
fl aws demonstrated by the simulation would be corrected by going
back to design entry and making appropriate changes.

 SYNTHESIS Synthesis is where the design is translated into a netlist, which has a
standard form and is device independent.

 IMPLEMENTATION Implementation is where the logic structures described by
the netlist are mapped into the actual structure of the specifi c device being programmed.
The implementation process is called fi tting or place and route and results in an output
called a bitstream, which is device dependent.

 TIMING SIMULATION This step comes after the design is mapped into the spe-
cifi c device. The timing simulation is basically used to confi rm that there are no design
fl aws or timing problems due to propagation delays.

 DOWNLOAD Once a bitstream has been generated for a specifi c programmable
device, it has to be downloaded to the device to implement the software design in hard-
ware. Some programmable devices have to be installed in a special piece of equipment
called a device programmer or on a development board. Other types of devices can be
programmed while in a system—called in-system programming (ISP)—using a standard
JTAG (Joint Test Action Group) interface. Some devices are volatile, which means they
lose their contents when reset or when power is turned off. In this case, the bitstream data
must be stored in a memory and reloaded into the device after each reset or power-off.
Also, the contents of an ISP device can be manipulated or upgraded while it is operating in
a system. This is called “on-the-fl y” reconfi guration.

 The Microcontroller
 A microcontroller is different than a PLD. The internal circuits of a microcontroller are
fi xed, and a program (series of instructions) directs the microcontroller operation in order
to achieve a specifi c outcome. The internal circuitry of a PLD is programmed into it, and
once programmed, the circuitry performs required operations. Thus, a program determines
microcontroller operation, but in a PLD a program determines the logic function. Micro-
controllers are generally programmed with either the C language or the BASIC language.

Download

Timing
simulation

Implementation

Synthesis

Functional
simulation

Design entry

Design
library

Compiler

 FIGURE 1–40 Basic programming fl ow block
diagram.

1–6 FIXED-FUNCTION LOGIC DEVICES 25

 A monolithic integrated circuit (IC) is an electronic circuit that is constructed
entirely on a single small chip of silicon. All the components that make up the cir-
cuit—transistors, diodes, resistors, and capacitors—are an integral part of that sin-
gle chip. Fixed-function logic and programmable logic are two broad categories of
digital ICs. In fi xed-function logic , the logic functions are set by the manufacturer
and cannot be altered.

 Figure 1–41 shows a cutaway view of one type of fi xed-function IC package
with the circuit chip shown within the package. Points on the chip are connected to
the package pins to allow input and output connections to the outside world.

 A microcontroller is basically a special-purpose small computer. Microcontrollers
are generally used for embedded system applications. An embedded system is one that is
designed to perform one or a few dedicated functions. By contrast, a general-purpose com-
puter, such as a laptop, is designed to perform a wide range of functions and applications.

 Embedded microcontrollers are used in many common applications. The embedded
microcontroller is part of a complete system, which may include additional electronics and
mechanical parts. For example, a microcontroller in a television set displays the input from
the remote unit on the screen and controls the channel selection, audio, and various menu
adjustments like brightness and contrast. In an automobile a microcontroller takes engine
sensor inputs and controls spark timing and fuel mixture. Other applications include home
appliances, thermostats, cell phones, and toys.

 1. List three major categories of programmable logic devices
and specify their acronyms.

 2. How does a CPLD differ from an SPLD?

 3. Name the steps in the programming process.

 4. Briefl y explain each step named in question 3.

 5. What are the two main functional characteristics of a micro-
controller?

 SECTION 1–5 CHECKUP

 1–6 FIXED-FUNCTION LOGIC DEVICES

Plastic
case

Pins

Chip

 FIGURE 1–41 Cutaway view of one
type of fi xed-function surface-mount IC
package, showing the chip mounted inside
and connections to input and output pins.

 All the logic elements and functions that have been discussed are generally available in inte-
grated circuit (IC) form. A fi xed-function device is one that cannot be programmed like a PLD.
Digital systems have incorporated ICs for many years because of their small size, high reliability,
low cost, and low power consumption. It is important to be able to recognize the IC packages
and to know how the pin connections are numbered, as well as to be familiar with the way in
which circuit complexities and circuit technologies determine the various IC classifi cations.

 After completing this section, you should be able to

 • Recognize the difference between through-hole devices and surface-mount fi xed-function
devices

 • Identify dual in-line packages (DIP)

 • Identify small-outline integrated circuit packages (SOIC)

 • Identify plastic leaded chip carrier packages (PLCC)

 • Identify leadless ceramic chip carrier packages (LCC)

 • Determine pin numbers on various types of IC packages

 • Explain the complexity classifi cations for fi xed-function ICs

26 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 IC Packages
 Integrated circuit (IC) packages are classifi ed accord-
ing to the way they are mounted on printed circuit
(PC) boards as either through-hole mounted or sur-
face mounted. The through-hole type packages have
pins (leads) that are inserted through holes in the PC
board and can be soldered to conductors on the oppo-
site side. The most common type of through-hole
package is the dual in-line package (DIP) shown in
 Figure 1–42 (a). The DIP is useful in lab work because
it plugs in easily to a protoboard.

 Most IC packages use surface-mount technol-
ogy (SMT). Surface mounting is a space-saving alter-
native to through-hole mounting. The holes through
the PC board are unnecessary for SMT. The pins of

surface-mounted packages are soldered directly to conductors on one side of the board,
leaving the other side free for additional circuits. Also, for a circuit with the same number of
pins, a surface-mounted package is much smaller than a dual in-line package because the
pins are placed closer together. An example of a surface-mounted package is the small-
outline integrated circuit (SOIC) shown in Figure 1–42 (b).

 Various types of SMT packages are available in a range of sizes, depending on the
number of leads (more leads are required for more complex circuits and lead confi gura-
tions). Examples of several types are shown in Figure 1–43 . As you can see, the leads of the
 SSOP (shrink small-outline package) are formed into a “gull-wing” shape. The leads of the
 PLCC (plastic-leaded chip carrier) are turned under the package in a J-type shape. Instead
of leads, the LCC (leadless ceramic chip) has metal contacts molded into its ceramic body.
The LQFP also has gull-wing leads. Both the CSP (chip scale package) and the FBGA (fi ne-
pitch ball grid array) have contacts embedded in the bottom of the package.

(c) LCC (350 � 350 mils)(a) SSOP (153 � 193 mils) (b) PLCC (350 � 350 mils)

(d) LQFP (7 � 7 mm) (e) Laminate CSP (3.5 � 3.5 mm) (f) FBGA (4 � 4 mm)

 FIGURE 1–43 Typical SMT package confi gurations. Parts (e) and (f) show bottom views.

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

 FIGURE 1–42 Examples of through-hole (DIP) and surface-mounted
devices. The DIP is larger than the SOIC with the same number of
leads.

 Pin Numbering
 All IC packages have a standard format for numbering the pins (leads). The dual in-line
packages (DIPs) and the shrink small-outline packages (SSOP) have the numbering
arrangement illustrated in Figure 1–44 (a) for a 16-pin package. Looking at the top of the
package, pin 1 is indicated by an identifi er that can be either a small dot, a notch, or a beveled

1–6 FIXED-FUNCTION LOGIC DEVICES 27

edge. The dot is always next to pin 1. Also, with the notch oriented
upward, pin 1 is always the top left pin, as indicated. Starting with
pin 1, the pin numbers increase as you go down, then across and up.
The highest pin number is always to the right of the notch or oppo-
site the dot.

 The PLCC and LCC packages have leads arranged on all four
sides. Pin 1 is indicated by a dot or other index mark and is located
at the center of one set of leads. The pin numbers increase going
counterclockwise as viewed from the top of the package. The high-
est pin number is always to the right of pin 1. Figure 1–44 (b) illus-
trates this format for a 20-pin PLCC package.

 Complexity Classifi cations
for Fixed-Function ICs
 Fixed-function digital ICs are classifi ed according to their complexity. They are listed here
from the least complex to the most complex. The complexity fi gures stated here for SSI,
MSI, LSI, VLSI, and ULSI are generally accepted, but defi nitions may vary from one
source to another.

 • Small-scale integration (SSI) describes fi xed-function ICs that have up to ten equiv-
alent gate circuits on a single chip, and they include basic gates and fl ip-fl ops.

 • Medium-scale integration (MSI) describes integrated circuits that have from 10 to
100 equivalent gates on a chip. They include logic functions such as encoders, decod-
ers, counters, registers, multiplexers, arithmetic circuits, small memories, and others.

 • Large-scale integration (LSI) is a classifi cation of ICs with complexities of from
more than 100 to 10,000 equivalent gates per chip, including memories.

 • Very large-scale integration (VLSI) describes integrated circuits with complexities
of from more than 10,000 to 100,000 equivalent gates per chip.

 • Ultra large-scale integration (ULSI) describes very large memories, larger micro-
processors, and larger single-chip computers. Complexities of more than 100,000
equivalent gates per chip are classifi ed as ULSI.

 Integrated Circuit Technologies
 The types of transistors with which all integrated circuits are implemented are either MOSFETs
(metal-oxide semiconductor fi eld-effect transistors) or bipolar junction transistors. A cir-
cuit technology that uses MOSFETs is CMOS (complementary MOS). Bipolar is a type
of fi xed-function digital circuit technology that uses bipolar junction transistors and is
sometimes called TTL (transistor-transistor logic). BiCMOS uses a combination of both
CMOS and bipolar. All the types of logic gates and logic functions that have been dis-
cussed are generally available as ICs.

 All gates and other functions can be implemented with either type of circuit technol-
ogy. SSI and MSI circuits are generally available in both CMOS and bipolar in the 74XX
series, but CMOS is the most common.

(a) DIP or SSOP

Notch

Pin 1
identifier

Pin 1
identifier

3 19

9 13

14

18

8

4

(b) PLCC or LCC

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

 FIGURE 1–44 Pin numbering for standard types of
IC packages. Top views are shown.

 1. What is an integrated circuit?

 2. Defi ne the terms DIP, SMT, SOIC, SSI, MSI, LSI, and VLSI.

 3. Generally, in what classifi cation does a fi xed-function IC with
the following number of equivalent gates fall?

 (a) 10 (b) 75 (c) 500 (d) 15,000 (e) 200,000

 SECTION 1–6 CHECKUP

 A Process Control System
 A system for bottling vitamin tablets is shown in the block diagram of Figure 1–45 . To
begin, the tablets are fed into a large funnel-type hopper. The narrow neck of the hopper
creates a serial fl ow of tablets into a bottle on the conveyor belt below. Only one tablet at
a time passes the sensor, so the tablets can be counted.

 The system controls the number of tablets into each bottle and displays a continually
updated readout of the total number of tablets bottled. This system utilizes all of the basic
logic functions that have been introduced and illustrates how these functions can be con-
nected to work together to produce a specifi ed result. This system is purely for instruc-
tional purposes and is not intended to necessarily represent the most effi cient or best way
to implement the operation.

 GENERAL OPERATION The maximum number of tablets per bottle is entered
from the keypad, changed to a code by the Encoder, and stored in Register A. Decoder A
changes the code stored in the register to a form appropriate for turning on the display.
 Code converter A changes the code to a binary number and applies it to the A input of the
 Comparator (Comp).

 An optical sensor in the neck of the hopper detects each tablet that passes and pro-
duces a pulse. This pulse goes to the Counter and advances it by one count; thus, any time
during the fi lling of a bottle, the binary state of the counter represents the number of tablets
in the bottle. The binary count is transferred from the counter to the B input of the com-
parator (Comp). The A input of the comparator is the binary number for the maximum
tablets per bottle. Now, let’s say that the present number of tablets per bottle is 50. When the
binary number in the counter reaches 50, the A = B output of the comparator goes HIGH,
indicating that the bottle is full.

 The HIGH output of the comparator causes the valve in the neck of the hopper to
close and stop the fl ow of tablets. At the same time, the HIGH output of the comparator
activates the conveyor, which moves the next empty bottle into place under the hopper.
When the bottle is in place, the conveyor control issues a pulse that resets the counter to
zero. As a result, the output of the comparator goes back LOW and causes the hopper
valve to restart the fl ow of tablets.

 For each bottle fi lled, the maximum binary number in the counter is transferred to the
 A input of the Adder. The B input of the adder comes from Register B that stores the total
number of tablets bottled up through the last bottle fi lled. The adder produces a new cumu-
lative sum that is then stored in register B, replacing the previous sum. This keeps a run-
ning total of the tablets bottled during a given run.

 The cumulative sum stored in register B goes to Decoder B , which detects when
 register B has reached its maximum capacity and enables the MUX. The binary sum in
register B is converted from parallel to serial form by the MUX and transmitted over the
single line to the remote Demultiplexer (DEMUX), which changes the number back to
parallel form for storage in a remote computer for keeping track of the total tablets bottled
in a specifi ed time period.

 A tablet-bottling system illustrates how the logic functions covered in this chapter can be used
in a system environment. The functions used in this system are the encoder, decoder, code con-
verter, adder, multiplexer, demultiplexer, register, and counter. This system could be imple-
mented in three ways: with a PLD, with a microcontroller, or with fi xed-function ICs. The fi rst
two are how all digital systems are currently implemented.

 After completing this section, you should be able to

 • Understand basic system operation and how certain components work together

 • Explain the purpose of each logic function in the total system

 • Describe the transfer of digital data throughout the system

 1–7 A SYSTEM

1–7 A SYSTEM 29

Binary code for
actual number of
tablets in bottle

HIGH causes new
sum to be stored.

8 9

4 5 6

1 2 3

0 . #

7

Binary code for preset number
of tablets per bottle

Number of
tablets per bottleKeypad for entering

number of tablets
per bottle

HIGH closes valve
and advances
conveyor. LOW
keeps valve open.

One pulse
from sensor
for each tablet
advances
counter by 1.

New total
sum

The binary code representing the number of tablets bottled each time
Register B has reached the maximum accumulated count.

Current total sum

Valve

Sensor

To computer for accumulation and storage of total
number of tablets bottled over time

Pulse resets counter to zero
when next bottle is in place.

DEMUX

Comp
A

B

A = B

Adder
A

B Cout

Σ

Encoder

Code
converter

A

Decoder
B

MUX

Counter

Conveyor
control

Switching sequence
control input

Register
A

Tablets / bottle
Decoder

A

Register
B

 FIGURE 1–45 Block diagram of a tablet-bottling system.

 1. How is the number of tablets per bottle entered into the
system?

 2. How does the system determine when a bottle is full?

 3. When is the counter reset?

 SECTION 1–7 CHECKUP

 The Oscilloscope
 The oscilloscope (scope for short) is one of the most widely used instruments for general
testing and troubleshooting. The scope is basically a graph-displaying device that traces
the graph of a measured electrical signal on its screen. In most applications, the graph
shows how signals change over time. The vertical axis of the display screen represents

voltage, and the horizontal axis represents time. Amplitude, period, and
frequency of a signal can be measured using the oscilloscope. Also, the
pulse width, duty cycle, rise time, and fall time of a pulse waveform can
be determined. Most scopes can display at least two, and many can dis-
play four signals on the screen at one time, enabling their time relation-
ship to be observed. A typical 4-channel digital oscilloscope is shown in
 Figure 1–46 .

 Two basic types of oscilloscopes, analog and digital, can be used to
view digital waveforms. An analog scope works by applying the measured
waveform directly to control the up and down motion of the electron beam
in the cathode-ray tube (CRT) as it sweeps across the display screen. As a
result, the beam traces out the waveform pattern on the screen. A digital
scope converts the measured waveform to digital information by a sam-
pling process in an analog-to-digital converter (ADC). The digital informa-
tion is then used to reconstruct the waveform on the screen.

 The digital scope is more widely used than the analog scope. However, either type
can be used in many applications; each has characteristics that make it more suitable for
certain situations. An analog scope displays waveforms as they occur in “real time.” Dig-
ital scopes are useful for measuring transient pulses that may occur randomly or only once.
Also, because information about the measured waveform can be stored in a digital scope,
it may be viewed at some later time, printed out, or thoroughly analyzed by a computer or
other means.

 BASIC OPERATION OF ANALOG OSCILLOSCOPES To measure a volt-
age, a probe must be connected from the scope to the point in a circuit at which the volt-
age is present. Generally, a *10 probe is used that reduces (attenuates) the signal
amplitude by ten. The signal goes through the probe into the vertical circuits where it is
either further attenuated or amplifi ed, depending on the actual amplitude and on where
you set the vertical control of the scope. The vertical circuits then drive the vertical
defl ection plates of the CRT. Also, the signal goes to the trigger circuits that trigger the
horizontal circuits to initiate repetitive horizontal sweeps of the electron beam across the
screen using a sawtooth waveform. There are many sweeps per second so that the beam
appears to form a solid line across the screen in the shape of the waveform. This basic
operation is illustrated in Figure 1–47 .

 Troubleshooting is the process of systematically isolating, identifying, and correcting a fault
in a circuit or system. A variety of instruments are available for use in troubleshooting and
testing. Some common types of instruments are introduced and discussed in this section.

 After completing this section, you should be able to

 • Distinguish between an analog and a digital oscilloscope

 • Recognize common oscilloscope controls

 • Determine amplitude, period, frequency, and duty cycle of a pulse waveform with an
oscilloscope

 • Discuss the logic analyzer and some common formats

 • Describe the purpose of the data pattern generator, the digital multimeter (DMM), the dc
power supply, the logic probe, and the logic pulser

 1–8 MEASURING INSTRUMENTS

 FIGURE 1–46 A digital oscilloscope. Used

with permission from Tektronix, Inc.

1–8 MEASURING INSTRUMENTS 31

 BASIC OPERATION OF DIGITAL OSCILLOSCOPES Some parts of a dig-
ital scope are similar to the analog scope. However, the digital scope is more complex than
an analog scope and typically has an LCD screen rather than a CRT. Rather than display-
ing a waveform as it occurs, the digital scope fi rst acquires the measured analog waveform
and converts it to a digital format using an analog-to-digital converter (ADC). The digital
data is stored and processed. The data then goes to the reconstruction and display circuits
for display in its original analog form. Figure 1–48 shows a basic block diagram for a dig-
ital oscilloscope.

Vertical circuits

Trigger circuits Horizontal circuits

Oscilloscope

Probe

1010011010

ADC

Processing

Acquisition circuits

Reconstruction
and display

circuits

1010011010

Memory

 FIGURE 1–48 Block diagram of a digital oscilloscope. (Photo courtesy of Digilent, Inc.)

Vertical circuits

Trigger circuits Horizontal circuits

Oscilloscope

CRT

Probe

 FIGURE 1–47 Block diagram of an analog oscilloscope. (Photo courtesy of Digilent, Inc.)

 OSCILLOSCOPE CONTROLS A front panel view of a typical digital oscillo-
scope is shown in Figure 1–49 . Instruments vary depending on model and manufacturer,
but most have certain common features. For example, the four vertical sections contain a
Position control, a channel menu button, and a volts/div control. The horizontal section
contains a sec/div control.

 Some of the main oscilloscope controls are now discussed. Refer to the user manual
for complete details of your particular scope.

32 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 VERTICAL CONTROLS In the vertical section of the scope in Figure 1–49 , there
are identical controls for each of the four channels (1, 2, 3, and 4). The Position control lets
you move a displayed waveform up or down vertically on the screen. The buttons on the
right side of the screen provide for the selection of several items that appear on the screen,
such as the coupling modes (ac, dc, or ground), coarse or fi ne adjustment for the volts/div,
signal inversion, and other parameters. The volts/div control adjusts the number of volts
represented by each vertical division on the screen. The volts/div setting for each channel
is displayed on the bottom of the screen.

 FIGURE 1–49 A digital oscilloscope front panel. Used with permission from Tektronix, Inc.

(a) Untriggered waveform display (b) Triggered waveform display

 FIGURE 1–50 Comparison of an untriggered and a triggered waveform on an
oscilloscope.

 HORIZONTAL CONTROLS In the horizontal section, the controls apply to all
channels. The Position control lets you move a displayed waveform left or right horizon-
tally on the screen. The sec/div control adjusts the time represented by each horizontal
division or main time base. The sec/div setting is displayed at the bottom of the screen.

 TRIGGER CONTROLS In the Trigger control section, the Level control deter-
mines the point on the triggering waveform where triggering occurs to initiate the sweep to
display input waveforms. The Menu button provides for the selection of several items that
appear on the screen, including edge or slope triggering, trigger source, trigger mode, and
other parameters. There is also an input for an external trigger signal.

 Triggering stabilizes a waveform on the screen or properly triggers on a pulse that
occurs only one time or randomly. Also, it allows you to observe time delays between two
waveforms. Figure 1–50 compares a triggered to an untriggered signal. The untriggered
signal tends to drift across the screen, producing what appears to be multiple waveforms.

1–8 MEASURING INSTRUMENTS 33

 COUPLING A SIGNAL INTO THE SCOPE Coupling is the method used to
connect a signal voltage to be measured into the oscilloscope. DC and AC coupling are usu-
ally selected from the Vertical menu on a scope. DC coupling allows a waveform including
its dc component to be displayed. AC coupling blocks the dc component of a signal so that
you see the waveform centered at 0 V. The Ground mode allows you to connect the channel
input to ground to see where the 0 V reference is on the screen. Figure 1–51 illustrates the
result of DC and AC coupling using a pulse waveform that has a dc component.

Properly compensated Undercompensated Overcompensated

 FIGURE 1–52 Probe compensation conditions.

0 V

(a) DC coupled waveform

0 V

(b) AC coupled waveform

 FIGURE 1–51 Displays of the same waveform having a dc component.

 The voltage probe, shown in Figure 1–46 , is essential for connecting a signal to the scope.
Since all instruments tend to affect the circuit being measured due to loading, most scope
probes provide a high series resistance to minimize loading effects. Probes that have a series
resistance ten times larger than the input resistance of the scope are called *10 probes. Probes
with no series resistance are called *1 probes. The oscilloscope adjusts its calibration for the
attenuation of the type of probe being used. For most measurements, the *10 probe should be
used. However, if you are measuring very small signals, a *1 may be the best choice.

 The probe has an adjustment that allows you to compensate for the input capacitance
of the scope. Most scopes have a probe compensation output that provides a calibrated
square wave for probe compensation. Before making a measurement, you should make
sure that the probe is properly compensated to eliminate any distortion introduced. Typi-
cally, there is a screw or other means of adjusting compensation on a probe. Figure 1–52
shows scope waveforms for three probe conditions: properly compensated, undercompen-
sated, and overcompensated. If the waveform appears either over- or undercompensated,
adjust the probe until the properly compensated square wave is achieved.

 E X A M P L E 1 – 3

 Based on the readouts, determine the amplitude and the period of the pulse wave-
form on the screen of a digital oscilloscope as shown in Figure 1–53 . Also, calcu-
late the frequency.

34 CHAPTER 1 • INTRODUCTION TO DIGITAL SYSTEMS

 The Logic Analyzer
 Logic analyzers are used for measurements of multiple
digital signals and measurement situations with diffi -
cult trigger requirements. Basically, the logic analyzer
came about as a result of microprocessors in which
troubleshooting or debugging required many more
inputs than an oscilloscope offered. Many oscilloscopes
have two input channels and some are available with
four. Logic analyzers are available with from 34 to 136
input channels. Generally, an oscilloscope is used either
when amplitude, frequency, and other timing parame-
ters of a few signals at a time or when parameters such
an rise and fall times, overshoot, and delay times need
to be measured. The logic analyzer is used when the
logic levels of a large number of signals need to be
determined and for the correlation of simultaneous sig-
nals based on their timing relationships. A typical logic
analyzer is shown in Figure 1–54 , and a simplifi ed
block diagram is in Figure 1–55 .

 S O L U T I O N

 The volts/div setting is 1 V. The pulses are three divisions high. Since each divi-
sion represents 1 V, the pulse amplitude is

 Amplitude = (3 div)(1 V/div) = 3 V

 The sec/div setting is 10 ms. A full cycle of the waveform (from beginning
of one pulse to the beginning of the next) covers four divisions; therefore, the
period is

 Period = (4 div)(10 ms/div) = 40 Ms

 The frequency is calculated as

 f =
1

T
=

1

40 ms
= 25 kHz

 R E L A T E D P R O B L E M

 For a volts/div setting of 4 V and sec/div setting of 2 ms, determine the amplitude
and period of the pulse shown on the screen in Figure 1–53 .

 FIGURE 1–54 Typical logic analyzer. Used with permission from

Tektronix, Inc.

Ch1 10 s1 V

 FIGURE 1–53

1–8 MEASURING INSTRUMENTS 35

 DATA ACQUISITION The large number
of signals that can be acquired at one time is a
major factor that distinguishes a logic analyzer
from an oscilloscope. Generally, the two types of
data acquisition in a logic analyzer are the timing
acquisition and the state acquisition. Timing
acquisition is used primarily when the timing
relationships among the various signals need to
be determined. State acquisition is used when
you need to view the sequence of states as they
appear in a system under test.

 It is often helpful to have correlated timing
and state data, and most logic analyzers can
simultaneously acquire that data. For example, a
problem may initially be detected as an invalid
state. However, the invalid condition may be caused by a timing violation in the system
under test. Without both types of information available at the same time, isolating the
problem could be very diffi cult.

 CHANNEL COUNT AND MEMORY DEPTH Logic analyzers contain a real-
time acquisition memory in which sampled data from all the channels are stored as they
occur. Two features that are of primary importance are the channel count and the memory
depth. The acquisition memory can be thought of as having a width equal to the number of
channels and a depth that is the number of bits that can be captured by each channel during
a certain time interval.

 Channel count determines the number of signals that can be acquired simultaneously.
In certain types of systems, a large number of signals are present, such as on the data bus
in a microprocessor-based system. The depth of the acquisition memory determines the
amount of data from a given channel that you can view at any given time.

 ANALYSIS AND DISPLAY Once data has been sampled and stored in the acquisi-
tion memory, it can typically be used in several different display and analysis modes. The
waveform display is much like the display on an oscilloscope where you can view the time
relationship of multiple signals. The listing display indicates the state of the system under
test by showing the values of the input waveforms (1s and 0s) at various points in time
(sample points). Typically, this data can be displayed in hexadecimal or other formats.
 Figure 1–56 shows simplifi ed versions of these two display modes. The listing display
samples correspond to the sampled points shown in red on the waveform display. You will
study binary and hexadecimal (hex) numbers in the next chapter.

Clock
circuits

Input buffer
and

sampling

Acquisition
memory

Trigger logic
and memory

control

Channel
inputs

Analysis
and

display

 FIGURE 1–55 Simplifi ed block diagram of a logic analyzer.

1

(a) Waveform display (b) Listing display

2 3 4 5 6 7 8

Sample

1
2
3
4
5
6
7
8

Binary

1111
1110
1101
1100
1011
1010
1001
1000

Hex

F
E
D
C
B
A
9
8

Time

1 ns
10 ns
20 ns
30 ns
40 ns
50 ns
60 ns
70 ns

 FIGURE 1–56 Two logic analyzer display modes.

 Two more modes that are useful in computer and microprocessor-based system test-
ing are the instruction trace and the source code debug. The instruction trace determines
and displays instructions that occur, for example, on the data bus in a microprocessor-

