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 This fi rst edition of  Digital Fundamentals: A Systems Approach  provides a unique coverage 
of digital technology with a system emphasis. This textbook provides a fundamental ground-
ing in the basic concepts of digital technology and systems reinforced by an abundance of 
illustrations, examples, applications, and exercises. There are system examples and system 
notes throughout many chapters in addition to traditional worked examples. Many chapters 
have a system section that presents a certain type of system and discusses its operation as 
related to topics covered in that chapter and to its implementation in programmable logic. 
Most chapters include a troubleshooting section that emphasizes the system approach. Addi-
tionally, system level chapters cover digital data transmission; data processing and control; 
and buses, networks, and interfacing. 

 Core fundamentals and basic logic functions are presented using a practical approach 
with emphasis on operation and application rather than on analysis and design. Mathemat-
ical topics are limited to only essential coverage that a technician or technologist will need 
to understand the basic concepts. Programmable logic is emphasized whereas fi xed-func-
tion logic is introduced on a limited basis. 

  Features 
   •   Core fundamentals are presented without being intermingled with more advanced 

topics.  

  •   Many chapters feature an entire section devoted to a specifi c type of system.  

  •   System examples are used to illustrate how basic concepts and logic elements are 
applied in a system application.  

  •   System notes present interesting facts and information about system-related issues.  

  •   Multisim is used in selected examples, fi gures, and problems to provide practice in 
simulating logic circuits and systems and in troubleshooting.  

  •   Worked examples illustrate core fundamentals and logic functions and require some 
basic analytical thought.  

  •   Related problems in each worked example relate to the coverage of the example.  

  •   Hands-on-tips (HOT) provide useful and practical information.  

  •   Many chapters include a section on hardware description languages (VHDL and Ver-
ilog), which are used to show how logic functions and systems can be described and 
implemented in a programmable logic device (PLD).  

• Many chapters have a troubleshooting section that relates to topics covered in the 
chapter and emphasizes troubleshooting techniques, and the use of instrumentation, 
and circuit simulation (Multisim).

  •   Each chapter begins with a list of sections (Outline), chapter objectives, introduction, 
key terms list, and website reference.  

  •   Each section within a chapter begins with an introduction and objectives.  

  •   Each section concludes with Checkup exercises that emphasize the main concepts 
presented in the section.  

  •   Each chapter ends with a summary, key term glossary, true/false quiz, self-test, and 
sectionalized problem set.  

  •   Answers to related problems, section checkups, true/false quiz, and self-test are at the 
end of each chapter.  

  •   An end-of-book glossary contains all bold and color terms in the text.  

  PREFACE 

vii



viii   PREFACE

  •   Answers to odd-numbered problems are at the end of the book  

  •   Website (www.pearsonhighered.com) includes fi les related to the text such as tutorials 
and Multisim fi les.    

  Student Resources 
   •    Experiments in Digital Fundamentals: A Systems Approach  (ISBN 0132989840) by 

David Buchla and Doug Joksch. Lab exercises are coordinated with the text.   

• Multisim Experiments for the DC/AC, Digital, and Devices Courses (ISBN 0132113880) 
by Gary Snyder and David Buchla. Students take data, analyze results, and write a 
conclusion to simulate an actual laboratory experience.

  • Multisim Files Available on the Website     Circuit fi les coordinated with this text in 
Versions 11 and 12 of Multisim are available for download from  www.pearsonhigh-
ered.com/fl oyd . Circuit fi les with prefi x F are fi gure circuits and fi les with prefi x P 
are problem circuits. Also, a few fi les are prefi xed with E or T, represesting examples 
or tables. 

 In order to use the Multisim circuit fi les, you must have Multisim software installed 
on your computer. Multisim software is available at  www.ni.com/Multisim . Although the 
Multisim circuit fi les are intended to complement classroom, textbook, and laboratory 
study, these fi les are not essential to successfully using this text.   

  Instructor Resources 
 Instructor resources are available from Pearson’s Instructor’s Resource Center.

• PowerPoint® slides (ISBN 013298962x) support the topics in each chapter.

• Instructor’s Resource Manual (ISBN 0132989832) contains the solutions to the text 
problems and the solutions to the lab manual.

• TestGen (ISBN 0132988615) This electronic bank of test questions can be used to 
develop customized quizzes, tests, and/or exams.

To access supplementary materials online, instructors need to request an instructor 
access code. Go to www.pearsonhighered.com/irc, where you can register for an instruc-
tor access code. Within 48 hours after registering, you will receive a confi rming e-mail, 
including an instructor access code. Once you have received your code, go to the site and 
log on for full instructions on downloading the materials you wish to use.  

  Illustrations of Textbook Features 
       Chapter Opener     A typical chapter opener is shown in Figure P–1.  

  Worked Example and Related Problem     Worked-out examples illustrate basic con-
cepts or specifi c procedures. A Related Problem reinforces or expands on the content of the 
example. A typical worked-out example with a Related Problem is shown in Figure P–2.  

  Section Opener     Each section in a chapter begins with a brief introduction that includes a 
general overview and section objectives, as shown in Figure P–2.  

  Section Checkup     A typical Section Checkup is shown in Figure P–2. (Answers to the 
Section Checkups are at the end of the chapter.)  

Hands On Tip A typical Hands On Tip is shown in Figure P–2.

  System Section     Typical pages from a System Section are shown in Figure P–3.  

www.pearsonhighered.com
www.pearsonhighered.com/floyd
www.pearsonhighered.com/floyd
www.ni.com/Multisim
www.pearsonhighered.com/irc
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 PROGRAMMABLE LOGIC 

    CHAPTER 9 

     OUTLINE 
     9–1  Simple Programmable Logic Devices (SPLDs)      

     9–2  Complex Programmable Logic Devices 
(CPLDs)      

     9–3  Macrocell Modes      

     9–4  Field-Programmable Gate Arrays (FPGAs)      

     9–5  Programmable Logic Software      

     9–6  Boundary Scan Logic      

     9–7  Troubleshooting       

  KEY TERMS 
    PAL   
   GAL   
   Macrocell   
   Registered   
   CPLD   
   LAB   
   LUT   
   FPGA   
   CLB   
   Intellectual property   

   Design fl ow   
   Target device   
   Schematic entry   
   Text entry   
   Functional simulation   
   Compiler   
   Timing simulation   
   Downloading   
   Break point   
   Boundary scan     

  OBJECTIVES 
  •   Discuss the types of programmable logic, SPLDs 

and CPLDs, and explain their basic structure  

  •   Describe the basic architecture of two types of 
SPLDs—the PAL and the GAL  

  •   Explain the basic structure of a programmable 
logic array (PLA)  

  •   Discuss the operation of macrocells  

  •   Distinguish between CPLDs and FPGAs  

  •   Explain the basic operation of a look-up table (LUT)  

  •   Defi ne  intellectual property  and  platform FPGA   

  •   Discuss embedded functions  

  •   Show a basic software design fl ow for a program-
mable device  

  •   Explain the design fl ow elements of design entry, 
functional simulation, synthesis, implementation, 
timing simulation, and downloading  

  •   Discuss several methods of testing a programma-
ble logic device, including boundary scan logic   

  VISIT THE WEBSITE 
 Study aids for this chapter are available at

 http://pearsonhighered.com/fl oyd   

  INTRODUCTION 
 The distinction between hardware and software is hazy. 
Today, new digital circuits are programmed into hard-
ware using languages like VHDL and Verilog. The den-
sity (number of equivalent gates on a single chip) has 
increased dramatically over the past few years. The max-
imum number of gates in an FPGA (a type of PLD known 
as a fi eld-programmable gate array) is over 500,000 and 
doubling every 18 months, according to Moore’s law. At 
the same time, the price for a PLD is decreasing. 

 PLDs, such as the FPGA, can be used in conjunc-
tion with processors and software in an embedded sys-
tem, or the FPGA can be the sole component with all the 

FIGURE P–1 Chapter 
opener.

5–6 DECODERS   243

the highest-order bits (MSBs). When such an inequality is found, the relationship of the 
two numbers is established, and any other inequalities in lower-order bit positions must be 
ignored because it is possible for an opposite indication to occur;  the highest-order indica-
tion must take precedence.  

  E X A M P L E  5 – 6 

 Determine the    A = B, A 7 B,    and    A 6 B    out-
puts for the input numbers shown on the compa-
rator in  Figure   5–26   .  

  S O L U T I O N 

 The number on the  A  inputs is 0110 and the 
number on the  B  inputs is 0011. The    A + B    
  output is HIGH and the other outputs are 
LOW.   

  R E L A T E D  P R O B L E M 

 What are the comparator outputs when 
   A3A2A1A0 = 1001    and    B3B2B1B0 = 1010?         

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

 FIGURE 5–26        

 h a n d s  o n  t i p 
 Most CMOS devices contain 
protection circuitry to guard 
against damage from high static 
voltages or electric fi elds. 
However, precautions must be 
taken to avoid applications of 
any voltages higher than 
maximum rated voltages. For 
proper operation, input and 
output voltages should be 
between ground and    VCC.    Also, 
remember that unused inputs 
must always be connected to an 
appropriate logic level (ground 
or    VCC   ). Unused outputs may be 
left open. 

  1.    The binary numbers    A = 1011    and    B = 1010    are applied to 
the inputs of the comparator in  Figure   5–25   . Determine the 
outputs.   

  2.    The binary numbers    A = 11001011    and    B = 11010100    are 
applied to an 8-bit comparator. Determine the states of the 
outputs.      

   SECTION   5–5    CHECKUP 

   5–6  DECODERS 
 A  decoder  is a digital circuit that detects the presence of a specifi ed combination of bits (code) 
on its inputs and indicates the presence of that code by a specifi ed output level. In its general 
form, a decoder has  n  input lines to handle  n  bits and from one to    2n    output lines to indicate the 
presence of one or more  n -bit combinations. In this section, several decoders are introduced. 
The basic principles can be extended to other types of decoders. 

  After completing this section, you should be able to 

  •   Defi ne  decoder   

  •   Develop a logic circuit to decode any combination of bits  

  •   Expand decoders to accommodate larger numbers of bits in a code  

  •   Discuss zero suppression in 7-segment displays  

  •   Apply decoders to specifi c applications   

  The Basic Binary Decoder 
 Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-
cuit. An AND gate can be used as the basic decoding element because it produces a HIGH 
output only when all of its inputs are HIGH. Therefore, you must make sure that all of the 

FIGURE P–2 Worked example with Related Problem, Hands 
On Tip, Section Checkup, and Section Opener.

Worked Example with 
Related Problem

Hands On Tip

Section Checkup

Section Opener

http://pearsonhighered.com/floyd


x   PREFACE

  System Example     A typical System Example is shown in Figure P–4.  

  The Sunlight Sensors 
 The sun tracker system tracks the movement of the sun through the day using photosensi-
tive devices. As illustrated in  Figure   12–1   , the sunlight sensor consists of two photoresis-
tors separated by a plate that optically isolates the photoresistors from each other. The 
resistance of a photoresistor decreases as the light intensity increases. Other light-sensitive 
devices, such as the photodiode and phototransistor, could also be used. The sensor assem-
bly is attached to the solar panel so that it is always pointing in the same direction as the 
panel. When the sensor arrangement and solar panel are not pointing directly at the sun, 
the photoresistor  R  2  gets more sunlight than  R  1 , as illustrated in part (a) of the fi gure. When 
the sensors and solar panel are pointing directly at the sun, R1 and R2 get the same amount 
of sunlight, as shown in part (b). The voltages across the sensors depend on the orientation 
of the panel. After being processed through the system, the sensor voltages cause the panel 
to rotate to follow the sun’s movement, as shown in  Figure   12–2   . When the solar panel and 

      12–1  A SYSTEM 
 In this section, a system for tracking the movement of the sun in order to control the position of a 
solar panel, Fresnel mirror array, or other type of solar collection device is discussed. The system 
senses the orientation of the solar panel relative to the sun’s position in the sky and produces a 
signal that causes the solar panel to rotate until it is directly aligned with the sun. Analog-to-digital 
converters (ADCs), which are covered later in the chapter, are an important part of this system. 

  After completing this section, you should be able to 

  •   Describe the overall system  

  •   Discuss how ADCs are used in the system  

  •   Use VHDL to implement a portion of the system   

R1

+V GND

Sunlight Sunlight

+ VR1 – + VR2 –

R2

GND

R1

+V

+ VR1 – + VR2 –

R2

(a)  VR1 > VR2 (b)  VR1 = VR2 

 FIGURE 12–1         Sunlight 
sensor arrangement. The 
orientation produces voltages 
proportional to the incident 
sunlight.   

Solar panel

Sensor
assembly

(a) When panel and sensor are not
      aligned with sun, they rotate
      clockwise.

(b) When panel and sensor are aligned
      with sun, they stop rotating.

 FIGURE 12–2         The sensors 
are mounted to the solar panel. 
When the panel is not pointing 
directly at the sun, it rotates 
until it is aligned.   

600   CHAPTER 12  •   SIGNAL CONVERSION AND PROCESSING

 The A/D processing block receives the digitized light level inputs from the ADCs 
and compares the two values to determine the required direction of rotation. If the ADC1 
output is greater than the ADC2 output    (VR1 7 VR2),    a start bit is issued, and the motor 
control initiates a bit sequence to produce the motor stepping action, which causes the 
solar panel to rotate clockwise. If the ADC outputs are equal    (VR1 = VR2),    the solar panel 
will stop because it is pointing directly at the sun. As the sun moves further west, the sys-
tem follows until the light level of both sensors decreases below a certain threshold value, 
and a reset signal is generated. At that point, the panel has reached its western-most posi-
tion and the sunlight is greatly diminished. The motor control reverses the bit sequence to 
the stepper motor, and the solar panel is rotated counterclockwise back to its eastern-most 
position. When the sun rises the next day, the cycle repeats.  

  Stepper Motor Operation 
 The interface between the stepper motor control and the motor converts low-level cur-
rents produced by the motor control to currents that are suffi cient to drive the motor 
windings. The stepper motor divides a single rotation of its output shaft into a fi xed 
number of steps, as shown in  Figure   12–4   . Pulses (1s) are applied sequentially to the 
four motor windings to drive the stepping operation. For each pulse, the motor advances 
a set number of degrees,    D�,    clockwise. After a full cycle of four pulses, the motor has 

sensor arrangement are pointed directly at the sun, the light levels for both photoresistors 
are balanced. The solar panel does not rotate until the sun’s position changes by a certain 
amount, and the photoresistors begin to receive different amounts of sunlight.    

  The Complete System 
 The complete sun tracker system is shown in block diagram form in  Figure   12–3   . The sys-
tem consists of the sunlight sensor, analog-to-digital converters, frequency divider, analog-
to-digital processor, motor control, motor interface, and stepper motor. If the resistance of 
   R1    in  Figure   12–1    is less than that of    R2, VR2    is less than    VR1,    and the resulting direction 
signal (acting through the A/D processing block) causes the motor to turn the solar panel 
clockwise. If    R1    and    R2    are equal, the voltages are equal and the motor stops because the 
panel is directly aligned with the sun. The frequency divider divides the system clock down 
to a frequency compatible with the rate at which the stepper motor can be advanced.  

ADC 1

Reset (low light limit switch)

System clock

ADC 2

Stepper
motor

Solar
panel

A/D
processing

Sunlight
sensors

Frequency
divider

Stepper motor
control

Direction

Start/Stop

Interface

 FIGURE 12–3         The complete sun tracker system block diagram.   

FIGURE P–3 Partial System Section.
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  The CAN Bus 
 The  controller area network (CAN)  bus, a differential serial bus, was developed for auto-
motive applications and is also commonly used in aerospace systems as well as other 
applications. The bus consists of a terminated twisted pair of signal lines, called CAN H 
and CAN L, plus ground. Vehicles sold in the United States are required by the SAE 
(Society of Automotive Engineers) to use the CAN bus protocol. The European Union 
has similar requirements. 

 Devices, called  nodes , can be connected to the bus but are not assigned specifi c 
addresses as in the I 2 C bus. There are two CAN specifi cations in use. The standard or basic 
CAN 2.0A has 11-bit message identifi ers and can operate up to 250 kbps, and the full CAN 
has 29-bit message identifi ers and can be used up to 1 Mbps. The message identifi er is a 
label for the contents of a message and goes to each node on the bus. Each receiving node 
performs a test on the identifi er to determine if it is relevant to that node and is used to 
arbitrate the bus to determine if the message is of highest priority. All of the nodes on the 
bus can transmit and receive messages. The bus is available to a node with a message with 
the highest priority (dominant) and can override a message with lower priority (recessive). 
When the dominant message has been processed, the recessive message is retransmitted. 

  DATA FRAME     The standard data frame is shown in  Figure   14–36   . Data is transmitted in 
NRZ format. The frame begins with a start-of-frame (SOF) bit followed by an arbitration fi eld 
and a control fi eld. The arbitration fi eld contains the message identifi er and a remote transmis-
sion request (RTR) bit. The control fi eld has two reserve bits and a data length code (DLC) 
that specifi es the length of the data fi eld that follows and can contain up to eight bytes. The 
cyclic redundancy check (CRC) fi eld provides for error detection. The acknowledge (ACK) 
verifi es the receipt of correct data, and the frame ends with the end-of-frame fi eld (EOF).              

SOF Arbitration field Control field Data field CRC field ACK EOF

(1 bit) Identifier (11bits)
RTR (1 bit)

(0–8 bytes) (16 bits) (2 bits) (7 bits)Reserve (2 bits)
DLC (4 bits)

 FIGURE 14–36    Standard CAN data frame format.          

 AN AUTOMOBILE CONTROL SYSTEM 
 A modern automobile typically has many control units (usually several dozen) for various 
subsystems, which include the engine control unit and other control units for transmission; 
ABS; cruise control; power steering; audio system; window, door, and mirror controls; 
airbags; and others.  Figure   14–37    is a block diagram of a partial automotive control system 
using two CAN buses, one low-speed and one high-speed to control various functions 
throughout the vehicle. 

 Each unit connected to the bus contains sensors and other functions that allow it to 
carry out its unique purpose. For example, the ABS (antilock braking system) can receive 
a message from sensors in each wheel, indicating that the brake is about to lock up. A sud-
den and rapid deceleration in the wheel indicates an imminent lock-up condition. The ABS 
unit then sends a message that causes the valve in the brake line to release pressure to 
allow acceleration. Then, when acceleration is sensed, the unit causes a pump to restore the 
pressure. A rapid release-and-restore cycle occurs until the brakes are brought under con-
trol. A pulsing of the brake pedal can be felt when the operation occurs. 

 As another example, part of the engine control unit’s operation is to sense parame-
ters, such as engine temperature, oil pressure, fuel consumption, and rpm, and send mes-
sages to the driver unit. All of the units on the bus operate as a system to keep the vehicle 
running as smoothly and as safely as possible, while providing a comfortable environment 
for the driver and passengers. 
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  The Firewire Bus 
  Firewire , also known as IEEE-1394 and iLink, is a high-speed external serial bus devel-
oped by Apple Inc. Firewire is used in high-speed communications and real-time data 
transfer. It is used in professional audio and video equipment, camcorders, DVD players, 
external hard drives, computers, and in some auto and aircraft applications. It works very 
similar to the USB except that it has a higher data rate and can handle more data. 

 Three types of connectors are used in the Firewire standard: a 4-pin connector, a 
6-pin connector, and a 9-pin connector. The cable for the 4-pin connector consists of two 
twisted pairs that carry data. The cable for the 6-pin connector has the two twisted pairs 
for data plus a power line and a ground line. The cable for the 9-pin connector has the 
same wires as the 6-pin confi guration plus two wires that provide for a grounded shield 
and one wire that is currently unused. The Firewire symbol is shown in  Figure   14–38   (a). 
End views of the three connector types are shown in part (b), and the pin designations are 
shown in part (c).   

 The Firewire bus address has a total of 64 bits. Ten are for bus ID, six are for node 
ID, and 48 are for individual addresses. This allows up to 1023 buses each having up to 
63 nodes. There are six transfer modes in the IEEE-1394 standard and its revisions: S100, 
S200, S400, S800, S1600, and S3200. The S100 is the base rate of 98.304 Mbps. The 
S200 is twice the base rate at 196.608 Mbps, and the S400 is four times the base rate at 
393.216 Mbps. The S800 is 786.432 Mbps, and the S1600 and S3200 are 16 and 32 times 
the base rate respectively (1.6 Gbps and 3.2 Gbps). Firewire cable length cannot exceed 
15 ft (4.572 m). To increase this length, up to 16 cables can be connected together. 

  FIREWIRE VERSUS USB     In general, any capable node can control the bus in a 
Firewire system, but a single host is used to control the bus in USB. USB networks use a 
tiered-star topology, and Firewire uses a tree topology. (Network topologies are covered 
in  section   14–6   .) A Firewire device can communicate with any node at any time if the 
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FIGURE P–4 System Example.
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  Pulse Amplitude Modulation 
 In pulse amplitude modulation,  PAM,  the heights or amplitudes of the pulses are 
varied according to the modulating analog signal, and each pulse represents a value 
of the analog signal. PAM is the simplest, but least used, type of pulse modulation 
although it is used in the Ethernet communications standard. A simple PAM sequence 
is shown in  Figure   11–27   .     

   11–4  MODULATION OF DIGITAL SIGNALS 
WITH ANALOG DATA 

 As you learned in the last section, analog signals are commonly used to carry digital data. In 
this section, you will see that digital signals can be used to carry analog information. These 
techniques are usually referred to as pulse modulation. A pulse parameter such as amplitude 
or pulse width is varied to represent an analog quantity. The details of related topics such as 
sampling and analog-to-digital conversion are covered in  Chapter   12   . 

  After completing this section, you should be able to 

  •   Describe pulse amplitude modulation  

  •   Describe pulse width modulation  

  •   Discuss the basic concept of sampling  

  •   Explain delta modulation   

Amplitude

t

 FIGURE 11–27         A simple 
PAM signal.   

 Ethernet is a family of computer networking protocols described by the IEEE 802.3 standard. 
Systems that communicate using Ethernet divide the data into individual packets called frames. 
Each frame contains source and destination addresses and error-checking bits. The Ethernet 
standard includes several variations that specify both media and signaling standards, including 
type of wire or cable, data format, and data rates. 

 S Y S T E M  N O T E 

  GENERATION OF A PAM SIGNAL     A basic method of producing a PAM repre-
sentation of an analog signal is to use a constant-amplitude pulse source to sample the 
analog wave that has a frequency lower than the pulses, as shown in  Figure   11–28    for a 
sine wave input, although any form of analog signal can be converted to a PAM output. 
The pulses turn the switch on (closed) and off (open) to sample the waveform. When there 

Sample Hold

PAM output

Sample points

 FIGURE 11–28         Basic method of pulse amplitude modulation.   

FIGURE P–5 System Note

System Note

System Notes A typical System Note is shown in Figure P–5.

  Programmable Logic Coverage     The hardware description languages VHDL and Verilog 
are used in programmable logic applications. Figure P–6 shows two typical pages.  
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  The Timing Circuits Block 
 The two parts of the Timing circuits block are the Frequency divider (FD) and the Timer 
circuits (TC). A system clock frequency of 24 MHz is assumed. The Frequency divider part 
divides the 24 MHz system clock down to a 1 Hz clock. The Timer circuits part simulates the 
one-shot outputs described in  Section   6–1    to produce outputs of    TS = 4 s    and    TL = 25 s.    

  FREQUENCY DIVIDER     The purpose of the frequency divider is to produce a 1 Hz 
clock for the timer circuits. The input ClkIn in this application is a 24.00 MHz oscillator 
that drives the program code. SetCount is used to initialize the count for a 1 Hz interval. 
The program FreqDivide counts up from zero to the value assigned to SetCount (one-half 
the oscillator speed) and inverts the output identifi er ClkOut. 

 The integer value Cnt is set to zero prior to operation. The clock pulses are counted 
and compared to the value assigned to SetCount. When the number of pulses counted 
reaches the value in SetCount, the output ClkOut is checked to see if it is currently set to a 
1 or 0. If ClkOut is currently 0, ClkOut is assigned a 1; otherwise, ClkIn is set to 1. Cnt is 
assigned a value of 0 and the process repeats. Toggling the output ClkOut each time the 
value of SetCount is reached creates a 1 Hz clock output with a 50% duty cycle.  

  VHDL FOR THE FREQUENCY DIVIDER    
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 FIGURE 6–55         Programming model for the traffi c signal control system.   

 A programming model for the traffi c signal control system is shown in  Figure   6–55   , 
where all the input and output labels are given. Notice that the Timing circuits block is split 
into two parts; the Frequency divider and the Timer circuits; and the Combinational logic 
block is divided into the State decoder and two logic sections (Light output logic and Trig-
ger logic). This model will be used to develop VHDL and Verilog programs for the system.  

   library  ieee; 
  use  ieee.std_logic_1164.all; 

  entity  FreqDivide  is  
  port (Clkln,  in std_logic;  
   ClkOut:  buffer std_logic);  
  end entity  FreqDivide; 

  architecture  FreqDivide Behavior  of  FreqDivide  is  
  begin  
  FreqDivide:  process (Clkln)  
   variable  Cnt:  integer  := 0;        
   variable  SetCount:  integer;         

  Clkln: 24.00 MHz clock driver
ClkOut: Output at 1 Hz

   Cnt: Counts up to value in SetCount
SetCount: Holds 1>2 timer interval value
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  begin  
  SetCount := 12000000; -- 1/2 duty cycle 
   if (ClkIn‘EVENT and  ClkIn = ‘1’)  then   
    if  (Cnt = SetCount)  then  
     if  ClkOut = ‘0’  then  
     ClkOut 6= ‘1’; --Output high 50% 
     else  
     ClkOut 6= ‘0’; --Output Low 50% 
     end if;  
    Cnt := 0; 
    else  
    Cnt := Cnt + 1;  
    end if;  
   end if;  
  end process;  
  end architecture  FreqDivideBehavior;   

SetCount is assigned a value equal to half the 
system clock to produce a 1 Hz output. In this 
case, a 24 MHz system clock is used.

  The if statement causes program to wait for a 
clock event and clock = 1 to start operation.

Check that the terminal value in SetCount has 
been reached at which time ClkOut is toggled 
and Cnt is reset to 0.

∂
  If terminal value has not been reached, Cnt is incremented.

  VERILOG  FOR THE FREQUENCY DIVIDER      

 module FreqDivide (Clkln, ClkOut); 
   input       Clkln; 
   inout       ClkOut; 
   integer    Cnt = 0;                                  
   integer    SetCount = 12000000; //1>2 duty cycle 
   reg  [0:0] Q; 

   always  @(posedge Clkln)      
   begin  
    if  (Cnt = = SetCount) 
    begin  
   if (ClkOut = = 0)
   begin
     Q = 1; //Output high 50% 
     end      
     else  
     begin  
     Q = 0; //Output Low 50% 
     end  
    Cnt = 0; 
    end  
    else  
    begin  
    Cnt = Cnt + 1;            If terminal value has not been reached.  
    end                                            Cnt is incremented. 
   end  
   assign  ClkOut = Q;     
  endmodule    

      Clkln: 24.00 MHz clock driver
    ClkOut: Output at 1 Hz
         Cnt: Counts up to value in SetCount
SetCount: Holds 1>2 timer interval value
            Q: Holds output value within the always block

  The always statement causes program to wait for a 
positive edge clock event.

Check that the terminal value in SetCount has been 
reached at which time ClkOut is toggled and Cnt is 
reset to 0.

    Value stored in Q is assigned to ClkOut outside the 
always block.

SetCount is assigned a value equal 
to half the system clock to produce 
a 1 Hz output. In this case a 24 MHz 
system clock is used.

 

∂

  TIMER CIRCUITS     The program TimerCircuits uses two one-shot instances consist-
ing of a 25 s timer (TLong) and a 4 s timer (TShort). The 25 s and the 4 s timers are trig-
gered by long trigger (LongTrig) and short trigger (ShortTrig). In the VHDL and Verilog 
programs, countdown timers driven by a 1 Hz clock input (Clk) replicate the one-shot 
components TLong and TShort. The values stored in SetCountLong and SetCountShort 
are assigned to the Duration inputs of one-shot components TLong and TShort, setting the 

FIGURE P–6 Example pages of system implementation with programmable logic.
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  Troubleshooting Section     A portion of a typical troubleshooting section is shown in 
Figure P–7.  

  Troubleshooting with Waveform Simulation 
 As discussed, simulation waveform stimulus can be accomplished using a test bench pro-
gram or graphically using a waveform editor. The following illustration demonstrates sim-
ulation troubleshooting techniques applied to the SequentialLogic section of the traffi c 
signal control system created in VHDL. 

  FUNCTIONAL SIMULATION     Prior to download to the target device, simulation 
tools are useful to identify unexpected behavior. In the following illustration, the waveform 
output in  Figure   9–55    shows that the sequential logic Gray code output from identifi ers g0 and 
g1 does not respond to the waveform test stimulus as expected. In a timing simulation, the 
PLD chip libraries are loaded, and testing is conducted against a model of the target device 
where typically outputs start at a zero state. In the functional simulation, the basic logic is 
tested. Since functional simulation does not make assumptions about initial states, a circular 
dependency could exist where the output of one function is used to determine the outcome of 
a second where neither may be resolved. A break point can be inserted in the program code to 
determine where undetermined states may exist, so they can be addressed in the program code 
if needed. A  break point  is a fl ag placed within the program source code where the application 
is stopped temporarily, allowing investigation of program identifi ers and the status of the I/O.  

   9–7  TROUBLESHOOTING 
 During program code development, simulation tools can be used to validate logic modules for 
proper operation prior to PLD programming. Two basic ways to test a device that has been 
programmed with a logic design are traditional and automated. In the traditional method, 
common laboratory test instruments can be used to check the operation. In the automated 
method, three fundamental approaches can be used for testing: bed-of-nails, fl ying probe, and 
boundary scan. Bed-of-nails and fl ying probe were described in  Chapter   6   , and boundary scan 
is introduced now. In this section, the focus is on simulation prior to device programming and 
boundary scan testing once the PLD has been programmed. 

  After completing this section, you should be able to 

  •   Explain troubleshooting techniques using waveform simulation  

  •   Defi ne  break point   

  •   Discuss boundary scan testing   

 FIGURE 9–55        

 To investigate this behavior, you can insert a break point into the program code, so 
you can view the condition of identifi ers G0 and G1 as the simulation progresses. 

 In the sequential logic component of the traffi c signal control system, identifi ers D0 
and D1 are dependent on the output of fl ip-fl ops DFF0 and DFF1. Since D0 feeds DFF0, 
for example, D0 could be in an undetermined state at startup, causing G0 to also be in an 
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undetermined state. The functional simulation would point this out as shown since G0 and 
G1 are left in an undetermined state. As shown in  Figure   9–56,    in this case, a break point is 
set by right-clicking line number 22 and selecting “Set Breakpoint 22”. Multiple break points 
may be defi ned as needed to investigate the behavior of the program under simulation.  

Hover over
identifiers to
view current
status

Simulation run
stopped at

break point
defined for

identifier D0.

 FIGURE 9–56        

 The simulation has stopped at the predefi ned break point inserted at identifi er D0. By 
examining the condition of the supporting identifi ers D0, TL, VS and G1, you determine 
the problem to be related to the D fl ip-fl op components whose output value G1 is listed as 
“U” or undefi ned. D0 is dependent on identifi er G1 and the fl ip-fl op. DFF1 is in turn 
dependent on D1. The output of the fl ip-fl op does not allow resolution of the Boolean 
expressions assigned to D0 or D1. 

 Examining the D fl ip-fl op defi nition, you see that the fl ip-fl op simply writes the value 
of the D input to output Q upon a rising clock edge.  Figure   9–57   (a) shows that the output 

Signal QT allows for
the pre-initialization
of a 0 to output Q

 FIGURE 9–57       

  (a)  (b)   

FIGURE P–7 Partial Troubleshooting Section.

Other Features
  End of Chapter     The following features are at the end of each chapter. 

   •   Summary  

  •   Key term glossary  

  •   True/False quiz  

  •   Self-test  

  •   Sectionalized and categorized problem set  

  •   Answers to section checkups, related problems for examples, true/false quiz, and 
self-test    

  End of Book     The following features are at the end of book. 

   •   Appendices: Code conversions and Powers-of-two table; Security System Compo-
nent programs  

  •   Comprehensive glossary  

  •   Answers to odd-numbered problems  

  •   Index              

  Website     The website (www.pearsonhighered.com/fl oyd) offers the topics related to the 
textbook for reference or advanced informations, as shown in Figure P–8.  

www.pearsonhighered.com/floyd
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 FIGURE P–8         Website for Digital Fundamentals: 
A Systems Approach.   

  To the Student 
 Today, it seems that digital technology pervades most everything and is continuously 
changing. This makes it essential that you obtain a thorough grounding in the fundamen-
tals because even though technology continues to change, the fundamentals remain intact. 
By fully understanding fundamental concepts, you can adapt to changing conditions. 

 A digital system is a combination of many logic functions that operate together to 
produce a desired result. This book not only covers the fundamentals of digital technology 
but presents several basic systems and shows how fundamental concepts and individual 
logic devices are used in them. Those working in electronics technology should have a basic 
grasp of the system concept and a practical knowledge of how to apply the fundamentals. 

 Today, logic devices are integrated circuits that can be programmed to perform a 
desired function. Although some fi xed-function devices remain, the trend is mainly toward 
the use and application of programmable logic devices (PLDs). Therefore, two major pro-
gramming languages used for logic programming are introduced in this text (VHDL and 
Verilog). The coverage in this book is not intended to make you an expert on the program-
ming languages, but only to familiarize you with some basic concepts. Tutorials are avail-
able at the website, and more advanced coverage can be found from many sources. 

 Anyone working in the fi eld needs to be able to troubleshoot systems. The trouble-
shooting methods and examples provided in this book will help you to get started as a 
troubleshooter.  

  To the Instructor 
 Time limitations and/or program emphasis generally are major factors in the amount of 
material and the topics covered in a course. It is not uncommon to omit or condense 
selected topics or to alter the sequence of certain topics in order to accommodate the 
requirements of a course. To this end, topics have been organized with a ”modular” 
approach so that certain topics are not integrated or intermingled with the more basic core 
topics. Topics such as programmable logic, PLD programming, and troubleshooting are 
contained in separate chapters, dedicated sections within a chapter, or on the website to 
permit more fl exible treatment. 

 A fairly strong emphasis is placed on programmable logic devices because they are 
so prevalent in the implementation of today’s systems. PLD and programming coverage 
using VHDL and Verilog is introduced at a fundamental level to provide a basic founda-
tion and is not intended to be a comprehensive treatment. You may choose to cover either 
VHDL or Verilog or both. Tutorials for PLD programming (VHDL, Verilog, Altera Quar-
tus II, and Xilinx ISE) are provided on the Internet to assist students in their study. Of 
course, much more extensive coverage of these topics can be found at many Internet sites 
if that is deemed necessary. Fixed-function logic devices ( 7400 series for example) are 
introduced but given a very light treatment due to their declining availability and use. 

www.pearsonhighered.com/floyd
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 Table P–1 •   Some suggested combinations of topics. Many others are possible. 

 OPTIONS  CORE � SYSTEMS  PLDS  PLD PROG  TROUBLESHOOTING  CH 11  CH12  CH13  CH14 

 1  Yes  No  No  No  No  No  No  No 

 2  Yes  No  No  Yes  Yes  No  No  No 

 3  Yes  No  No  Yes  Yes  Yes  No  No 

 4  Yes  No  No  No  Yes  Yes  Yes  Yes 

 5  Yes  No  No  Yes  Yes  Yes  Yes  Yes 

 6  Yes  Yes  No  Yes  No  No  No  No 

 7  Yes  Yes  Yes  No  No  No  No  No 

 8  Yes  Yes  Yes  Yes  Yes  No  No  Yes 

 9  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes 

       Customizing the Contents     You can structure your course around this text from a mini-
mal coverage to a full-blown coverage.  Table   P–1    provides some suggestions with Option 
1 being minimal and Option 9 being full coverage. You can decide the best approach for 
your course using one of these suggestions or you may decide to choose some other com-
bination of topics.      
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 INTRODUCTION 
TO DIGITAL SYSTEMS 

    CHAPTER 1 

     OUTLINE 
     1–1  Digital and Analog Signals and Systems      

     1–2  Binary Digits, Logic Levels, and Digital 
Waveforms      

     1–3  Logic Operations      

     1–4  Combinational and Sequential Logic Functions      

     1–5  Programmable Logic      

     1–6  Fixed-Function Logic Devices      

     1–7  A System      

     1–8  Measuring Instruments       

  OBJECTIVES 
  •   Explain the basic differences between digital and 

analog quantities  

  •   Show how voltage levels are used to represent 
digital quantities  

  •   Describe various parameters of a pulse waveform 
such as rise time, fall time, pulse width, fre-
quency, period, and duty cycle  

  •   Explain the logic operations of NOT, AND, 
and OR  

  •   Describe several types of logic functions  

  •   Describe programmable logic, discuss the 
 various types, and describe how PLDs are 
 programmed using VHDL and Verilog with 
 system software  

  •   Describe the basics of a microcontroller  

  •   Identify fi xed-function digital integrated circuits 
according to their technology and the type of 
packaging  

  KEY TERMS 
 Key terms are in order of appearance in the chapter. 

  •   Discuss how various logic functions are used in 
a digital system  

  •   Recognize various instruments and understand 
how they are used in measurement and trouble-
shooting digital devices and systems   

  VISIT THE WEBSITE 
 Study aids for this chapter are available at

 http://pearsonhighered.com/fl oyd   

    Analog   
   Digital   
   Digital system   
   Binary   
   Bit   
   Pulse   
   Duty cycle   
   Clock   
   Timing diagram   
   Data   
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   Parallel   
   Logic   
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   NOT   
   Inverter   
   AND   
   OR   
   Programmable logic 
device   
   SPLD   
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   FPGA   
   Compiler   
   Microcontroller   
   Embedded system   
   Integrated circuit (IC)   
   Fixed-function logic   
   Troubleshooting     
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  INTRODUCTION 
 The term  digital  is derived from the way operations are 
performed, by counting digits. For many years, applica-
tions of digital electronics were confi ned to computer 
systems. Today, digital technology is applied in a wide 
range of systems in addition to computers. Such applica-
tions as television, communications systems, radar, nav-
igation and guidance systems, military systems, medical 

instrumentation, industrial process control, and con-
sumer electronics use digital techniques. Over the years 
digital technology has progressed from vacuum-tube cir-
cuits to fi xed-function integrated circuits to programma-
ble logic and embedded microcontrollers. 

 This chapter introduces you to digital electronics 
and provides a broad overview of many important con-
cepts, applications, and methods.   

      1–1  DIGITAL AND ANALOG SIGNALS 
AND SYSTEMS 

 Electronic systems can be divided into two broad categories, digital and analog. Digital elec-
tronics involves quantities with discrete values, and analog electronics involves quantities with 
continuous values. Although you will be studying digital fundamentals in this book, you should 
also know something about analog because many applications require both; and interfacing 
between analog and digital is important. 

  After completing this section, you should be able to 

  •   Defi ne  analog   

  •   Defi ne  digital   

  •   Explain the difference between digital and analog signals  

  •   State the advantages of digital over analog  

  •   Discuss modulation methods  

  •   Describe two types of digital systems   

 An  analog   *   quantity is one having continuous values. A  digital  quantity is one hav-
ing a discrete set of values. Most things that can be measured quantitatively occur in 
nature in analog form. For example, the air temperature changes over a continuous range 
of values. During a given day, the temperature does not go from, say, 70° to 71° instan-
taneously; it takes on all the infi nite values in between. If you graphed the temperature 
on a typical summer day, you would have a smooth, continuous curve similar to the 
curve in  Figure   1–1   . Other examples of analog quantities are time, pressure, distance, 
and sound.   

 Rather than graphing the temperature on a continuous basis, suppose you just take 
a temperature reading every hour. Now you have sampled values representing the tem-
perature at discrete points in time (every hour) over a 24-hour period, as indicated in 
 Figure   1–2   . You have effectively converted an analog quantity to a form that can now be 
digitized by representing each sampled value by a digital code. It is important to realize 
that  Figure   1–2    itself is not the digital representation of the analog quantity.  

 *  All bold terms are important and are defi ned in the end-of-book glossary. The bold terms in color are key terms 
and are included in a Key Term glossary at the end of each chapter. 
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     THE DIGITAL ADVANTAGE     Digital representation has certain advantages over 
analog representation in electronics applications. For one thing, digital data can be pro-
cessed and transmitted more effi ciently and reliably than analog data. Also, digital data has 
a great advantage when storage is necessary. For example, music when converted to digital 
form can be stored more compactly and reproduced with greater accuracy and clarity than 
is possible when it is in analog form. Noise (unwanted voltage fl uctuations) does not affect 
digital data nearly as much as it does analog signals.   

  Analog Signals 
 An analog quantity, such as voltage, that is repetitive or varies in a certain manner is an 
analog signal. An analog signal can be a repetitive waveform, such as the sine wave in 
 Figure   1–3   (a), or a continuously varying audio signal that carries information (music, the 
spoken word, or other sounds), as shown in part (b). Other examples of analog signals are 
amplitude-modulated signals (AM) and frequency-modulated signals (FM), as illustrated 
in parts (c) and (d). In AM, a lower-frequency information signal, such as voice, varies the 
amplitude of a high-frequency sine wave. In FM, the information signal varies the fre-
quency of the sine wave.   
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 FIGURE 1–2         Sampled-value representation (quantization) of the analog quantity in  Figure   1–1   . 
Each value represented by a dot can be digitized by representing it as a digital code that consists 
of a series of 1s and 0s.   
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 FIGURE 1–1         Graph of an analog quantity (temperature versus time).   



4   CHAPTER 1  •   INTRODUCTION TO DIGITAL SYSTEMS

  Digital Signals 
 A digital signal is a representation of a sequence of discrete values that are coded into a 
stream of 1s and 0s. A bit stream appears as a train of pulses or voltage levels where a high 
voltage level conveys a binary 1 and a low voltage level conveys a binary 0. Bit streams 
are used in telecommunications, computers, and other system applications.  Figure   1–4    
illustrates one type of digital signal. The duration of each bit (bit time) is indicated by the 
hash marks.  

(a) Sine wave

(c) Amplitude-modulated signal (d) Frequency-modulated signal

Frequency-
modulated
carrier

(b) Audio

Amplitude-
modulated
envelope Carrier

 FIGURE 1–3         Examples of analog signals.   

000000 11111111

 FIGURE 1–4         Example of a digital waveform.   

  DIGITAL MODULATION     In some applications, 
analog and digital signals are combined with a sine wave, 
called a  carrier , by amplitude modulating the sine wave 
with the digital waveform. A common example is a modem 
that turns digital data from a computer into modulated sig-
nals in the voice frequency range for transmission over tele-
phone lines. A digital-modulated signal is shown in  Figure 
  1–5    where the digital signal (bit stream) in  Figure   1–4    mod-
ulates the sine wave. Dashed lines mark the bit times. The 

frequency of the sine wave is shown arbitrarily low in relation to the digital-modulating 
signal for illustration.   

  PULSE-CODE MODULATION (PCM)     A PCM signal represents sampled ana-
log signals with a sequence of digital codes. It is used in computers for digital audio, in 
Blu-ray, compact disc and DVD formats, and in digital telephone systems. The sampling 
process results in a “stair-step” voltage as shown in  Figure   1–6   . The analog signal is sam-
pled at each step, and each sampled value is converted (quantized) to a digital code. The 

1 1 1 1 1 1 1 0 0 0 010 0

 FIGURE 1–5         Example of a digital-modulated signal.   
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digital signal would be the time sequence of the digital codes where the 
binary numbers shown for each step appear in sequence beginning at 
the left. The more steps there are the more accurate is the digital repre-
sentation. The length of the code depends on the number of steps.    

  Digital Systems 
 A  digital system  is an arrangement of the individual logic functions 
connected to perform a specifi ed operation or produce a defi ned output. 
An example of a digital system is a computer, as shown in  Figure   1–7    in 
basic block diagram form. A computer processes, transfers, and stores 
data in digital form (1s and 0s). To make a complete system, the com-
puter is interfaced with peripheral devices such as a modem, a mouse, a 
keyboard, and a monitor.  

0001
0000

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 FIGURE 1–6         Illustration of pulse-code modulation.   

Central-
processing
unit (CPU)

Input
Memory and

storage
Output

 FIGURE 1–7         Basic block diagram of a computer.   
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 FIGURE 1–8         A digital traffi c light controller.   

  Figure   1–8   , another example of a digital system, shows the traffi c light controller that 
you will study in  Chapter   6   . All of the digital signals that the system uses to properly 
sequence the traffi c light are internally generated, making the controller a type of fi nite 
state machine.   
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  Analog Systems 
 An  analog system  is one that processes data in analog form only. One example is a public 
address system, used to amplify sound so that it can be heard by a large audience. The 
basic diagram in  Figure   1–9    illustrates that sound waves, which are analog in nature, are 
picked up by a microphone and converted to a small analog voltage called the audio signal. 
This voltage varies continuously as the volume and frequency of the sound changes and is 
applied to the input of a linear amplifi er. The output of the amplifi er, which is an increased 
reproduction of input voltage, goes to the speaker(s). The speaker changes the amplifi ed 
audio signal back to sound waves that have a much greater volume than the original sound 
waves picked up by the microphone.  

Audio signal

Amplified audio signal

Speaker

Microphone

Original sound waves

Reproduced
sound waves

Linear amplifier

 FIGURE 1–9         A basic audio public address system.   
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Sound

Audio

Amplified
audio

Compensated
audio

FM fc

fc + 10.7 MHz

10.7 MHz FM
10.7 MHz

Amplified FM
10.7 MHz

Limited FM

 FIGURE 1–10         Block diagram of superheterodyne FM receiver.   

 Another example of an analog system is the FM receiver. The system processes the 
incoming frequency-modulated carrier signal, extracts the audio signal for amplifi cation, 
and produces audible sound waves. A block diagram is shown in  Figure   1–10    with a repre-
sentative signal shown at each point in the system.   

  A Combination Digital and Analog System 
 The compact disk (CD) player is an example of a system in which both digital and analog 
elements are used. The simplifi ed block diagram in  Figure   1–11    illustrates the basic system. 
Music in digital form is stored on the compact disk. A laser diode optical system picks up 



1–2 BINARY DIGITS,  LOGIC LEVELS, AND DIGITAL WAVEFORMS   7

the digital data from the rotating disk and transfers it to the  digital-to-analog converter 
(DAC).  The DAC changes the digital data into an analog signal that is an electrical repro-
duction of the original music. This signal is amplifi ed and sent to the speaker for you to 
enjoy. When the music was originally recorded on the CD, a process, essentially the reverse 
of the one described here, using an  analog-to-digital converter (ADC)  was used.  

Digital data

CD drive

10110011101

Analog
reproduction
of music audio
signal

Speaker

Sound
waves

Digital-to-analog
converter

Linear amplifier

 FIGURE 1–11         Simplifi ed diagram of a compact disk player.   

   1–2  BINARY DIGITS, LOGIC LEVELS, 
AND DIGITAL WAVEFORMS 

 Digital systems involve operations in which there are only two possible states. These states are 
represented by two different voltage levels: A HIGH and a LOW. The two states can also be 
represented by current levels or pits and lands on a CD or DVD. In digital systems such as com-
puters, combinations of the two states, called  codes,  are used to represent numbers, symbols, 
alphabetic characters, and other types of information. The two-state number system is called 
 binary,  and its two digits are 0 and 1. A binary digit is called a  bit.  

  After completing this section, you should be able to 

  •   Defi ne  binary   

  •   Defi ne  bit   

  •   Name the bits in a binary system  

  •   Explain how voltage levels are used to represent bits  

  •   Explain how voltage levels are interpreted by a digital circuit  

  •   Describe the general characteristics of a pulse  

  •   Determine the amplitude, rise time, fall time, and width of a pulse  

  •   Identify and describe the characteristics of a digital waveform  

  •   Determine the amplitude, period, frequency, and duty cycle of a digital waveform  

  •   Explain what a timing diagram is and state its purpose  

  •   Explain serial and parallel data transfer and state the advantage and disadvantage of each   

  1.    Defi ne  analog.    

  2.    Defi ne  digital.    

  3.    Explain the difference between a digital quantity and an ana-
log quantity.   

  4.    Give an example of a system that is analog and one that is a 
combination of both digital and analog. Name a system that is 
entirely digital.      

   SECTION   1–1    CHECKUP* 

  *Answers are at the end of the chapter.  
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  Binary Digits 
 Each of the two digits in the  binary  system, 1 and 0, is called a  bit , which is a contraction 
of the words  binary digit.  In digital circuits, two different voltage levels are used to repre-
sent the two bits. Generally, 1 is represented by the higher voltage, which we will refer to 
as a HIGH, and a 0 is represented by the lower voltage level, which we will refer to as a 
LOW. This is called  positive logic  and will be used throughout the book. 

   HIGH � 1 and LOW � 0   

 Another system in which a 1 is represented by a LOW and a 0 is represented by a HIGH is 
called  negative logic.  

 Groups of bits (combinations of 1s and 0s), called  codes,  are used to represent num-
bers, letters, symbols, instructions, and anything else required in a given application.     

 The concept of a digital computer can be traced back to Charles Babbage, who developed a 
crude mechanical computation device in the 1830s. John Atanasoff was the fi rst to apply elec-
tronic processing to digital computing in 1939. In 1946, an electronic digital computer called 
ENIAC was implemented with vacuum-tube circuits. Even though it took up an entire room, 
ENIAC didn’t have the computing power of your handheld calculator. 

 S Y S T E M  N O T E 

  Logic Levels 
 The voltages used to represent a 1 and a 0 are called  logic levels.  Ideally, one voltage level 
represents a HIGH and another voltage level represents a LOW. In a practical digital cir-
cuit, however, a HIGH can be any voltage between a specifi ed minimum value and a spec-
ifi ed maximum value. Likewise, a LOW can be any voltage between a specifi ed minimum 
and a specifi ed maximum. There can be no overlap between the accepted range of HIGH 
levels and the accepted range of LOW levels. 

  Figure   1–12    illustrates the general range of LOWs and HIGHs for a digital circuit. 
The variable    VH(max)    represents the maximum HIGH voltage value, and    VH(min)    represents 
the minimum HIGH voltage value. The maximum LOW voltage value is represented by 
   VL(max),    and the minimum LOW voltage value is represented by    VL(min).    The voltage val-
ues between    VL(max)    and    VH(min)    are unacceptable for proper operation. A voltage in the 
unacceptable range can appear as either a HIGH or a LOW to a given circuit. For example, 
the HIGH input values for a certain type of digital circuit technology called CMOS may 
range from 2 V to 3.3 V and the LOW input values may range from 0 V to 0.8 V. If a volt-
age of 2.5 V is applied, the circuit will accept it as a HIGH or binary 1. If a voltage of 0.5 V 
is applied, the circuit will accept it as a LOW or binary 0. For this type of circuit, voltages 
between 0.8 V and 2 V are unacceptable.   

  Digital Waveforms 
 Digital waveforms consist of voltage levels that are changing back and forth between the 
HIGH and LOW levels or states.  Figure   1–13   (a) shows that a single positive-going  pulse  
is generated when the voltage (or current) goes from its normally LOW level to its HIGH 
level and then back to its LOW level. The negative-going pulse in  Figure   1–13   (b) is gener-
ated when the voltage goes from its normally HIGH level to its LOW level and back to its 
HIGH level. A digital waveform is made up of a series of pulses.  

  THE PULSE     As indicated in  Figure   1–13   , a pulse has two edges: a  leading edge  that 
occurs fi rst at time    t0    and a  trailing edge  that occurs last at time    t1.    For a positive-going 
pulse, the leading edge is a rising edge, and the trailing edge is a falling edge. The pulses 

HIGH
(binary 1)

LOW
(binary 0)

VH(max)

VH(min)

VL(max)

VL (min)

Unacceptable

 FIGURE 1–12         Logic level 
ranges of voltage for a digital 
circuit.   
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in  Figure   1–13    are ideal because the rising and falling edges are assumed to change in zero 
time (instantaneously). In practice, these transitions never occur instantaneously, although 
for most digital work you can assume ideal pulses. 

  Figure   1–14    shows a nonideal pulse. In reality, all pulses exhibit some or all of these 
characteristics. The overshoot and ringing are sometimes produced by stray inductive and 
capacitive effects. The droop can be caused by stray 
capacitance and circuit resistance, forming an  RC  
circuit with a low time constant.  

 The time required for a pulse to go from its 
LOW level to its HIGH level is called the  rise time  
   (tr),    and the time required for the transition from the 
HIGH level to the LOW level is called the  fall time  
   (tf).    In practice, it is common to measure rise time 
from 10% of the pulse  amplitude  (height from 
baseline) to 90% of the pulse amplitude and to 
measure the fall time from 90% to 10% of the pulse 
amplitude, as indicated in  Figure   1–14   . The bottom 
10% and the top 10% of the pulse are not included 
in the rise and fall times because of the nonlineari-
ties in the waveform in these areas. The  pulse width  
   (tPW)    is a measure of the duration of the pulse and is 
often defi ned as the time interval between the 50% 
points on the rising and falling edges, as indicated 
in  Figure   1–14   .  

  WAVEFORM CHARACTERISTICS     Most waveforms encountered in digital 
systems are composed of series of pulses, sometimes called  pulse trains,  and can be classi-
fi ed as either periodic or nonperiodic. A  periodic  pulse waveform is one that repeats itself 
at a fi xed interval, called a  period  ( T ). The  frequency  (  f  ) is the rate at which it repeats 
itself and is measured in hertz (Hz). A nonperiodic pulse waveform, of course, does not 
repeat itself at fi xed intervals and may be composed of pulses of randomly differing pulse 
widths and/or randomly differing time intervals between the pulses. An example of each 
type is shown in  Figure   1–15   .  

Falling or
leading edge

(b) Negative–going pulse

HIGH

Rising or
trailing edge

LOW

(a) Positive–going pulse

HIGH

Rising or
leading edge

Falling or
trailing edge

LOW
t0 t1 t0 t1

 FIGURE 1–13         Ideal pulses.   
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Overshoot

Ringing
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 FIGURE 1–14         Nonideal pulse characteristics.   
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 FIGURE 1–15         Examples of digital waveforms.   
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 The frequency (  f  ) of a pulse (digital) waveform is the reciprocal of the period. The 
relationship between frequency and period is expressed as follows: 

    f �
1
T

  (1–1)    

    T �
1
f

  (1–2)    

 An important characteristic of a periodic digital waveform is its  duty cycle,  which is 
the ratio of the pulse width    (tPW)    to the period ( T  ). It can be expressed as a percentage. 

    Duty cycle � ¢ tPW

T
≤100%  (1–3)    

10 10 11
t (ms)

T
tPW

 FIGURE 1–16        

  E X A M P L E  1 – 1 

 A portion of a periodic digital waveform is shown in  Figure   1–16   . The measure-
ments are in milliseconds. Determine the following: 

   (a)   period       (b)   frequency       (c)   duty cycle    

  S O L U T I O N 

   (a)   The period is measured from the edge of one pulse to the corresponding edge 
of the next pulse. In this case  T  is measured from leading edge to leading 
edge, as indicated.  T  equals  10 ms.   

  (b)      f =
1

T
=

1

10 ms
= 100 Hz     

  (c)      Duty cycle = ¢ tPW

T
≤100% = ¢ 1 ms

10 ms
≤100% = 10%       

  R E L A T E D  P R O B L E M * 

 A periodic digital waveform has a pulse width of 25 ms and a period of 150 ms. 
Determine the frequency and the duty cycle. 

  *Answers are at the end of the chapter.      

  A Digital Waveform Carries Binary Information 
 Binary information that is handled by digital systems appears as waveforms that represent 
sequences of bits. When the waveform is HIGH, a binary 1 is present; when the waveform 
is LOW, a binary 0 is present. Each bit in a sequence occupies a defi ned time interval 
called a  bit time.    
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   THE CLOCK     In digital systems, all waveforms are synchronized with a basic timing 
waveform called the  clock . The clock is a periodic waveform in which each interval 
between pulses (the period) equals the time for one bit. 

 An example of a clock waveform is shown in  Figure   1–17   . Notice that, in this case, 
each change in level of waveform  A  occurs at the leading edge of the clock waveform. In 
other cases, level changes occur at the trailing edge of the clock. During each bit time of 
the clock, waveform  A  is either HIGH or LOW. These HIGHs and LOWs represent a 
sequence of bits as indicated. A group of several bits can be used as a piece of binary infor-
mation, such as a number or a letter. The clock waveform itself does not carry information.   

 The speed at which a computer can operate depends on the type of microprocessor used in the 
system. The speed specifi cation, for example 3.5 GHz, of a computer is the maximum clock 
frequency at which the microprocessor can run. 

 S Y S T E M  N O T E 

Bit
time

Bit sequence
represented by

waveform A

1

0

0

1
A

1 1 1 1 1 0

Clock

00000

 FIGURE 1–17         Example of a clock waveform synchronized with a waveform representation 
of a sequence of bits.   

Clock

A

B

C

1 2 3 4 5 6 7 8

A, B, and C HIGH

 FIGURE 1–18         Example of a timing diagram.   

  TIMING DIAGRAMS     A  timing diagram  is a graph of digital waveforms showing 
the actual time relationship of two or more waveforms and how each waveform changes in 
relation to the others. By looking at a timing diagram, you can determine the states (HIGH 
or LOW) of all the waveforms at any specifi ed point in time and the exact time that a 
waveform changes state relative to the other waveforms.  Figure   1–18    is an example of a 
timing diagram made up of four waveforms. From this timing diagram you can see, for 
example, that the three waveforms  A ,  B , and  C  are HIGH only during bit time 7 (shaded 
area) and they all change back LOW at the end of bit time 7.    
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  Data Transfer 
  Data  refers to groups of bits that convey some type of information. Binary data, which are 
represented by digital waveforms, must be transferred from one circuit to another within a 
digital system or from one system to another in order to accomplish a given purpose. For 
example, numbers stored in binary form in the memory of a computer must be transferred 
to the computer’s central processing unit in order to be added. The sum of the addition 
must then be transferred to a monitor for display and/or transferred back to the memory. In 
computer systems, as illustrated in  Figure   1–19   , binary data are transferred in two ways: 
serial and parallel.  

Computer

Computer

1 0 1 1 0 0 1 0

t0 t1 t2 t3 t4 t5 t6 t7

0

t0 t1

1

0

0

1

1

0

1

t0 to t1 is first.
(a) Serial transfer of 8 bits of binary data from computer to modem. Interval

printer. The beginning time is t0.
(b) Parallel transfer of 8 bits of binary data from computer to

Modem

Printer

 FIGURE 1–19         Illustration of serial and parallel transfer of binary data. Only the data lines are shown.   

 When bits are transferred in  serial  form from one point to another, they are sent one 
bit at a time along a single line, as illustrated in  Figure   1–19   (a) for the case of a computer-
to-modem transfer. During the time interval from    t0    to    t1,    the fi rst bit is transferred. During 
the time interval from    t1    to    t2,    the second bit is transferred, and so on. To transfer eight bits 
in series, it takes eight time intervals.   

 Universal Serial Bus (USB) is a serial bus standard for device interfacing. It was originally 
developed for the personal computer but has become widely used on many types of handheld 
and mobile devices. USB is expected to replace other serial and parallel ports. USB operated 
at 12 Mbps (million bits per second) when fi rst introduced in 1995, but it now operates at up to 
5 Gbps. 

 S Y S T E M  N O T E 

  When bits are transferred in  parallel  form, all the bits in a group are sent out on sepa-
rate lines at the same time. There is one line for each bit, as shown in  Figure   1–19   (b) for the 
example of eight bits being transferred from a computer to a printer or other device. To 
transfer eight bits in parallel, it takes one time interval compared to eight time intervals for 
the serial transfer. 

 To summarize, an advantage of serial transfer of binary data is that a minimum of 
only one line is required. In parallel transfer, a number of lines equal to the number of bits 
to be transferred at one time is required. A disadvantage of serial transfer is that it can take 
longer to transfer a given number of bits than with parallel transfer at the same clock fre-
quency. For example, if one bit can be transferred in 1 ms, then it takes 8 ms to serially 
transfer eight bits but only 1 ms to parallel transfer eight bits. A disadvantage of parallel 
transfer is that it takes more lines than serial transfer. 
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 E X A M P L E  1 – 2 

   (a)   Determine the total time required to serially transfer the eight bits contained 
in waveform  A  of  Figure   1–20   , and indicate the sequence of bits. The left-
most bit is the fi rst to be transferred. The 1 MHz clock is used as reference.  

  (b)   What is the total time to transfer the same eight bits in parallel?    

Clock

A

 FIGURE 1–20        

  S O L U T I O N 

   (a)   Since the frequency of the clock is 1 MHz, the period is 

   T =
1

f
=

1

1 MHz
= 1 ms   

  It takes 1 ms to transfer each bit in the waveform. The total transfer time for 
8 bits is 

   8 * 1 ms = 8 Ms   

  To determine the sequence of bits, examine the waveform in  Figure   1–20    
during each bit time. If waveform  A  is HIGH during the bit time, a 1 is trans-
ferred. If waveform  A  is LOW during the bit time, a 0 is transferred. The bit 
sequence is illustrated in  Figure   1–21   . The left-most bit is the fi rst to be 
transferred.   

1 0 0 1 0 01 1

 FIGURE 1–21        

  (b)   A parallel transfer would take  1  m s  for all eight bits.    

  R E L A T E D  P R O B L E M 

 If binary data are transferred on a USB at the rate of 480 million bits per second 
(480 Mbps), how long will it take to serially transfer 16 bits?  

  1.    Defi ne  binary.    

  2.    What does  bit  mean?   

  3.    What are the bits in a binary system?   

  4.    How are the rise time and fall time of a pulse measured?   

  5.    Knowing the period of a waveform, how do you fi nd the 
 frequency?   

  6.    Explain what a clock waveform is.   

  7.    What is the purpose of a timing diagram?   

  8.    What is the main advantage of parallel transfer over serial 
transfer of binary data?      

    SECTION   1–2    CHECKUP 



  In logic operations, the true/false conditions mentioned earlier are represented by a 
HIGH (true) and a LOW (false). Each of the three basic logic operations produces a unique 
response to a given set of conditions. 

  NOT 
 The  NOT  operation changes one logic level to the opposite logic level, as indicated in 
 Figure   1–23   . When the input is HIGH (1), the output is LOW (0). When the input is LOW, 

 Several propositions, when combined, form propositional, or logic, functions. For 
example, the propositional statement “The light is on” will be true if “The bulb is not 
burned out” is true and if “The switch is on” is true. Therefore, this logical statement can 
be made:  The light is on only if the bulb is not burned out and the switch is on.  In this 
example the fi rst statement is true only if the last two statements are true. The fi rst state-
ment (“The light is on”) is then the basic proposition, and the other two statements are the 
conditions on which the proposition depends. 

 In the 1850s, the Irish logician and mathematician George Boole developed a math-
ematical system for formulating logic statements with symbols so that problems can be 
written and solved in a manner similar to ordinary algebra. Boolean algebra, as it is known 
today, is applied in the design and analysis of digital systems and will be covered in detail 
in  Chapter   3   . 

 The term  logic  is applied to digital circuits used to implement logic functions. Several 
kinds of digital logic  circuits  are the basic elements that form the building blocks for such 
complex digital systems as the computer. We will now look at these elements and discuss 
their functions in a very general way. Later chapters will cover these circuits in detail. 

 Three basic logic operations (NOT, AND, and OR) are indicated by standard distinc-
tive shape symbols in  Figure   1–22   . An alternate standard symbol for each of these logic 
operations will be introduced in  Chapter   3   . The lines connected to each symbol are the 
 inputs  and  outputs . The inputs are on the left of each symbol and the output is on the right. 
A circuit that performs a specifi ed logic operation (AND, OR) is called a logic  gate . AND 
and OR gates can have any number of inputs, as indicated by the dashes in the fi gure. 

 In its basic form, logic is the realm of human reasoning that tells you a certain proposition 
(declarative statement) is true if certain conditions are true. Propositions can be classifi ed as 
true or false. Many situations and processes that you encounter in your daily life can be 
expressed in the form of propositional, or logic, functions. Since such functions are true/false 
or yes/no statements, digital circuits with their two-state characteristics are applicable. 

  After completing this section, you should be able to 

  •   List three basic logic operations  

  •   Defi ne the NOT operation  

  •   Defi ne the AND operation  

  •   Defi ne the OR operation   

   1–3  LOGIC OPERATIONS 

NOT ORAND

 FIGURE 1–22         The basic logic operations and symbols.   

HIGH (1) LOW (0) HIGH (1)LOW (0)

 FIGURE 1–23         The NOT operation.   



1–3 LOGIC OPERATIONS   15

the output is HIGH. In either case, the output is  not  the same as the input. The NOT opera-
tion is implemented by a logic circuit known as an  inverter.    

  AND 
 The  AND  operation produces a HIGH output only when all the inputs are HIGH, as indi-
cated in  Figure   1–24    for the case of two inputs. When one input is HIGH  and  the other 
input is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW. 
The AND operation is implemented by a logic circuit known as an  AND gate.    

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
HIGH (1)

 FIGURE 1–25         The OR operation.   

  OR 
 The  OR  operation produces a HIGH output when one or more inputs are HIGH, as indi-
cated in  Figure   1–25    for the case of two inputs. When one input is HIGH  or  the other input 
is HIGH  or  both inputs are HIGH, the output is HIGH. When both inputs are LOW, the 
output is LOW. The OR operation is implemented by a logic circuit known as an  OR gate.   

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

 FIGURE 1–24         The AND operation.   

  1.    When does the NOT operation produce a HIGH output?   

  2.    When does the AND operation produce a HIGH output?   

  3.    When does the OR operation produce a HIGH output?   

  4.    What is an inverter?   

  5.    What is a logic gate?      

   SECTION   1–3    CHECKUP 



  The Comparison Function 
  Magnitude  comparison is performed by a logic circuit called a  comparator . A comparator 
compares two quantities and indicates whether or not they are equal. For example, suppose 
you have two numbers and wish to know if they are equal or not equal and, if not equal, 
which is greater. The comparison function is represented in  Figure   1–26   . One number in 
binary form (represented by logic levels) is applied to input  A , and the other number in 
binary form (represented by logic levels) is applied to input  B.  The outputs indicate the 
relationship of the two numbers by producing a HIGH level on the proper output line. Sup-
pose that a binary representation of the number 2 is applied to input  A  and a binary represen-
tation of the number 5 is applied to input  B.  (The binary representation of numbers and 
symbols is discussed in  Chapter   2   .) A HIGH level will appear on the    A 6 B    ( A  is less than 
 B ) output, indicating the relationship between the two numbers (2 is less than 5). The wide 
arrows represent a group of parallel lines on which the bits are transferred. 

 The three basic logic elements AND, OR, and NOT can be combined to form various types of 
logic functions: comparison, arithmetic, code conversion, encoding, decoding, data selection, 
counting, and storage. This section provides an overview of important logic functions and illus-
trates how they can be used in a specifi c system. 

  After completing this section, you should be able to 

  •   List several types of logic functions  

  •   Describe comparison and list the four arithmetic functions  

  •   Describe code conversion, encoding, and decoding  

  •   Describe multiplexing and demultiplexing  

  •   Describe the counting function  

  •   Describe the storage function   

   1–4  COMBINATIONAL AND SEQUENTIAL 
LOGIC FUNCTIONS 
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(b) Example: A is less than B (2 < 5) as indicated by

LOW

Binary
code for 5

the HIGH output (A < B)

 FIGURE 1–26         The comparison function.   

  The Arithmetic Functions 
  ADDITION     Addition is performed by a logic circuit called an  adder . An adder adds 
two binary numbers (on inputs  A  and  B ) with a carry input    Cin    and generates a sum    (�)    and 
a carry output    (Cout),    as shown in  Figure   1–27   (a).  Figure   1–27   (b) illustrates the addition 
of 3 and 9. You know that the sum is 12; the adder indicates this result by producing the 
code for 2 on the sum output and 1 on the carry output. Assume that the carry input in this 
example is 0.   

  SUBTRACTION     Subtraction is also performed by a logic circuit. A  subtracter  
requires three inputs: the two numbers that are to be subtracted and a borrow input. The 
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two outputs are the difference and the borrow output. When, for instance, 5 is subtracted 
from 8 with no borrow input, the difference is 3 with no borrow output. You will see in 
 Chapter   2    how subtraction can actually be performed by an adder because subtraction is 
simply a special case of addition.  

  MULTIPLICATION     Multiplication is performed by a logic circuit called a  multi-
plier.  Numbers are always multiplied two at a time, so two inputs are required. The output 
of the multiplier is the product. Because multiplication is simply a series of additions with 
shifts in the positions of the partial products, it can be performed by using an adder in con-
junction with other circuits.     

Adder Adder

A

B

Binary
code for 3

Cout

Cin

Binary
code for 9

Binary 0

Binary
code for 2

Binary 1

Binary
code for 12

Two
binary
numbers

Carry out

A

B
Cout

CinCarry in

Sum

(a) Basic adder

Σ Σ

(b) Example: A plus B (3 + 9 = 12)

 FIGURE 1–27         The addition function.   

 In a microprocessor, the arithmetic logic unit (ALU) performs the operations of add, subtract, 
multiply, and divide as well as the logic operations on digital data as directed by a series of 
instructions. A typical ALU is constructed of many thousands of logic gates. 

 S Y S T E M  N O T E 

  DIVISION     Division can be performed with a series of subtractions, comparisons, and 
shifts, and thus it can also be done using an adder in conjunction with other circuits. Two inputs 
to the divider are required, and the outputs generated are the quotient and the remainder.   

  The Code Conversion Function 
 A  code  is a set of bits arranged in a unique pattern and used to represent specifi ed informa-
tion. A code converter changes one form of coded information into another coded form. 
Examples are conversion between binary and other codes such as the binary coded decimal 
(BCD) and the Gray code.  

  The Encoding Function 
 The encoding function is performed by a logic circuit called 
an  encoder . The encoder converts information, such as a dec-
imal number or an alphabetic character, into some coded 
form. For example, one certain type of encoder converts each 
of the decimal digits, 0 through 9, to a binary code. A HIGH 
level on the input corresponding to a specifi c decimal digit 
produces logic levels that represent the proper binary code on 
the output lines. 

  Figure   1–28    is a simple illustration of an encoder used 
to convert (encode) a calculator keystroke into a binary code 
that can be processed by the calculator circuits. 

Encoder9

8 9

4 5 6

1 2 3

0 . +/–

7

Calculator keypad

8
7
6
5
4
3
2
1
0

HIGH

Binary
code for 9

 FIGURE 1–28         A calculator keystroke encoded into a binary 
code for processing by the calculator system.   
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    The Decoding Function 
 The decoding function is performed by a logic circuit called a  decoder . The decoder con-
verts coded information, such as a binary number, into a noncoded form, such as a decimal 

form. For example, one particular type of decoder con-
verts a 4-bit binary code into the appropriate decimal 
digit. 

  Figure   1–29    is a simple illustration of one type of 
decoder that is used to activate a 7-segment display. Each 
of the seven segments of the display is connected to an 
output line from the decoder. When a particular binary 
code appears on the decoder inputs, the appropriate out-
put lines are activated and light the proper segments to 
display the decimal digit corresponding to the binary 
code.   

  The Data Selection Function 
 Two types of circuits that select data are the multiplexer and the demultiplexer. The  multi-
plexer,  or mux for short, is a logic circuit that switches digital data from several input lines 
onto a single output line in a specifi ed time sequence. Functionally, a multiplexer can be 
represented by an electronic switch operation that sequentially connects each of the input 
lines to the output line. The  demultiplexer  (demux) is a logic circuit that switches digital 
data from one input line to several output lines in a specifi ed time sequence. Essentially, 
the demux is a mux in reverse. 

 Multiplexing and demultiplexing are used when data from several sources are to be 
transmitted over one line to a distant location and redistributed to several destinations. 
 Figure   1–30    illustrates this type of application where digital data from three sources are 
sent out along a single line to three terminals at another location. 

Decoder

Binary-coded input

7-segment display

 FIGURE 1–29         A decoder used to convert a special binary code 
into a 7-segment decimal readout.   

  In  Figure   1–30   , data from input A are connected to the output line during time inter-
val    �t1    and transmitted to the demultiplexer that connects them to output D. Then, during 
interval    �t2,    the multiplexer switches to input B and the demultiplexer switches to output 
E. During interval    �t3,    the multiplexer switches to input C and the demultiplexer switches 
to output F. 

 To summarize, during the fi rst time interval, input A data go to output D. During the 
second time interval, input B data go to output E. During the third time interval, input C 
data go to output F. After this, the sequence repeats. Because the time is divided up among 
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 FIGURE 1–30         Illustration of a basic multiplexing/demultiplexing application.   
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  The Counting Function 
 A  counter  is a sequential device and is a type of state machine because it has a unique 
internal sequence of states. The counting function is important in digital systems. There 
are many types of digital counters, but their basic purpose is to count events or to generate 
sequences represented by changing levels or pulses. To count, the counter must “remember” 
the present number so that it can go to the next proper number in sequence. Therefore, 
storage capability is an important characteristic of all counters, and fl ip-fl ops are generally 
used to implement them.  Figure   1–31    illustrates the basic idea of counter operation.  

several sources and destinations where each has its turn to send and receive data, this pro-
cess is called  time division multiplexing  (TDM).   

    The Memory and Storage Functions 
  Memory and storage  are functions that are required in most digital systems, and their 
purpose is to retain binary data for a period of time. Generally, memory refers to relatively 
short-term data retention, and storage refers to long-term data retention. A storage device 
can “memorize” a bit or a group of bits and retain the information as long as necessary. 
Memories include fl ip-fl ops, registers, and semiconductor memory. Storage includes mag-
netic disks (hard drives), optical disks (CDs), and magnetic tape. 

  FLIP-FLOPS     A  fl ip-fl op  is a bistable (two stable states) logic circuit that can store 
only one bit at a time, either a 1 or a 0. The output of a fl ip-fl op indicates which bit it is 
storing. A HIGH output indicates that a 1 is stored and a LOW output indicates that a 0 is 
stored. Flip-fl ops are implemented with logic gates and are covered in  Chapter   6   .  

  REGISTERS     A  register  is formed by combining several fl ip-fl ops so that groups of 
bits can be stored. For example, an 8-bit register is constructed from eight fl ip-fl ops. In 
addition to storing bits, registers can be used to shift the bits from one position to another 
within the register or out of the register to another circuit; therefore, these devices are 
known as  shift registers.  

 The two basic types of shift registers are serial and parallel. The bits are stored in a 
serial shift register one at a time. A good analogy to the serial shift register is loading pas-
sengers onto a bus single fi le through the door. They also exit the bus single fi le. The bits 
are stored in a parallel register simultaneously from parallel lines. For this case, a good 
analogy is loading and unloading passengers on a roller coaster where they enter all of the 
cars in parallel and exit in parallel.  

  SEMICONDUCTOR MEMORIES     Semiconductor memories are devices typi-
cally used for storing large numbers of bits. In one type of memory, called the  r ead- o nly 
 m emory or ROM, the binary data are permanently or semipermanently stored and cannot 
be readily changed. In the  r andom- a ccess  m emory or RAM, the binary data are temporar-
ily stored and can be easily changed. Memories are covered in  Chapter   10   .  

  MAGNETIC MEMORIES     Magnetic disk memories are used for mass storage of 
binary data. An example is the computer’s internal hard disk. Magneto-optical disks use 
laser beams to store and retrieve data. Magnetic tape is still used in memory applications 
and for backing up data from other storage devices.   

 The internal computer memories, RAM and ROM, as well as the smaller caches are semicon-
ductor memories. The registers in a microprocessor are constructed of semiconductor fl ip-
fl ops. Opto-magnetic disk memories are used in the internal hard drive and for the CD-ROM. 

 S Y S T E M  N O T E 
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 FIGURE 1–31         Illustration of basic counter operation.   

  1.    What does a comparator do?   

  2.    What are the four basic arithmetic operations?   

  3.    Describe encoding and give an example.   

  4.    Describe decoding and give an example.   

  5.    Explain the basic purpose of multiplexing and demultiplexing.   

  6.    Name four types of memory and storage devices.   

  7.    What does a counter do?      

   SECTION   1–4    CHECKUP 

 A  programmable logic device  (PLD) is a type of integrated circuit (IC) that starts as a “blank 
slate” and into which a logic design is programmed. Programmable logic requires both hard-
ware and software. PLDs can be programmed to perform specifi ed logic functions by the manu-
facturer or by the user. One advantage of programmable logic over fi xed-function logic is that 
the devices use much less board space for an equivalent amount of logic. Another advantage is 
that, with programmable logic, designs can be readily changed without rewiring or replacing 
components. Also, a logic design can generally be implemented faster and with less cost with 
programmable logic than with fi xed-function ICs. 

  After completing this section, you should be able to 

  •   State the major types of programmable logic and discuss the differences  

  •   Discuss methods of programming  

  •   List the major programming languages used for programmable logic  

  •   Discuss the programmable logic design process   

   1–5  PROGRAMMABLE LOGIC 

  Types of Programmable Logic Devices (PLDs) 
 Many types of programmable logic devices are available, ranging from small devices that 
can replace a few fi xed-function devices to complex high-density devices that can replace 
thousands of fi xed-function devices. Two major categories of user-programmable logic are 
 PLD  (programmable logic device) and  FPGA  (fi eld-programmable gate array), as indi-
cated in  Figure   1–32   . PLDs are either SPLDs (simple PLDs) or CPLDs (complex PLDs).  

  SIMPLE PROGRAMMABLE LOGIC DEVICE (SPLD)     The SPLD was the 
original PLD and is still available for small-scale applications. Generally, an  SPLD  can 
replace up to ten fi xed-function ICs and their interconnections, depending on the type of 
functions and the specifi c SPLD. Most SPLDs are in one of two categories: PAL and GAL. 
A  PAL  (programmable array logic) is a device that can be programmed one time. It con-
sists of a programmable array of AND gates and a fi xed array of OR gates, as shown in 
 Figure   1–33   (a). A  GAL  (generic array logic) is a device that is basically a PAL that can be 
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reprogrammed many times. It consists of a reprogrammable array of AND gates and a 
fi xed array of OR gates with programmable ouputs, as shown in  Figure   1–33   (b). A typical 
SPLD package is shown in  Figure   1–34    and generally has from 24 to 28 pins.    

  COMPLEX PROGRAMMABLE LOGIC DEVICE (CPLD)     As technology 
progressed and the amount of circuitry that could be put on a chip (chip density) increased, 
manufacturers were able to put more than one SPLD on a single chip and the CPLD was 
born. Essentially, the  CPLD  is a device containing multiple SPLDs and can replace many 
fi xed-function ICs.  Figure   1–35    shows a basic CPLD block diagram with four logic array 

SPLDs CPLDs

PLDs FPGAs

Programmable logic

 FIGURE 1–32         Programmable logic hierarchy.   
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 FIGURE 1–33         Block diagrams of simple programmable logic devices (SPLDs).   

 FIGURE 1–34         A typical 
SPLD package.   
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 FIGURE 1–35         General block diagram of a CPLD.   
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blocks (LABs) and a programmable interconnection array (PIA). Depending on the specifi c 
CPLD, there can be from two to sixty-four LABs. Each logic array block is roughly equiva-
lent to one SPLD.  

 Generally, CPLDs can be used to implement any of the logic functions discussed 
earlier, for example, decoders, encoders, multiplexers, demultiplexers, and adders. They 
are available in a variety of confi gurations, typically ranging from 44 to 160 pin packages. 
Examples of CPLD packages are shown in  Figure   1–36   .   

(a) 80-pin PQFP (b) 128-pin PQFP

 FIGURE 1–36         Typical CPLD packages.   
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 FIGURE 1–37         Basic structure of an FPGA.   

  FIELD-PROGRAMMABLE GATE ARRAY (FPGA)     An  FPGA  is generally 
more complex and has a much higher density than a CPLD, although their applications can 
sometimes overlap. As mentioned, the SPLD and the CPLD are closely related because the 
CPLD basically contains a number of SPLDs. The FPGA, however, has a different internal 
structure (architecture), as illustrated in  Figure   1–37   . The three basic elements in an FPGA 
are the logic block, the programmable interconnections, and the input/output (I/O) blocks.  
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 The logic blocks in an FPGA are not as complex as the logic array blocks (LABs) in 
a CPLD, but generally there are many more of them. When the logic blocks are relatively 
simple, the FPGA architecture is called  fi ne-grained.  When the logic blocks are larger and 
more complex, the architecture is called  coarse-grained.  The I/O blocks are on the outer 
edges of the structure and provide individually selectable input, output, or bidirectional 
access to the outside world. The distributed programmable interconnection matrix pro-
vides for interconnection of the logic blocks and connection to inputs and outputs. Large 
FPGAs can have tens of thousands of logic blocks in addition to memory and other 
resources. A typical FPGA ball-grid array package is shown in  Figure   1–38   . These types 
of packages can have over 1000 input and output pins.    

(a) Top view (b) Bottom view

 FIGURE 1–38         A typical ball-grid array (BGA) package.   

 

PLD development board

Programmable logic device

 FIGURE 1–39         Basic setup for programming a PLD or FPGA.      (Photo courtesy of Digilent, Inc.)  

  The Programming Process 
 An SPLD, CPLD, or FPGA can be thought of as a “blank slate” on which you implement 
a specifi ed system design using a certain process. This process requires a software devel-
opment package installed on a computer to implement a circuit design in the programma-
ble chip. The computer must be interfaced with a development board or programming 
fi xture containing the device, as illustrated in  Figure   1–39   .  

 Several steps, called the  design fl ow,  are involved in the process of implementing a 
digital logic design in a programmable logic device. A block diagram of a typical program-
ming process is shown in  Figure   1–40   . As indicated, the design fl ow has access to a design 
library.  
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  DESIGN ENTRY     This is the fi rst programming step. The circuit 
or system design must be entered into the design application software 
using text-based entry, graphic entry (schematic capture), or state dia-
gram description. Design entry is device independent. Text-based entry 
is accomplished with a hardware description language (HDL) such as 
VHDL, Verilog, or AHDL. Graphic (schematic) entry allows prestored 
logic functions from a library to be selected, placed on the screen, and 
then interconnected to create a logic design. State-diagram entry 
requires specifi cation of both the states through which a sequential logic 
circuit progresses and the conditions that produce each state change. 

 Once a design has been entered, it is compiled. A  compiler  is a 
program that controls the design fl ow process and translates source 
code into object code in a format that can be logically tested or down-
loaded to a target device. The source code is created during design 
entry, and the object code is the fi nal code that actually causes the 
design to be implemented in the programmable device.  

  FUNCTIONAL SIMULATION     The entered and compiled 
design is simulated by software to confi rm that the logic circuit func-
tions as expected. The functional simulation will verify that correct 
outputs are produced for a specifi ed set of inputs. A device-independent 
software tool for doing this is generally called a  waveform editor.  Any 
fl aws demonstrated by the simulation would be corrected by going 
back to design entry and making appropriate changes.  

  SYNTHESIS      Synthesis  is where the design is translated into a netlist, which has a 
standard form and is device independent.  

  IMPLEMENTATION      Implementation  is where the logic structures described by 
the netlist are mapped into the actual structure of the specifi c device being programmed. 
The implementation process is called  fi tting  or  place and route  and results in an output 
called a bitstream, which is device dependent.  

  TIMING SIMULATION     This step comes after the design is mapped into the spe-
cifi c device. The timing simulation is basically used to confi rm that there are no design 
fl aws or timing problems due to propagation delays.  

  DOWNLOAD     Once a bitstream has been generated for a specifi c programmable 
device, it has to be downloaded to the device to implement the software design in hard-
ware. Some programmable devices have to be installed in a special piece of equipment 
called a  device programmer  or on a development board. Other types of devices can be 
programmed while in a system—called in-system programming (ISP)—using a standard 
JTAG (Joint Test Action Group) interface. Some devices are volatile, which means they 
lose their contents when reset or when power is turned off. In this case, the bitstream data 
must be stored in a memory and reloaded into the device after each reset or power-off. 
Also, the contents of an ISP device can be manipulated or upgraded while it is operating in 
a system. This is called “on-the-fl y” reconfi guration.   

  The Microcontroller 
 A microcontroller is different than a PLD. The internal circuits of a microcontroller are 
fi xed, and a program (series of instructions) directs the microcontroller operation in order 
to achieve a specifi c outcome. The internal circuitry of a PLD is programmed into it, and 
once programmed, the circuitry performs required operations. Thus, a program determines 
microcontroller operation, but in a PLD a program determines the logic function. Micro-
controllers are generally programmed with either the C language or the BASIC language. 
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 FIGURE 1–40         Basic programming fl ow block 
diagram.   
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 A monolithic  integrated circuit (IC)  is an electronic circuit that is constructed 
entirely on a single small chip of silicon. All the components that make up the cir-
cuit—transistors, diodes, resistors, and capacitors—are an integral part of that sin-
gle chip. Fixed-function logic and programmable logic are two broad categories of 
digital ICs. In  fi xed-function logic , the logic functions are set by the manufacturer 
and cannot be altered. 

  Figure   1–41    shows a cutaway view of one type of fi xed-function IC package 
with the circuit chip shown within the package. Points on the chip are connected to 
the package pins to allow input and output connections to the outside world.  

 A  microcontroller  is basically a special-purpose small computer. Microcontrollers 
are generally used for embedded system applications. An  embedded system  is one that is 
designed to perform one or a few dedicated functions. By contrast, a general-purpose com-
puter, such as a laptop, is designed to perform a wide range of functions and applications. 

 Embedded microcontrollers are used in many common applications. The embedded 
microcontroller is part of a complete system, which may include additional electronics and 
mechanical parts. For example, a microcontroller in a television set displays the input from 
the remote unit on the screen and controls the channel selection, audio, and various menu 
adjustments like brightness and contrast. In an automobile a microcontroller takes engine 
sensor inputs and controls spark timing and fuel mixture. Other applications include home 
appliances, thermostats, cell phones, and toys. 

  1.    List three major categories of programmable logic devices 
and specify their acronyms.   

  2.    How does a CPLD differ from an SPLD?   

  3.    Name the steps in the programming process.   

  4.    Briefl y explain each step named in question 3.   

  5.    What are the two main functional characteristics of a micro-
controller?      

   SECTION   1–5    CHECKUP 

   1–6  FIXED-FUNCTION LOGIC DEVICES 
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 FIGURE 1–41         Cutaway view of one 
type of fi xed-function surface-mount IC 
package, showing the chip mounted inside 
and connections to input and output pins.   

 All the logic elements and functions that have been discussed are generally available in inte-
grated circuit (IC) form. A fi xed-function device is one that cannot be programmed like a PLD.
Digital systems have incorporated ICs for many years because of their small size, high reliability, 
low cost, and low power consumption. It is important to be able to recognize the IC packages 
and to know how the pin connections are numbered, as well as to be familiar with the way in 
which circuit complexities and circuit technologies determine the various IC classifi cations. 

  After completing this section, you should be able to 

  •   Recognize the difference between through-hole devices and surface-mount fi xed-function 
devices  

  •   Identify dual in-line packages (DIP)  

  •   Identify small-outline integrated circuit packages (SOIC)  

  •   Identify plastic leaded chip carrier packages (PLCC)  

  •   Identify leadless ceramic chip carrier packages (LCC)  

  •   Determine pin numbers on various types of IC packages  

  •   Explain the complexity classifi cations for fi xed-function ICs   
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  IC Packages 
 Integrated circuit (IC) packages are classifi ed accord-
ing to the way they are mounted on printed circuit 
(PC) boards as either through-hole mounted or sur-
face mounted. The through-hole type packages have 
pins (leads) that are inserted through holes in the PC 
board and can be soldered to conductors on the oppo-
site side. The most common type of through-hole 
package is the dual in-line package ( DIP ) shown in 
 Figure   1–42   (a). The DIP is useful in lab work because 
it plugs in easily to a protoboard.  

 Most IC packages use surface-mount technol-
ogy ( SMT ). Surface mounting is a space-saving alter-
native to through-hole mounting. The holes through 
the PC board are unnecessary for SMT. The pins of 

surface-mounted packages are soldered directly to conductors on one side of the board, 
leaving the other side free for additional circuits. Also, for a circuit with the same number of 
pins, a surface-mounted package is much smaller than a dual in-line package because the 
pins are placed closer together. An example of a surface-mounted package is the small-
outline integrated circuit ( SOIC ) shown in  Figure   1–42   (b). 

 Various types of SMT packages are available in a range of sizes, depending on the 
number of leads (more leads are required for more complex circuits and lead confi gura-
tions). Examples of several types are shown in  Figure   1–43   . As you can see, the leads of the 
 SSOP  (shrink small-outline package) are formed into a “gull-wing” shape. The leads of the 
 PLCC  (plastic-leaded chip carrier) are turned under the package in a J-type shape. Instead 
of leads, the  LCC  (leadless ceramic chip) has metal contacts molded into its ceramic body. 
The LQFP also has gull-wing leads. Both the CSP (chip scale package) and the FBGA (fi ne-
pitch ball grid array) have contacts embedded in the bottom of the package.   

(c) LCC (350 � 350 mils)(a) SSOP (153 � 193 mils) (b) PLCC (350 � 350 mils)

(d) LQFP (7 � 7 mm) (e) Laminate CSP (3.5 � 3.5 mm) (f) FBGA (4 � 4 mm)

         FIGURE 1–43         Typical SMT package confi gurations. Parts (e) and (f) show bottom views.   

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

 FIGURE 1–42         Examples of through-hole (DIP) and surface-mounted 
devices. The DIP is larger than the SOIC with the same number of 
leads.   

  Pin Numbering 
 All IC packages have a standard format for numbering the pins (leads). The dual in-line 
packages (DIPs) and the shrink small-outline packages (SSOP) have the numbering 
arrangement illustrated in  Figure   1–44   (a) for a 16-pin package. Looking at the top of the 
package, pin 1 is indicated by an identifi er that can be either a small dot, a notch, or a beveled 
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edge. The dot is always next to pin 1. Also, with the notch oriented 
upward, pin 1 is always the top left pin, as indicated. Starting with 
pin 1, the pin numbers increase as you go down, then across and up. 
The highest pin number is always to the right of the notch or oppo-
site the dot.  

 The PLCC and LCC packages have leads arranged on all four 
sides. Pin 1 is indicated by a dot or other index mark and is located 
at the center of one set of leads. The pin numbers increase going 
counterclockwise as viewed from the top of the package. The high-
est pin number is always to the right of pin 1.  Figure   1–44   (b) illus-
trates this format for a 20-pin PLCC package.  

  Complexity Classifi cations 
for Fixed-Function ICs 
 Fixed-function digital ICs are classifi ed according to their complexity. They are listed here 
from the least complex to the most complex. The complexity fi gures stated here for SSI, 
MSI, LSI, VLSI, and ULSI are generally accepted, but defi nitions may vary from one 
source to another. 

   •   Small-scale integration (SSI)     describes fi xed-function ICs that have up to ten equiv-
alent gate circuits on a single chip, and they include basic gates and fl ip-fl ops.  

  •   Medium-scale integration (MSI)     describes integrated circuits that have from 10 to 
100 equivalent gates on a chip. They include logic functions such as encoders, decod-
ers, counters, registers, multiplexers, arithmetic circuits, small memories, and others.  

  •   Large-scale integration (LSI)     is a classifi cation of ICs with complexities of from 
more than 100 to 10,000 equivalent gates per chip, including memories.  

  •   Very large-scale integration (VLSI)     describes integrated circuits with complexities 
of from more than 10,000 to 100,000 equivalent gates per chip.  

  •   Ultra large-scale integration (ULSI)     describes very large memories, larger  micro-
processors,  and larger single-chip computers. Complexities of more than 100,000 
equivalent gates per chip are classifi ed as ULSI.    

  Integrated Circuit Technologies 
 The types of transistors with which all integrated circuits are implemented are either MOSFETs 
(metal-oxide semiconductor fi eld-effect transistors) or bipolar junction transistors. A cir-
cuit technology that uses MOSFETs is  CMOS  (complementary MOS).  Bipolar  is a type 
of fi xed-function digital circuit technology that uses bipolar junction transistors and is 
sometimes called  TTL  (transistor-transistor logic).  BiCMOS  uses a combination of both 
CMOS and bipolar. All the types of logic gates and logic functions that have been dis-
cussed are generally available as ICs. 

 All gates and other functions can be implemented with either type of circuit technol-
ogy. SSI and MSI circuits are generally available in both CMOS and bipolar in the 74XX 
series, but CMOS is the most common. 

(a) DIP or SSOP

Notch

Pin 1
identifier

Pin 1
identifier

3 19

9 13

14

18

8

4

(b) PLCC or LCC

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

 FIGURE 1–44         Pin numbering for standard types of 
IC packages. Top views are shown.   

  1.    What is an integrated circuit?   

  2.    Defi ne the terms DIP, SMT, SOIC, SSI, MSI, LSI, and VLSI.   

  3.    Generally, in what classifi cation does a fi xed-function IC with 
the following number of equivalent gates fall? 

   (a)   10     (b)   75     (c)   500     (d)   15,000     (e)   200,000        
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  A Process Control System 
 A system for bottling vitamin tablets is shown in the block diagram of  Figure   1–45   . To 
begin, the tablets are fed into a large funnel-type hopper. The narrow neck of the hopper 
creates a serial fl ow of tablets into a bottle on the conveyor belt below. Only one tablet at 
a time passes the sensor, so the tablets can be counted.  

 The system controls the number of tablets into each bottle and displays a continually 
updated readout of the total number of tablets bottled. This system utilizes all of the basic 
logic functions that have been introduced and illustrates how these functions can be con-
nected to work together to produce a specifi ed result. This system is purely for instruc-
tional purposes and is not intended to necessarily represent the most effi cient or best way 
to implement the operation. 

  GENERAL OPERATION     The maximum number of tablets per bottle is entered 
from the keypad, changed to a code by the  Encoder,  and stored in  Register A. Decoder A  
changes the code stored in the register to a form appropriate for turning on the display. 
 Code converter A  changes the code to a binary number and applies it to the  A  input of the 
 Comparator  (Comp). 

 An optical sensor in the neck of the hopper detects each tablet that passes and pro-
duces a pulse. This pulse goes to the  Counter  and advances it by one count; thus, any time 
during the fi lling of a bottle, the binary state of the counter represents the number of tablets 
in the bottle. The binary count is transferred from the counter to the  B  input of the com-
parator (Comp). The  A  input of the comparator is the binary number for the maximum 
tablets per bottle. Now, let’s say that the present number of tablets per bottle is 50. When the 
binary number in the counter reaches 50, the    A = B    output of the comparator goes HIGH, 
indicating that the bottle is full. 

 The HIGH output of the comparator causes the valve in the neck of the hopper to 
close and stop the fl ow of tablets. At the same time, the HIGH output of the comparator 
activates the conveyor, which moves the next empty bottle into place under the hopper. 
When the bottle is in place, the conveyor control issues a pulse that resets the counter to 
zero. As a result, the output of the comparator goes back LOW and causes the hopper 
valve to restart the fl ow of tablets. 

 For each bottle fi lled, the maximum binary number in the counter is transferred to the 
 A  input of the  Adder.  The  B  input of the adder comes from  Register B  that stores the total 
number of tablets bottled up through the last bottle fi lled. The adder produces a new cumu-
lative sum that is then stored in register B, replacing the previous sum. This keeps a run-
ning total of the tablets bottled during a given run. 

 The cumulative sum stored in register B goes to  Decoder B , which detects when 
 register B  has reached its maximum capacity and enables the MUX. The binary sum in 
register B is converted from parallel to serial form by the MUX and transmitted over the 
single line to the remote  Demultiplexer  (DEMUX), which changes the number back to 
parallel form for storage in a remote computer for keeping track of the total tablets bottled 
in a specifi ed time period. 

 A tablet-bottling system illustrates how the logic functions covered in this chapter can be used 
in a system environment. The functions used in this system are the encoder, decoder, code con-
verter, adder, multiplexer, demultiplexer, register, and counter. This system could be imple-
mented in three ways: with a PLD, with a microcontroller, or with fi xed-function ICs. The fi rst 
two are how all digital systems are currently implemented. 

  After completing this section, you should be able to 

  •   Understand basic system operation and how certain components work together  

  •   Explain the purpose of each logic function in the total system  

  •   Describe the transfer of digital data throughout the system   

   1–7  A SYSTEM 



1–7 A SYSTEM   29

Binary code for
actual number of
tablets in bottle

HIGH causes new
sum to be stored.

8 9

4 5 6

1 2 3

0 . #

7

Binary code for preset number
of tablets per bottle

Number of
tablets per bottleKeypad for entering

number of tablets
per bottle

HIGH closes valve
and advances
conveyor. LOW
keeps valve open.

One pulse
from sensor
for each tablet
advances
counter by 1.

New total
sum

The binary code representing the number of tablets bottled each time
Register B has reached the maximum accumulated count.

Current total sum

Valve

Sensor

To computer for accumulation and storage of total
number of tablets bottled over time

Pulse resets counter to zero
when next bottle is in place.

DEMUX

Comp
A

B

A = B

Adder
A

B Cout

Σ

Encoder

Code
converter

A

Decoder
B

MUX

Counter

Conveyor
control

Switching sequence
control input

Register
A

Tablets / bottle
Decoder

A

Register
B

 FIGURE 1–45         Block diagram of a tablet-bottling system.   

  1.    How is the number of tablets per bottle entered into the 
system?   

  2.    How does the system determine when a bottle is full?   

  3.    When is the counter reset?       
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  The Oscilloscope 
 The oscilloscope (scope for short) is one of the most widely used instruments for general 
testing and troubleshooting. The scope is basically a graph-displaying device that traces 
the graph of a measured electrical signal on its screen. In most applications, the graph 
shows how signals change over time. The vertical axis of the display screen represents 

voltage, and the horizontal axis represents time. Amplitude, period, and 
frequency of a signal can be measured using the oscilloscope. Also, the 
pulse width, duty cycle, rise time, and fall time of a pulse waveform can 
be determined. Most scopes can display at least two, and many can dis-
play four signals on the screen at one time, enabling their time relation-
ship to be observed. A typical 4-channel digital oscilloscope is shown in 
 Figure   1–46   .  

 Two basic types of oscilloscopes, analog and digital, can be used to 
view digital waveforms. An analog scope works by applying the measured 
waveform directly to control the up and down motion of the electron beam 
in the cathode-ray tube (CRT) as it sweeps across the display screen. As a 
result, the beam traces out the waveform pattern on the screen. A digital 
scope converts the measured waveform to digital information by a sam-
pling process in an analog-to-digital converter (ADC). The digital informa-
tion is then used to reconstruct the waveform on the screen. 

 The digital scope is more widely used than the analog scope. However, either type 
can be used in many applications; each has characteristics that make it more suitable for 
certain situations. An analog scope displays waveforms as they occur in “real time.” Dig-
ital scopes are useful for measuring transient pulses that may occur randomly or only once. 
Also, because information about the measured waveform can be stored in a digital scope, 
it may be viewed at some later time, printed out, or thoroughly analyzed by a computer or 
other means. 

  BASIC OPERATION OF ANALOG OSCILLOSCOPES     To measure a volt-
age, a  probe  must be connected from the scope to the point in a circuit at which the volt-
age is present. Generally, a    *10    probe is used that reduces (attenuates) the signal 
amplitude by ten. The signal goes through the probe into the vertical circuits where it is 
either further attenuated or amplifi ed, depending on the actual amplitude and on where 
you set the vertical control of the scope. The vertical circuits then drive the vertical 
defl ection plates of the CRT. Also, the signal goes to the trigger circuits that trigger the 
horizontal circuits to initiate repetitive horizontal sweeps of the electron beam across the 
screen using a sawtooth waveform. There are many sweeps per second so that the beam 
appears to form a solid line across the screen in the shape of the waveform. This basic 
operation is illustrated in  Figure   1–47   .   

  Troubleshooting  is the process of systematically isolating, identifying, and correcting a fault 
in a circuit or system. A variety of instruments are available for use in troubleshooting and 
testing. Some common types of instruments are introduced and discussed in this section. 

  After completing this section, you should be able to 

  •   Distinguish between an analog and a digital oscilloscope  

  •   Recognize common oscilloscope controls  

  •   Determine amplitude, period, frequency, and duty cycle of a pulse waveform with an 
oscilloscope  

  •   Discuss the logic analyzer and some common formats  

  •   Describe the purpose of the data pattern generator, the digital multimeter (DMM), the dc 
power supply, the logic probe, and the logic pulser   

   1–8  MEASURING INSTRUMENTS 

 FIGURE 1–46         A digital oscilloscope. Used 

with permission from Tektronix, Inc.   
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  BASIC OPERATION OF DIGITAL OSCILLOSCOPES     Some parts of a dig-
ital scope are similar to the analog scope. However, the digital scope is more complex than 
an analog scope and typically has an LCD screen rather than a CRT. Rather than display-
ing a waveform as it occurs, the digital scope fi rst acquires the measured analog waveform 
and converts it to a digital format using an analog-to-digital converter (ADC). The digital 
data is stored and processed. The data then goes to the reconstruction and display circuits 
for display in its original analog form.  Figure   1–48    shows a basic block diagram for a dig-
ital oscilloscope.   

Vertical circuits

Trigger circuits Horizontal circuits

Oscilloscope

Probe

1010011010

ADC

Processing

Acquisition circuits

Reconstruction
and display

circuits

1010011010

Memory

 FIGURE 1–48         Block diagram of a digital oscilloscope.      (Photo courtesy of Digilent, Inc.)  
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 FIGURE 1–47         Block diagram of an analog oscilloscope.      (Photo courtesy of Digilent, Inc.)  

  OSCILLOSCOPE CONTROLS     A front panel view of a typical digital oscillo-
scope is shown in  Figure   1–49   . Instruments vary depending on model and manufacturer, 
but most have certain common features. For example, the four vertical sections contain a 
Position control, a channel menu button, and a volts/div control. The horizontal section 
contains a sec/div control.  

 Some of the main oscilloscope controls are now discussed. Refer to the user manual 
for complete details of your particular scope.  
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  VERTICAL CONTROLS     In the vertical section of the scope in  Figure   1–49   , there 
are identical controls for each of the four channels (1, 2, 3, and 4). The Position control lets 
you move a displayed waveform up or down vertically on the screen. The buttons on the 
right side of the screen provide for the selection of several items that appear on the screen, 
such as the coupling modes (ac, dc, or ground), coarse or fi ne adjustment for the volts/div, 
signal inversion, and other parameters. The volts/div control adjusts the number of volts 
represented by each vertical division on the screen. The volts/div setting for each channel 
is displayed on the bottom of the screen.  

                                   FIGURE 1–49         A digital oscilloscope front panel. Used with permission from Tektronix, Inc.   

(a) Untriggered waveform display (b) Triggered waveform display

 FIGURE 1–50         Comparison of an untriggered and a triggered waveform on an 
oscilloscope.   

  HORIZONTAL CONTROLS     In the horizontal section, the controls apply to all 
channels. The Position control lets you move a displayed waveform left or right horizon-
tally on the screen. The sec/div control adjusts the time represented by each horizontal 
division or main time base. The sec/div setting is displayed at the bottom of the screen.  

  TRIGGER CONTROLS     In the Trigger control section, the Level control deter-
mines the point on the triggering waveform where triggering occurs to initiate the sweep to 
display input waveforms. The Menu button provides for the selection of several items that 
appear on the screen, including edge or slope triggering, trigger source, trigger mode, and 
other parameters. There is also an input for an external trigger signal. 

 Triggering stabilizes a waveform on the screen or properly triggers on a pulse that 
occurs only one time or randomly. Also, it allows you to observe time delays between two 
waveforms.  Figure   1–50    compares a triggered to an untriggered signal. The untriggered 
signal tends to drift across the screen, producing what appears to be multiple waveforms.   
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  COUPLING A SIGNAL INTO THE SCOPE     Coupling is the method used to 
connect a signal voltage to be measured into the oscilloscope. DC and AC coupling are usu-
ally selected from the Vertical menu on a scope. DC coupling allows a waveform including 
its dc component to be displayed. AC coupling blocks the dc component of a signal so that 
you see the waveform centered at 0 V. The Ground mode allows you to connect the channel 
input to ground to see where the 0 V reference is on the screen.  Figure   1–51    illustrates the 
result of DC and AC coupling using a pulse waveform that has a dc component.  

Properly compensated Undercompensated Overcompensated

 FIGURE 1–52         Probe compensation conditions.   

0 V

(a) DC coupled waveform

0 V

(b) AC coupled waveform

 FIGURE 1–51         Displays of the same waveform having a dc component.   

 The voltage probe, shown in  Figure   1–46   , is essential for connecting a signal to the scope. 
Since all instruments tend to affect the circuit being measured due to loading, most scope 
probes provide a high series resistance to minimize loading effects. Probes that have a series 
resistance ten times larger than the input resistance of the scope are called    *10    probes. Probes 
with no series resistance are called    *1    probes. The oscilloscope adjusts its calibration for the 
attenuation of the type of probe being used. For most measurements, the    *10    probe should be 
used. However, if you are measuring very small signals, a    *1    may be the best choice. 

 The probe has an adjustment that allows you to compensate for the input capacitance 
of the scope. Most scopes have a probe compensation output that provides a calibrated 
square wave for probe compensation. Before making a measurement, you should make 
sure that the probe is properly compensated to eliminate any distortion introduced. Typi-
cally, there is a screw or other means of adjusting compensation on a probe.  Figure   1–52    
shows scope waveforms for three probe conditions: properly compensated, undercompen-
sated, and overcompensated. If the waveform appears either over- or undercompensated, 
adjust the probe until the properly compensated square wave is achieved.  

  E X A M P L E  1 – 3 

 Based on the readouts, determine the amplitude and the period of the pulse wave-
form on the screen of a digital oscilloscope as shown in  Figure   1–53   . Also, calcu-
late the frequency.  
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  The Logic Analyzer 
 Logic analyzers are used for measurements of multiple 
digital signals and measurement situations with diffi -
cult trigger requirements. Basically, the logic analyzer 
came about as a result of microprocessors in which 
troubleshooting or debugging required many more 
inputs than an oscilloscope offered. Many oscilloscopes 
have two input channels and some are available with 
four. Logic analyzers are available with from 34 to 136 
input channels. Generally, an oscilloscope is used either 
when amplitude, frequency, and other timing parame-
ters of a few signals at a time or when parameters such 
an rise and fall times, overshoot, and delay times need 
to be measured. The logic analyzer is used when the 
logic levels of a large number of signals need to be 
determined and for the correlation of simultaneous sig-
nals based on their timing relationships. A typical logic 
analyzer is shown in  Figure   1–54   , and a simplifi ed 
block diagram is in  Figure   1–55   .   

  S O L U T I O N 

 The volts/div setting is 1 V. The pulses are three divisions high. Since each divi-
sion represents 1 V, the pulse amplitude is 

   Amplitude = (3 div)(1 V/div) = 3 V   

 The sec/div setting is 10 ms. A full cycle of the waveform (from beginning 
of one pulse to the beginning of the next) covers four divisions; therefore, the 
period is 

   Period = (4 div)(10 ms/div) = 40 Ms   

 The frequency is calculated as 

   f =
1

T
=

1

40 ms
= 25 kHz    

  R E L A T E D  P R O B L E M 

 For a volts/div setting of 4 V and sec/div setting of 2 ms, determine the amplitude 
and period of the pulse shown on the screen in  Figure   1–53   .     

 FIGURE 1–54         Typical logic analyzer. Used with permission from 

Tektronix, Inc.   

Ch1 10    s1 V

 FIGURE 1–53        
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  DATA ACQUISITION     The large number 
of signals that can be acquired at one time is a 
major factor that distinguishes a logic analyzer 
from an oscilloscope. Generally, the two types of 
data acquisition in a logic analyzer are the timing 
acquisition and the state acquisition. Timing 
acquisition is used primarily when the timing 
relationships among the various signals need to 
be determined. State acquisition is used when 
you need to view the sequence of states as they 
appear in a system under test. 

 It is often helpful to have correlated timing 
and state data, and most logic analyzers can 
simultaneously acquire that data. For example, a 
problem may initially be detected as an invalid 
state. However, the invalid condition may be caused by a timing violation in the system 
under test. Without both types of information available at the same time, isolating the 
problem could be very diffi cult.  

  CHANNEL COUNT AND MEMORY DEPTH     Logic analyzers contain a real-
time acquisition memory in which sampled data from all the channels are stored as they 
occur. Two features that are of primary importance are the channel count and the memory 
depth. The acquisition memory can be thought of as having a width equal to the number of 
channels and a depth that is the number of bits that can be captured by each channel during 
a certain time interval. 

 Channel count determines the number of signals that can be acquired simultaneously. 
In certain types of systems, a large number of signals are present, such as on the data bus 
in a microprocessor-based system. The depth of the acquisition memory determines the 
amount of data from a given channel that you can view at any given time.  

  ANALYSIS AND DISPLAY     Once data has been sampled and stored in the acquisi-
tion memory, it can typically be used in several different display and analysis modes. The 
waveform display is much like the display on an oscilloscope where you can view the time 
relationship of multiple signals. The listing display indicates the state of the system under 
test by showing the values of the input waveforms (1s and 0s) at various points in time 
(sample points). Typically, this data can be displayed in hexadecimal or other formats. 
 Figure   1–56    shows simplifi ed versions of these two display modes. The listing display 
samples correspond to the sampled points shown in red on the waveform display. You will 
study binary and hexadecimal (hex) numbers in the next chapter.  
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 FIGURE 1–55         Simplifi ed block diagram of a logic analyzer.   
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 FIGURE 1–56         Two logic analyzer display modes.   

 Two more modes that are useful in computer and microprocessor-based system test-
ing are the instruction trace and the source code debug. The instruction trace determines 
and displays instructions that occur, for example, on the data bus in a microprocessor-




