

SECOND EDITION

Arduino Cookbook

Michael Margolis

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Arduino Cookbook, Second Edition
by Michael Margolis

Copyright © 2012 Michael Margolis, Nicholas Weldin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Shawn Wallace and Brian Jepson
Production Editor: Teresa Elsey
Proofreader: Kiel Van Horn

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

March 2011: First Edition.
December 2011: Second Edition.

Revision History for the Second Edition:
2011-12-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449313876 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Arduino Cookbook, the image of a toy rabbit, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31387-6

[LSI]

1323465788

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449313876

Table of Contents

Preface . xi

1. Getting Started . 1
1.1 Installing the Integrated Development Environment (IDE) 4
1.2 Setting Up the Arduino Board 8
1.3 Using the Integrated Development Environment (IDE) to Prepare

an Arduino Sketch 10
1.4 Uploading and Running the Blink Sketch 13
1.5 Creating and Saving a Sketch 14
1.6 Using Arduino 17

2. Making the Sketch Do Your Bidding . 23
2.1 Structuring an Arduino Program 24
2.2 Using Simple Primitive Types (Variables) 25
2.3 Using Floating-Point Numbers 27
2.4 Working with Groups of Values 29
2.5 Using Arduino String Functionality 32
2.6 Using C Character Strings 37
2.7 Splitting Comma-Separated Text into Groups 38
2.8 Converting a Number to a String 41
2.9 Converting a String to a Number 43

2.10 Structuring Your Code into Functional Blocks 45
2.11 Returning More Than One Value from a Function 49
2.12 Taking Actions Based on Conditions 52
2.13 Repeating a Sequence of Statements 53
2.14 Repeating Statements with a Counter 55
2.15 Breaking Out of Loops 58
2.16 Taking a Variety of Actions Based on a Single Variable 59
2.17 Comparing Character and Numeric Values 61
2.18 Comparing Strings 63
2.19 Performing Logical Comparisons 64

iii

2.20 Performing Bitwise Operations 65
2.21 Combining Operations and Assignment 68

3. Using Mathematical Operators . 69
3.1 Adding, Subtracting, Multiplying, and Dividing 69
3.2 Incrementing and Decrementing Values 70
3.3 Finding the Remainder After Dividing Two Values 71
3.4 Determining the Absolute Value 72
3.5 Constraining a Number to a Range of Values 73
3.6 Finding the Minimum or Maximum of Some Values 74
3.7 Raising a Number to a Power 75
3.8 Taking the Square Root 76
3.9 Rounding Floating-Point Numbers Up and Down 76

3.10 Using Trigonometric Functions 77
3.11 Generating Random Numbers 78
3.12 Setting and Reading Bits 80
3.13 Shifting Bits 84
3.14 Extracting High and Low Bytes in an int or long 85
3.15 Forming an int or long from High and Low Bytes 87

4. Serial Communications . 89
4.1 Sending Debug Information from Arduino to Your Computer 94
4.2 Sending Formatted Text and Numeric Data from Arduino 97
4.3 Receiving Serial Data in Arduino 100
4.4 Sending Multiple Text Fields from Arduino in a Single Message 105
4.5 Receiving Multiple Text Fields in a Single Message in Arduino 111
4.6 Sending Binary Data from Arduino 114
4.7 Receiving Binary Data from Arduino on a Computer 118
4.8 Sending Binary Values from Processing to Arduino 120
4.9 Sending the Value of Multiple Arduino Pins 122

4.10 How to Move the Mouse Cursor on a PC or Mac 125
4.11 Controlling Google Earth Using Arduino 130
4.12 Logging Arduino Data to a File on Your Computer 135
4.13 Sending Data to Two Serial Devices at the Same Time 138
4.14 Receiving Serial Data from Two Devices at the Same Time 141
4.15 Setting Up Processing on Your Computer to Send

and Receive Serial Data 145

5. Simple Digital and Analog Input . 147
5.1 Using a Switch 150
5.2 Using a Switch Without External Resistors 154
5.3 Reliably Detecting the Closing of a Switch 155
5.4 Determining How Long a Switch Is Pressed 158

iv | Table of Contents

5.5 Reading a Keypad 163
5.6 Reading Analog Values 166
5.7 Changing the Range of Values 168
5.8 Reading More Than Six Analog Inputs 170
5.9 Displaying Voltages Up to 5V 173

5.10 Responding to Changes in Voltage 176
5.11 Measuring Voltages More Than 5V (Voltage Dividers) 177

6. Getting Input from Sensors . 181
6.1 Detecting Movement 183
6.2 Detecting Light 186
6.3 Detecting Motion (Integrating Passive Infrared Detectors) 187
6.4 Measuring Distance 189
6.5 Measuring Distance Accurately 193
6.6 Detecting Vibration 197
6.7 Detecting Sound 198
6.8 Measuring Temperature 202
6.9 Reading RFID Tags 206

6.10 Tracking Rotary Movement 208
6.11 Tracking the Movement of More Than One Rotary Encoder 211
6.12 Tracking Rotary Movement in a Busy Sketch 214
6.13 Using a Mouse 216
6.14 Getting Location from a GPS 220
6.15 Detecting Rotation Using a Gyroscope 225
6.16 Detecting Direction 230
6.17 Getting Input from a Game Control Pad (PlayStation) 235
6.18 Reading Acceleration 237

7. Visual Output . 241
7.1 Connecting and Using LEDs 245
7.2 Adjusting the Brightness of an LED 248
7.3 Driving High-Power LEDs 249
7.4 Adjusting the Color of an LED 252
7.5 Sequencing Multiple LEDs: Creating a Bar Graph 255
7.6 Sequencing Multiple LEDs: Making a Chase Sequence (Knight

Rider) 258
7.7 Controlling an LED Matrix Using Multiplexing 259
7.8 Displaying Images on an LED Matrix 262
7.9 Controlling a Matrix of LEDs: Charlieplexing 265

7.10 Driving a 7-Segment LED Display 271
7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing 274
7.12 Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift

Registers 276

Table of Contents | v

7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers 279
7.14 Increasing the Number of Analog Outputs Using PWM Extender

Chips (TLC5940) 281
7.15 Using an Analog Panel Meter as a Display 285

8. Physical Output . 289
8.1 Controlling the Position of a Servo 292
8.2 Controlling One or Two Servos with a Potentiometer or Sensor 294
8.3 Controlling the Speed of Continuous Rotation Servos 296
8.4 Controlling Servos Using Computer Commands 298
8.5 Driving a Brushless Motor (Using a Hobby Speed Controller) 299
8.6 Controlling Solenoids and Relays 300
8.7 Making an Object Vibrate 302
8.8 Driving a Brushed Motor Using a Transistor 304
8.9 Controlling the Direction of a Brushed Motor with an H-Bridge 306

8.10 Controlling the Direction and Speed of a Brushed Motor with an
H-Bridge 309

8.11 Using Sensors to Control the Direction and Speed of Brushed
Motors (L293 H-Bridge) 311

8.12 Driving a Bipolar Stepper Motor 317
8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board) 320
8.14 Driving a Unipolar Stepper Motor (ULN2003A) 323

9. Audio Output . 327
9.1 Playing Tones 329
9.2 Playing a Simple Melody 331
9.3 Generating More Than One Simultaneous Tone 333
9.4 Generating Audio Tones and Fading an LED 335
9.5 Playing a WAV File 338
9.6 Controlling MIDI 341
9.7 Making an Audio Synthesizer 344

10. Remotely Controlling External Devices . 347
10.1 Responding to an Infrared Remote Control 348
10.2 Decoding Infrared Remote Control Signals 350
10.3 Imitating Remote Control Signals 354
10.4 Controlling a Digital Camera 357
10.5 Controlling AC Devices by Hacking a Remote-Controlled Switch 359

11. Using Displays . 363
11.1 Connecting and Using a Text LCD Display 364
11.2 Formatting Text 367
11.3 Turning the Cursor and Display On or Off 370

vi | Table of Contents

11.4 Scrolling Text 372
11.5 Displaying Special Symbols 375
11.6 Creating Custom Characters 377
11.7 Displaying Symbols Larger Than a Single Character 379
11.8 Displaying Pixels Smaller Than a Single Character 382
11.9 Connecting and Using a Graphical LCD Display 385

11.10 Creating Bitmaps for Use with a Graphical Display 389
11.11 Displaying Text on a TV 391

12. Using Time and Dates . 397
12.1 Creating Delays 397
12.2 Using millis to Determine Duration 398
12.3 More Precisely Measuring the Duration of a Pulse 402
12.4 Using Arduino as a Clock 404
12.5 Creating an Alarm to Periodically Call a Function 412
12.6 Using a Real-Time Clock 415

13. Communicating Using I2C and SPI . 421
13.1 Controlling an RGB LED Using the BlinkM Module 425
13.2 Using the Wii Nunchuck Accelerometer 430
13.3 Interfacing to an External Real-Time Clock 435
13.4 Adding External EEPROM Memory 437
13.5 Reading Temperature with a Digital Thermometer 441
13.6 Driving Four 7-Segment LEDs Using Only Two Wires 445
13.7 Integrating an I2C Port Expander 449
13.8 Driving Multidigit, 7-Segment Displays Using SPI 451
13.9 Communicating Between Two or More Arduino Boards 454

14. Wireless Communication . 459
14.1 Sending Messages Using Low-Cost Wireless Modules 459
14.2 Connecting Arduino to a ZigBee or 802.15.4 Network 465
14.3 Sending a Message to a Particular XBee 472
14.4 Sending Sensor Data Between XBees 475
14.5 Activating an Actuator Connected to an XBee 480
14.6 Sending Messages Using Low-Cost Transceivers 486
14.7 Communicating with Bluetooth Devices 491

15. Ethernet and Networking . 495
15.1 Setting Up the Ethernet Shield 498
15.2 Obtaining Your IP Address Automatically 500
15.3 Resolving Hostnames to IP Addresses (DNS) 502
15.4 Requesting Data from a Web Server 504
15.5 Requesting Data from a Web Server Using XML 508

Table of Contents | vii

15.6 Setting Up an Arduino to Be a Web Server 511
15.7 Handling Incoming Web Requests 514
15.8 Handling Incoming Requests for Specific Pages 517
15.9 Using HTML to Format Web Server Responses 521

15.10 Serving Web Pages Using Forms (POST) 525
15.11 Serving Web Pages Containing Large Amounts of Data 528
15.12 Sending Twitter Messages 535
15.13 Sending and Receiving Simple Messages (UDP) 539
15.14 Getting the Time from an Internet Time Server 545
15.15 Monitoring Pachube Feeds 550
15.16 Sending Information to Pachube 556

16. Using, Modifying, and Creating Libraries . 561
16.1 Using the Built-in Libraries 561
16.2 Installing Third-Party Libraries 563
16.3 Modifying a Library 565
16.4 Creating Your Own Library 568
16.5 Creating a Library That Uses Other Libraries 574
16.6 Updating Third-Party Libraries for Arduino 1.0 580

17. Advanced Coding and Memory Handling . 583
17.1 Understanding the Arduino Build Process 584
17.2 Determining the Amount of Free and Used RAM 587
17.3 Storing and Retrieving Numeric Values in Program Memory 589
17.4 Storing and Retrieving Strings in Program Memory 592
17.5 Using #define and const Instead of Integers 594
17.6 Using Conditional Compilations 595

18. Using the Controller Chip Hardware . 599
18.1 Storing Data in Permanent EEPROM Memory 603
18.2 Using Hardware Interrupts 606
18.3 Setting Timer Duration 609
18.4 Setting Timer Pulse Width and Duration 611
18.5 Creating a Pulse Generator 614
18.6 Changing a Timer’s PWM Frequency 617
18.7 Counting Pulses 620
18.8 Measuring Pulses More Accurately 621
18.9 Measuring Analog Values Quickly 624

18.10 Reducing Battery Drain 626
18.11 Setting Digital Pins Quickly 627
18.12 Uploading Sketches Using a Programmer 630
18.13 Replacing the Arduino Bootloader 632
18.14 Reprogram the Uno to Emulate a Native USB device 633

viii | Table of Contents

A. Electronic Components . 637

B. Using Schematic Diagrams and Data Sheets . 643

C. Building and Connecting the Circuit . 651

D. Tips on Troubleshooting Software Problems . 655

E. Tips on Troubleshooting Hardware Problems . 659

F. Digital and Analog Pins . 663

G. ASCII and Extended Character Sets . 667

H. Migrating to Arduino 1.0 . 671

Index . 677

Table of Contents | ix

Preface

This book was written by Michael Margolis with Nick Weldin to help you explore the
amazing things you can do with Arduino.

Arduino is a family of microcontrollers (tiny computers) and a software creation envi-
ronment that makes it easy for you to create programs (called sketches) that can interact
with the physical world. Things you make with Arduino can sense and respond to
touch, sound, position, heat, and light. This type of technology, often referred to as
physical computing, is used in all kinds of things from the iPhone to automobile elec-
tronics systems. Arduino makes it possible for anyone with an interest—even people
with no programming or electronics experience—to use this rich and complex
technology.

Who This Book Is For
Unlike in most technical cookbooks, experience with software and hardware is not
assumed. This book is aimed at readers interested in using computer technology to
interact with the environment. It is for people who want to quickly find the solution to
hardware and software problems. The recipes provide the information you need to
accomplish a broad range of tasks. It also has details to help you customize solutions
to meet your specific needs. There is insufficient space in a book limited to 700 pages
to cover general theoretical background, so links to external references are provided
throughout the book. See “What Was Left Out” on page xiv for some general refer-
ences for those with no programming or electronics experience.

If you have no programming experience—perhaps you have a great idea for an inter-
active project but don’t have the skills to develop it—this book will help you learn what
you need to know to write code that works, using examples that cover over 200 com-
mon tasks.

If you have some programming experience but are new to Arduino, the book will help
you become productive quickly by demonstrating how to implement specific Arduino
capabilities for your project.

xi

People already using Arduino should find the content helpful for quickly learning new
techniques, which are explained using practical examples. This will help you to embark
on more complex projects by showing how to solve problems and use capabilities that
may be new to you.

Experienced C/C++ programmers will find examples of how to use the low-level AVR
resources (interrupts, timers, I2C, Ethernet, etc.) to build applications using the
Arduino environment.

How This Book Is Organized
The book contains information that covers the broad range of the Arduino’s capabili-
ties, from basic concepts and common tasks to advanced technology. Each technique
is explained in a recipe that shows you how to implement a specific capability. You do
not need to read the content in sequence. Where a recipe uses a technique covered in
another recipe, the content in the other recipe is referenced rather than repeating details
in multiple places.

Chapter 1, Getting Started, introduces the Arduino environment and provides help on
getting the Arduino development environment and hardware installed and working.

The next couple of chapters introduce Arduino software development. Chapter 2,
Making the Sketch Do Your Bidding, covers essential software concepts and tasks, and
Chapter 3, Using Mathematical Operators, shows how to make use of the most common
mathematical functions.

Chapter 4, Serial Communications, describes how to get Arduino to connect and com-
municate with your computer and other devices. Serial is the most common method
for Arduino input and output, and this capability is used in many of the recipes
throughout the book.

Chapter 5, Simple Digital and Analog Input, introduces a range of basic techniques for
reading digital and analog signals. Chapter 6, Getting Input from Sensors, builds on this
with recipes that explain how to use devices that enable Arduino to sense touch, sound,
position, heat, and light.

Chapter 7, Visual Output, covers controlling light. Recipes cover switching on one or
many LEDs and controlling brightness and color. This chapter explains how you can
drive bar graphs and numeric LED displays, as well as create patterns and animations
with LED arrays. In addition, the chapter provides a general introduction to digital and
analog output for those who are new to this.

Chapter 8, Physical Output, explains how you can make things move by controlling
motors with Arduino. A wide range of motor types is covered: solenoids, servo motors,
DC motors, and stepper motors.

xii | Preface

Chapter 9, Audio Output, shows how to generate sound with Arduino through an out-
put device such as a speaker. It covers playing simple tones and melodies and playing
WAV files and MIDI.

Chapter 10, Remotely Controlling External Devices, describes techniques that can be
used to interact with almost any device that uses some form of remote controller, in-
cluding TV, audio equipment, cameras, garage doors, appliances, and toys. It builds
on techniques used in previous chapters for connecting Arduino to devices and
modules.

Chapter 11, Using Displays, covers interfacing text and graphical LCD displays. The
chapter shows how you can connect these devices to display text, scroll or highlight
words, and create special symbols and characters.

Chapter 12, Using Time and Dates, covers built-in Arduino time-related functions and
introduces many additional techniques for handling time delays, time measurement,
and real-world times and dates.

Chapter 13, Communicating Using I2C and SPI, covers the Inter-Integrated Circuit
(I2C) and Serial Peripheral Interface (SPI) standards. These standards provide simple
ways for digital information to be transferred between sensors and Arduino. This chap-
ter shows how to use I2C and SPI to connect to common devices. It also shows how to
connect two or more Arduino boards, using I2C for multiboard applications.

Chapter 14, Wireless Communication, covers wireless communication with XBee and
other wireless modules. This chapter provides examples ranging from simple wireless
serial port replacements to mesh networks connecting multiple boards to multiple
sensors.

Chapter 15, Ethernet and Networking, describes the many ways you can use Arduino
with the Internet. It has examples that demonstrate how to build and use web clients
and servers and shows how to use the most common Internet communication protocols
with Arduino.

Arduino software libraries are a standard way of adding functionality to the Arduino
environment. Chapter 16, Using, Modifying, and Creating Libraries, explains how to
use and modify software libraries. It also provides guidance on how to create your own
libraries.

Chapter 17, Advanced Coding and Memory Handling, covers advanced programming
techniques, and the topics here are more technical than the other recipes in this book
because they cover things that are usually concealed by the friendly Arduino wrapper.
The techniques in this chapter can be used to make a sketch more efficient—they can
help improve performance and reduce the code size of your sketches.

Chapter 18, Using the Controller Chip Hardware, shows how to access and use hard-
ware functions that are not fully exposed through the documented Arduino language.
It covers low-level usage of the hardware input/output registers, timers, and interrupts.

Preface | xiii

Appendix A, Electronic Components, provides an overview of the components used
throughout the book.

Appendix B, Using Schematic Diagrams and Data Sheets, explains how to use schematic
diagrams and data sheets.

Appendix C, Building and Connecting the Circuit, provides a brief introduction to using
a breadboard, connecting and using external power supplies and batteries, and using
capacitors for decoupling.

Appendix D, Tips on Troubleshooting Software Problems, provides tips on fixing com-
pile and runtime problems.

Appendix E, Tips on Troubleshooting Hardware Problems, covers problems with elec-
tronic circuits.

Appendix F, Digital and Analog Pins, provides tables indicating functionality provided
by the pins on standard Arduino boards.

Appendix G, ASCII and Extended Character Sets, provides tables showing ASCII
characters.

Appendix H, Migrating to Arduino 1.0, explains how to modify code written for pre-
vious releases to run correctly with Arduino 1.0.

What Was Left Out
There isn’t room in this book to cover electronics theory and practice, although guid-
ance is provided for building the circuits used in the recipes. For more detail, readers
may want to refer to material that is widely available on the Internet or to books such
as the following:

• Make: Electronics by Charles Platt (O’Reilly; search for it on oreilly.com)

• Getting Started in Electronics by Forrest M. Mims III (Master Publishing)

• Physical Computing by Dan O’Sullivan and Tom Igoe (Cengage)

• Practical Electronics for Inventors by Paul Scherz (McGraw-Hill)

This cookbook explains how to write code to accomplish specific tasks, but it is not an
introduction to programming. Relevant programming concepts are briefly explained,
but there is insufficient room to cover the details. If you want to learn more about
programming, you may want to refer to the Internet or to one of the following books:

• Practical C Programming by Steve Oualline (O’Reilly; search for it on oreilly.com)

• A Book on C by Al Kelley and Ira Pohl (Addison-Wesley)

xiv | Preface

http://oreilly.com/catalog/9780596153755/
http://oreilly.com/
http://oreilly.com/catalog/9781565923065/
http://oreilly.com/

My favorite, although not really a beginner’s book, is the book I used to learn
C programming:

• The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie
(Prentice Hall)

Code Style (About the Code)
The code used throughout this book has been tailored to clearly illustrate the topic
covered in each recipe. As a consequence, some common coding shortcuts have been
avoided, particularly in the early chapters. Experienced C programmers often use rich
but terse expressions that are efficient but can be a little difficult for beginners to read.
For example, the early chapters increment variables using explicit expressions that are
easy for nonprogrammers to read:

 result = result + 1; // increment the count

Rather than the following, commonly used by experienced programmers, that does the
same thing:

 result++; // increment using the post increment operator

Feel free to substitute your preferred style. Beginners should be reassured that there is
no benefit in performance or code size in using the terse form.

Some programming expressions are so common that they are used in their terse form.
For example, the loop expressions are written as follows:

for(int i=0; i < 4; i++)

This is equivalent to the following:

int i;
for(i=0; i < 4; i = i+1)

See Chapter 2 for more details on these and other expressions used throughout the
book.

Good programming practice involves ensuring that values used are valid (garbage in
equals garbage out) by checking them before using them in calculations. However, to
keep the code focused on the recipe topic, very little error-checking code has been
included.

Arduino Platform Release Notes
This edition has been updated for Arduino 1.0. All of the code has been tested with the
latest Arduino 1.0 release candidate at the time of going to press (RC2). The download
code for this edition will be updated online if necessary to support the final 1.0 release,
so check the book’s website to get the latest code. The download contains a file named
changelog.txt that will indicate code that has changed from the published edition.

Preface | xv

http://shop.oreilly.com/product/0636920022244.do

Although many of the sketches will run on earlier Arduino releases, you need to change
the extension from .ino to .pde to load the sketch into a pre-1.0 IDE. If you have not
migrated to Arduino 1.0 and have good reason to stick with an earlier release, you can
use the example code from the first edition of this book (available at http://shop.oreilly
.com/product/9780596802486.do), which has been tested with releases from 0018 to
0022. Note that many recipes in the second edition have been enhanced, so we en-
courage you to upgrade to Arduino 1.0. If you need help migrating older code, see
Appendix H.

There’s also a link to errata on that site. Errata give readers a way to let us know about
typos, errors, and other problems with the book. Errata will be visible on the page
immediately, and we’ll confirm them after checking them out. O’Reilly can also fix
errata in future printings of the book and on Safari, making for a better reader experi-
ence pretty quickly.

If you have problems making examples work, check the changelog.txt file in the latest
code download to see if the sketch has been updated. If that doesn’t fix the problem,
see Appendix D, which covers troubleshooting software problems. The Arduino forum
is a good place to post a question if you need more help: http://www.arduino.cc.

If you like—or don’t like—this book, by all means, please let people know. Amazon
reviews are one popular way to share your happiness or other comments. You can also
leave reviews at the O’Reilly site for the book.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new items where they are defined

Constant width
Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML element tags

Constant width bold
Indicates emphasis in program code lines

Constant width italic
Indicates text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

xvi | Preface

http://shop.oreilly.com/product/9780596802486.do
http://shop.oreilly.com/product/9780596802486.do
http://www.arduino.cc

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you make things with Arduino. In general, you may use the
code in this book in your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Arduino Cookbook, Second Edition, by
Michael Margolis with Nick Weldin (O’Reilly). Copyright 2012 Michael Margolis,
Nicholas Weldin, 978-1-4493-1387-6.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made a few mistakes!).

Preface | xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022244.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Nick Weldin’s contribution was invaluable for the completion of this book. It was
90 percent written when Nick came on board—and without his skill and enthusiasm,
it would still be 90 percent written. His hands-on experience running Arduino work-
shops for all levels of users enabled us to make the advice in this book practical for our
broad range of readers. Thank you, Nick, for your knowledge and genial, collaborative
nature.

Simon St. Laurent was the editor at O’Reilly who first expressed interest in this book.
And in the end, he is the man who pulled it together. His support and encouragement
kept us inspired as we sifted our way through the volumes of material necessary to do
the subject justice.

Brian Jepson helped me get started with the writing of this book. His vast knowledge
of things Arduino and his concern and expertise for communicating about technology
in plain English set a high standard. He was an ideal guiding hand for shaping the book
and making technology readily accessible for readers. We also have Brian to thank for
the XBee content in Chapter 14.

Brian Jepson and Shawn Wallace were technical editors for this second edition and
provided excellent advice for improving the accuracy and clarity of the content.

xviii | Preface

http://shop.oreilly.com/product/0636920022244.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Audrey Doyle worked tirelessly to stamp out typos and grammatical errors in the initial
manuscript and untangle some of the more convoluted expressions.

Philip Lindsay collaborated on content for Chapter 15 in the first edition. Adrian
McEwen, the lead developer for many of the Ethernet enhancements in Release 1.0,
provided valuable advice to ensure this Chapter reflected all the changes in that release.

Mikal Hart wrote recipes covering GPS and software serial. Mikal was the natural
choice for this—not only because he wrote the libraries, but also because he is a fluent
communicator, an Arduino enthusiast, and a pleasure to collaborate with.

Arduino is possible because of the creativity of the core Arduino development team:
Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis. On
behalf of all Arduino users, I wish to express our appreciation for their efforts in making
this fascinating technology simple and their generosity in making it free.

Special thanks to Alexandra Deschamps-Sonsino, whose Tinker London workshops
provided important understanding of the needs of users. Thanks also to Peter Knight,
who has provided all kinds of clever Arduino solutions as well as the basis of a number
of recipes in this book.

On behalf of everyone who has downloaded user-contributed Arduino libraries, I
would like to thank the authors who have generously shared their knowledge.

The availability of a wide range of hardware is a large part of what makes Arduino
exciting—thanks to the suppliers for stocking and supporting a broad range of great
devices. The following were helpful in providing hardware used in the book: SparkFun,
Maker Shed, Gravitech, and NKC Electronics. Other suppliers that have been helpful
include Modern Device, Liquidware, Adafruit, MakerBot Industries, Mindkits,
Oomlout, and SK Pang.

Nick would like to thank everyone who was involved with Tinker London, particularly
Alexandra, Peter, Brock Craft, Daniel Soltis and all the people who assisted on work-
shops over the years.

Nick’s final thanks go to his family, Jeanie, Emily, and Finn, who agreed to let him do
this over their summer holiday, and of course, much longer after that than they origi-
nally thought, and to his parents, Frank and Eva, for bringing him up to take things
apart.

Last but not least, I express thanks to the following people:

Joshua Noble for introducing me to O’Reilly. His book, Programming Interactivity, is
highly recommended for those interested in broadening their knowledge in interactive
computing.

Robert Lacy-Thompson for offering advice early on with the first edition.

Mark Margolis for his support and help as a sounding board in the book’s conception
and development.

Preface | xix

http://oreilly.com/catalog/9780596154158/

I thank my parents for helping me to see that the creative arts and technology were not
distinctive entities and that, when combined, they can lead to extraordinary results.

And finally, this book would not have been started or finished without the support of
my wife, Barbara Faden. My grateful appreciation to her for keeping me motivated and
for her careful reading and contributions to the manuscript.

Notes on the Second Edition
The second edition of this book has followed relatively quickly from the first, prompted
by the release of Arduino 1.0. The stated purpose of 1.0 is to introduce significant
change that will smooth the way for future enhancements but break some code written
for older software. These have necessitated changes to code in many of the chapters of
this book. Most changed are Chapter 15, Ethernet and Networking, and Chapter 13,
Communicating Using I2C and SPI, but all of the recipes in this edition have been mi-
grated to 1.0, with many being updated to use features new in this release. If you are
using a release prior to Arduino 1.0, then you can download code from the first edition
of this book. See “Arduino Platform Release Notes” on page xv for download details.

Appendix H, Migrating to Arduino 1.0, has been added to describe the changes intro-
duced by Arduino Release 1.0. This describes how to update older code to use with
Arduino 1.0.

Recipes for devices that are no longer widely available have been updated to use current
replacements and some new sensors and wireless devices have been added.

Errata posted on the O’Reilly site has been corrected, thanks to readers taking the time
to notify us of these.

We think you will like the improvements made in Arduino 1.0 as well as the enhance-
ments made to this edition of the Arduino Cookbook. The first edition was well received;
the constructive criticism being divided between people that wanted more technical
content and those that preferred less. In a book that we limited to only 700 or so pages
(to keep it affordable and portable), that seems to indicate that the right balance has
been achieved.

xx | Preface

CHAPTER 1

Getting Started

1.0 Introduction
The Arduino environment has been designed to be easy to use for beginners who have
no software or electronics experience. With Arduino, you can build objects that can
respond to and/or control light, sound, touch, and movement. Arduino has been used
to create an amazing variety of things, including musical instruments, robots, light
sculptures, games, interactive furniture, and even interactive clothing.

If you’re not a beginner, please feel free to skip ahead to recipes that
interest you.

Arduino is used in many educational programs around the world, particularly by de-
signers and artists who want to easily create prototypes but do not need a deep under-
standing of the technical details behind their creations. Because it is designed to be used
by nontechnical people, the software includes plenty of example code to demonstrate
how to use the Arduino board’s various facilities.

Though it is easy to use, Arduino’s underlying hardware works at the same level of
sophistication that engineers employ to build embedded devices. People already work-
ing with microcontrollers are also attracted to Arduino because of its agile development
capabilities and its facility for quick implementation of ideas.

Arduino is best known for its hardware, but you also need software to program that
hardware. Both the hardware and the software are called “Arduino.” The combination
enables you to create projects that sense and control the physical world. The software
is free, open source, and cross-platform. The boards are inexpensive to buy, or you can
build your own (the hardware designs are also open source). In addition, there is an
active and supportive Arduino community that is accessible worldwide through the
Arduino forums and the wiki (known as the Arduino Playground). The forums and the

1

wiki offer project development examples and solutions to problems that can provide
inspiration and assistance as you pursue your own projects.

The recipes in this chapter will get you started by explaining how to set up the devel-
opment environment and how to compile and run an example sketch.

Source code containing computer instructions for controlling Arduino
functionality is usually referred to as a sketch in the Arduino community.
The word sketch will be used throughout this book to refer to Arduino
program code.

The Blink sketch, which comes with Arduino, is used as an example for recipes in this
chapter, though the last recipe in the chapter goes further by adding sound and col-
lecting input through some additional hardware, not just blinking the light built into
the board. Chapter 2 covers how to structure a sketch for Arduino and provides an
introduction to programming.

If you already know your way around Arduino basics, feel free to jump
forward to later chapters. If you’re a first-time Arduino user, patience
in these early recipes will pay off with smoother results later.

Arduino Software
Software programs, called sketches, are created on a computer using the Arduino inte-
grated development environment (IDE). The IDE enables you to write and edit code
and convert this code into instructions that Arduino hardware understands. The IDE
also transfers those instructions to the Arduino board (a process called uploading).

Arduino Hardware
The Arduino board is where the code you write is executed. The board can only control
and respond to electricity, so specific components are attached to it to enable it to
interact with the real world. These components can be sensors, which convert some
aspect of the physical world to electricity so that the board can sense it, or actuators,
which get electricity from the board and convert it into something that changes the
world. Examples of sensors include switches, accelerometers, and ultrasound distance
sensors. Actuators are things like lights and LEDs, speakers, motors, and displays.

There are a variety of official boards that you can use with Arduino software and a wide
range of Arduino-compatible boards produced by members of the community.

The most popular boards contain a USB connector that is used to provide power and
connectivity for uploading your software onto the board. Figure 1-1 shows a basic board
that most people start with, the Arduino Uno.

2 | Chapter 1: Getting Started

The Arduino Uno has a second microcontroller onboard to handle all USB communi-
cation; the small surface-mount chip (the ATmega8U2) is located near the USB socket
on the board. This can be programmed separately to enable the board to appear as
different USB devices (see Recipe 18.14 for an example). The Arduino Leonardo board
replaces the ATmega8U2 and the ATmega328 controllers with a single ATmega32u4
chip that implements the USB protocol in software. The Arduino-compatible Teensy
and Teensy+ boards from PJRC (http://www.pjrc.com/teensy/) are also capable of em-
ulating USB devices. Older boards, and most of the Arduino-compatible boards, use a
chip from the FTDI company that provides a hardware USB solution for connection to
the serial port of your computer.

You can get boards as small as a postage stamp, such as the Arduino Mini and Pro Mini;
larger boards that have more connection options and more powerful processors, such
as the Arduino Mega; and boards tailored for specific applications, such as the LilyPad
for wearable applications, the Fio for wireless projects, and the Arduino Pro for em-
bedded applications (standalone projects that are often battery-operated).

Recent additions to the range include the Arduino ADK, which has a USB host socket
on it and is compatible with the Android Open Accessory Development Kit, the offi-
cially approved method of attaching hardware to Android devices. The Leonardo board
uses a controller chip (the ATmega32u4) that is able to present itself as various HID

Figure 1-1. Basic board: the Arduino Uno. Photograph courtesy todo.to.it.

1.0 Introduction | 3

http://www.pjrc.com/teensy/

devices. The Ethernet board includes Ethernet connectivity, and has a Power Over
Ethernet option, so it is possible to use a single cable to connect and power the board.

Other Arduino-compatible boards are also available, including the following:

• Arduino Nano, a tiny board with USB capability, from Gravitech (http://store.grav
itech.us/arna30wiatn.html)

• Bare Bones Board, a low-cost board available with or without USB capability, from
Modern Device (http://www.moderndevice.com/products/bbb-kit)

• Boarduino, a low-cost breadboard-compatible board, from Adafruit Industries
(http://www.adafruit.com/)

• Seeeduino, a flexible variation of the standard USB board, from Seeed Studio
Bazaar (http://www.seeedstudio.com/)

• Teensy and Teensy++, tiny but extremely versatile boards, from PJRC (http://www
.pjrc.com/teensy/)

A list of Arduino-compatible boards is available at http://www.freeduino.org/.

See Also
An overview of Arduino boards: http://www.arduino.cc/en/Main/Hardware.

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

A list of over a hundred boards that can be used with the Arduino development envi-
ronment can be found at: http://jmsarduino.blogspot.com/2009/03/comprehensive-ardu
ino-compatible.html

1.1 Installing the Integrated Development Environment (IDE)
Problem
You want to install the Arduino development environment on your computer.

Solution
The Arduino software for Windows, Mac, and Linux can be downloaded from http://
arduino.cc/en/Main/Software.

The Windows download is a ZIP file. Unzip the file to any convenient directory—
Program Files/Arduino is a sensible place.

4 | Chapter 1: Getting Started

http://store.gravitech.us/arna30wiatn.html
http://store.gravitech.us/arna30wiatn.html
http://www.moderndevice.com/products/bbb-kit
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.pjrc.com/teensy/
http://www.pjrc.com/teensy/
http://www.freeduino.org/
http://www.arduino.cc/en/Main/Hardware
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
http://jmsarduino.blogspot.com/2009/03/comprehensive-arduino-compatible.html
http://jmsarduino.blogspot.com/2009/03/comprehensive-arduino-compatible.html
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

A free utility for unzipping files, called 7-Zip, can be downloaded from
http://www.7-zip.org/.

Unzipping the file will create a folder named Arduino-00<nn> (where <nn> is the ver-
sion number of the Arduino release you downloaded). The directory contains the
executable file (named Arduino.exe), along with various other files and folders. Double-
click the Arduino.exe file and the splash screen should appear (see Figure 1-2), followed
by the main program window (see Figure 1-3). Be patient, as it can take some time for
the software to load.

Figure 1-2. Arduino splash screen (Version 1.0 in Windows 7)

The Arduino download for the Mac is a disk image (.dmg); double-click the file when
the download is complete. The image will mount (it will appear like a memory stick

1.1 Installing the Integrated Development Environment (IDE) | 5

http://www.7-zip.org/

on the desktop). Inside the disk image is the Arduino application. Copy this to
somewhere convenient—the Applications folder is a sensible place. Double-click the
application once you have copied it over (it is not a good idea to run it from the disk
image). The splash screen will appear, followed by the main program window.

Linux installation varies depending on the Linux distribution you are using. See the
Arduino wiki for information (http://www.arduino.cc/playground/Learning/Linux).

To enable the Arduino development environment to communicate with the board, you
need to install drivers.

On Windows, use the USB cable to connect your PC and the Arduino board and wait
for the Found New Hardware Wizard to appear. If you are using an Uno board, let the
wizard attempt to find and install drivers. It will fail to do this (don’t worry, this is the
expected behavior). To fix it you now need to go to Start Menu→Control Panel→System

Figure 1-3. IDE main window (Arduino 1.0 on a Mac)

6 | Chapter 1: Getting Started

http://www.arduino.cc/playground/Learning/Linux

and Security. Click on System, and then open Device Manager. In the listing that is
displayed find the entry in COM and LPT named Arduino UNO (COM nn). nn will be the
number Windows has assigned to the port created for the board. You will see a warning
logo next to this because the appropriate drivers have not yet been assigned. Right click
on the entry and select Update Driver Software. Choose the “Browse my computer for
driver software” option, and navigate to the Drivers folder inside the Arduino folder
you just unzipped. Select the ArduinoUNO.inf file and windows should then complete
the installation process.

If you are using an earlier board (any board that uses FTDI drivers) with Windows Vista
or Windows 7 and are online, you can let the wizard search for drivers and they will
install automatically. On Windows XP (or if you don’t have Internet access), you should
specify the location of the drivers. Use the file selector to navigate to the FTDI USB
Drivers directory, located in the directory where you unzipped the Arduino files. When
this driver has installed, the Found New Hardware Wizard will appear again, saying a
new serial port has been found. Follow the same process as before.

It is important that you go through the sequence of steps to install the
drivers two times, or the software will not be able to communicate with
the board.

On the Mac, the latest Arduino boards, such as the Uno, can be used without additional
drivers. When you first plug the board in a notification will pop up saying a new net-
work port has been found, you can dismiss this. If you are using earlier boards (boards
that need FTDI drivers), you will need to install driver software. There is a package
named FTDIUSBSerialDriver, with a range of numbers after it, inside the disk image.
Double-click this and the installer will take you through the process. You will need to
know an administrator password to complete the process.

On Linux, most distributions have the driver already installed, but follow the Linux
link given in this chapter’s introduction for specific information for your distribution.

Discussion
If the software fails to start, check the troubleshooting section of the Arduino website,
http://arduino.cc/en/Guide/Troubleshooting, for help solving installation problems.

See Also
Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

1.1 Installing the Integrated Development Environment (IDE) | 7

http://arduino.cc/en/Guide/Troubleshooting
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux

1.2 Setting Up the Arduino Board
Problem
You want to power up a new board and verify that it is working.

Solution
Plug the board in to a USB port on your computer and check that the green LED power
indicator on the board illuminates. Standard Arduino boards (Uno, Duemilanove, and
Mega) have a green LED power indicator located near the reset switch.

An orange LED near the center of the board (labeled “Pin 13 LED” in Figure 1-4) should
flash on and off when the board is powered up (boards come from the factory preloaded
with software to flash the LED as a simple check that the board is working).

Figure 1-4. Basic Arduino board (Duemilanove and Uno)

New boards such as Leonardo have the LEDs located near the USB connector; see
Figure 1-5. Recent boards have duplicate pins for use with I2C (marked SCL and SDA).
These boards also have a pin marked IOREF that can be used to determine the operating
voltage of the chip.

8 | Chapter 1: Getting Started

The latest boards have three additional connections in the new standard
for connector layout on the board. This does not affect the use of older
shields (they will all continue to work with the new boards, just as they
did with earlier boards). The new connections provide a pin (IOREF)
for shields to detect the analog reference voltage (so that analog input
values can be calibrated to the supply voltage), SCL and SDA pins to
enable a consistent connection for I2C devices (the location of the I2C
pins has differed on previous boards due to different chip configura-
tions). Shields designed for the new layout should work on any board
that uses the new pin locations. An additional pin (next to the IOREF
pin) is not being used at the moment, but enables new functionality to
be implemented in the future without needing to change the pin layout
again.

Discussion
If the power LED does not illuminate when the board is connected to your computer,
the board is probably not receiving power.

The flashing LED (connected to digital output pin 13) is being controlled by code
running on the board (new boards are preloaded with the Blink example sketch). If the
pin 13 LED is flashing, the sketch is running correctly, which means the chip on the
board is working. If the green power LED is on but the pin 13 LED is not flashing, it
could be that the factory code is not on the chip; follow the instructions in Rec-
ipe 1.3 to load the Blink sketch onto the board to verify that the board is working. If
you are not using a standard board, it may not have a built-in LED on pin 13, so check
the documentation for details of your board. The Leonardo board fades the LED up
and down (it looks like the LED is “breathing”) to show that the board is working.

Figure 1-5. Leonardo Board

1.2 Setting Up the Arduino Board | 9

See Also
Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

A troubleshooting guide can be found at http://arduino.cc/en/Guide/Troubleshooting.

1.3 Using the Integrated Development Environment (IDE) to
Prepare an Arduino Sketch
Problem
You want to get a sketch and prepare it for uploading to the board.

Solution
Use the Arduino IDE to create, open, and modify sketches that define what the board
will do. You can use buttons along the top of the IDE to perform these actions (shown
in Figure 1-6), or you can use the menus or keyboard shortcuts (shown in Figure 1-7).

The Sketch Editor area is where you view and edit code for a sketch. It supports com-
mon text-editing keys such as Ctrl-F (⌘+F on a Mac) for find, Ctrl-Z (⌘+Z on a Mac)
for undo, Ctrl-C (⌘+C on a Mac) to copy highlighted text, and Ctrl-V (⌘+V on a Mac)
to paste highlighted text.

Figure 1-7 shows how to load the Blink sketch (the sketch that comes preloaded on a
new Arduino board).

After you’ve started the IDE, go to the File→Examples menu and select 1. Basics→Blink,
as shown in Figure 1-7. The code for blinking the built-in LED will be displayed in the
Sketch Editor window (refer to Figure 1-6).

Before the code can be sent to the board, it needs to be converted into instructions that
can be read and executed by the Arduino controller chip; this is called compiling. To
do this, click the compile button (the top-left button with a tick inside), or select
Sketch→Verify/Compile (Ctrl-R; ⌘+R on a Mac).

You should see a message that reads “Compiling sketch...” and a progress bar in the
message area below the text-editing window. After a second or two, a message that
reads “Done Compiling” will appear. The black console area will contain the following
additional message:

Binary sketch size: 1026 bytes (of a 32256 byte maximum)

The exact message may differ depending on your board and Arduino version; it is telling
you the size of the sketch and the maximum size that your board can accept.

10 | Chapter 1: Getting Started

http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
http://arduino.cc/en/Guide/Troubleshooting

Discussion
Source code for Arduino is called a sketch. The process that takes a sketch and converts
it into a form that will work on the board is called compilation. The IDE uses a number
of command-line tools behind the scenes to compile a sketch. For more information
on this, see Recipe 17.1.

The final message telling you the size of the sketch indicates how much program space
is needed to store the controller instructions on the board. If the size of the compiled

Figure 1-6. Arduino IDE

1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch | 11

sketch is greater than the available memory on the board, the following error message
is displayed:

Sketch too big; see http://www.arduino.cc/en/Guide/Troubleshooting#size
 for tips on reducing it.

If this happens, you need to make your sketch smaller to be able to put it on the board,
or get a board with higher capacity.

If there are errors in the code, the compiler will print one or more error messages in the
console window. These messages can help identify the error—see Appendix D on soft-
ware errors for troubleshooting tips.

To prevent accidental overwriting of the examples, the Arduino IDE
does not allow you to save changes to the provided example sketches.
You must rename them using the Save As menu option. You can save
sketches you write yourself with the Save button (see Recipe 1.5).

As you develop and modify a sketch, you should also consider using the File→Save As
menu option and using a different name or version number regularly so that as you
implement each bit, you can go back to an older version if you need to.

Figure 1-7. IDE menu (selecting the Blink example sketch)

12 | Chapter 1: Getting Started

Code uploaded onto the board cannot be downloaded back onto your
computer. Make sure you save your sketch code on your computer. You
cannot save changes back to the example files; you need to use Save As
and give the changed file another name.

See Also
Recipe 1.5 shows an example sketch. Appendix D has tips on troubleshooting software
problems.

1.4 Uploading and Running the Blink Sketch
Problem
You want to transfer your compiled sketch to the Arduino board and see it working.

Solution
Connect your Arduino board to your computer using the USB cable. Load the Blink
sketch into the IDE as described in Recipe 1.3.

Next, select Tools→Board from the drop-down menu and select the name of the board
you have connected (if it is the standard Uno board, it is probably the first entry in the
board list).

Now select Tools→Serial Port. You will get a drop-down list of available serial ports on
your computer. Each machine will have a different combination of serial ports, de-
pending on what other devices you have used with your computer.

On Windows, they will be listed as numbered COM entries. If there is only one entry,
select it. If there are multiple entries, your board will probably be the last entry.

On the Mac, your board will be listed twice if it is an Uno board:

/dev/tty.usbmodem-XXXXXXX
/dev/cu.usbmodem-XXXXXXX

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

Click on the upload button (in Figure 1-6, it’s the second button from the left), or
choose File→Upload to I/O board (Ctrl-U, ⌘+U on a Mac).

The software will compile the code, as in Recipe 1.3. After the software is compiled, it
is uploaded to the board. If you look at your board, you will see the LED stop flashing,
and two lights (labeled as Serial LEDs in Figure 1-4) just below the previously flashing

1.4 Uploading and Running the Blink Sketch | 13

LED should flicker for a couple of seconds as the code uploads. The original light should
then start flashing again as the code runs.

Discussion
For the IDE to send the compiled code to the board, the board needs to be plugged in
to the computer, and you need to tell the IDE which board and serial port you are using.

When an upload starts, whatever sketch is running on the board is stopped (if you were
running the Blink sketch, the LED will stop flashing). The new sketch is uploaded to
the board, replacing the previous sketch. The new sketch will start running when the
upload has successfully completed.

Older Arduino boards and some compatibles do not automatically in-
terrupt the running sketch to initiate upload. In this case, you need to
press the Reset button on the board just after the software reports that
it is done compiling (when you see the message about the size of the
sketch). It may take a few attempts to get the timing right between the
end of the compilation and pressing the Reset button.

The IDE will display an error message if the upload is not successful. Problems are
usually due to the wrong board or serial port being selected or the board not being
plugged in. The currently selected board and serial port are displayed in the status bar
at the bottom of the Arduino window

If you have trouble identifying the correct port on Windows, try unplugging the board
and then selecting Tools→Serial Port to see which COM port is no longer on the display
list. Another approach is to select the ports, one by one, until you see the lights on the
board flicker to indicate that the code is uploading.

See Also
The Arduino troubleshooting page: http://www.arduino.cc/en/Guide/Troubleshooting.

1.5 Creating and Saving a Sketch
Problem
You want to create a sketch and save it to your computer.

Solution
To open an editor window ready for a new sketch, launch the IDE (see Recipe 1.3), go
to the File menu, and select New. Paste the following code into the Sketch Editor win-
dow (it’s similar to the Blink sketch, but the blinks last twice as long):

14 | Chapter 1: Getting Started

http://www.arduino.cc/en/Guide/Troubleshooting

const int ledPin = 13; // LED connected to digital pin 13

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(2000); // wait for two seconds
 digitalWrite(ledPin, LOW); // set the LED off
 delay(2000); // wait for two seconds
}

Compile the code by clicking the compile button (the top-left button with a triangle
inside), or select Sketch→Verify/Compile (see Recipe 1.3).

Upload the code by clicking on the upload button, or choose File→Upload to I/O board
(see Recipe 1.4). After uploading, the LED should blink, with each flash lasting two
seconds.

You can save this sketch to your computer by clicking the Save button, or select
File→Save.

You can save the sketch using a new name by selecting the Save As menu option. A
dialog box will open where you can enter the filename.

Discussion
When you save a file in the IDE, a standard dialog box for the operating system will
open. It suggests that you save the sketch to a folder called Arduino in your My Docu-
ments folder (or your Documents folder on a Mac). You can replace the default sketch
name with a meaningful name that reflects the purpose of your sketch. Click Save to
save the file.

The default name is the word sketch followed by the current date. Se-
quential letters starting from a are used to distinguish sketches created
on the same day. Replacing the default name with something meaning-
ful helps you to identify the purpose of a sketch when you come back
to it later.

If you use characters that the IDE does not allow (e.g., the space character), the IDE
will automatically replace these with valid characters.

Arduino sketches are saved as plain text files with the extension .ino. Older versions of
the IDE used the .pde extension, also used by Processing. They are automatically saved
in a folder with the same name as the sketch.

1.5 Creating and Saving a Sketch | 15

You can save your sketches to any folder on your computer, but if you use the default
folder (the Arduino folder in your Documents folder) your sketches will automatically
appear in the Sketchbook menu of the Arduino software and be easier to locate.

If you have edited one of the examples from the Arduino download, you
will not be able to save the changed file using the same filename. This
preserves the standard examples intact. If you want to save a modified
example, you will need to select another location for the sketch.

After you have made changes, you will see a dialog box asking if you want to save the
sketch when a sketch is closed.

The § symbol following the name of the sketch in the top bar of the IDE
window indicates that the sketch code has changes that have not yet
been saved on the computer. This symbol is removed when you save the
sketch.

The Arduino software does not provide any kind of version control, so if you want to
be able to revert to older versions of a sketch, you can use Save As regularly and give
each revision of the sketch a slightly different name.

Frequent compiling as you modify or add code is a good way to check for errors as you
write your code. It will be easier to find and fix any errors because they will usually be
associated with what you have just written.

Once a sketch has been uploaded onto the board there is no way to
download it back to your computer. Make sure you save any changes
to your sketches that you want to keep.

If you try and save a sketch file that is not in a folder with the same name as the sketch,
the IDE will inform you that this can’t be opened as is and suggest you click OK to
create the folder for the sketch with the same name.

Sketches must be located in a folder with the same name as the sketch.
The IDE will create the folder automatically when you save a new sketch.

Sketches made with older versions of Arduino software have a different
file extension (.pde). The IDE will open them, when you save the sketch
it will create a file with the new extension (.ino). Code written for early
versions of the IDE may not be able to compile in version 1.0. Most of
the changes to get old code running are easy to do. See Appendix H for
more details.

16 | Chapter 1: Getting Started

See Also
The code in this recipe and throughout this book use the const int expression to
provide meaningful names (ledPin) for constants instead of numbers (13). See
Recipe 17.5 for more on the use of constants.

1.6 Using Arduino
Problem
You want to get started with a project that is easy to build and fun to use.

Solution
This recipe provides a taste of some of the techniques that are covered in detail in later
chapters.

The sketch is based on the LED blinking code from the previous recipe, but instead of
using a fixed delay, the rate is determined by a light-sensitive sensor called a light de-
pendent resistor or LDR (see Recipe 6.2). Wire the LDR as shown in Figure 1-8.

Figure 1-8. Arduino with light dependent resistor

If you are not familiar with building a circuit from a schematic, see
Appendix B for step-by-step illustrations on how to make this circuit on
a breadboard.

1.6 Using Arduino | 17

The following sketch reads the light level of an LDR connected to analog pin 0. The
light level striking the LDR will change the blink rate of the internal LED connected to
pin 13:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
}

void loop()
{
 int rate = analogRead(sensorPin); // read the analog input
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

Discussion
The value of the 4.7K resistor is not critical. Anything from 1K to 10K can be used. The
light level on the LDR will change the voltage level on analog pin 0. The analogRead
command (see Chapter 6) provides a value that ranges from around 200 when the LDR
is dark to 800 or so when it is very bright. This value determines the duration of the
LED on and off times, so the blink time increases with light intensity.

You can scale the blink rate by using the Arduino map function as follows:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
}

void loop()
{
 int rate = analogRead(sensorPin); // read the analog input
 // the next line scales the blink rate between the min and max values
 rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
 rate = constrain(rate, minDuration,maxDuration); // constrain the value

18 | Chapter 1: Getting Started

 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

Recipe 5.7 provides more details on using the map function to scale values. Recipe 3.5
has details on using the constrain function to ensure values do not exceed a given range.

If you want to view the value of the rate variable on your computer, you can print this
to the Arduino Serial Monitor as shown in the revised loop code that follows. The
sketch will display the blink rate in the Serial Monitor. You open the Serial Monitor
window in the Arduino IDE by clicking on the icon on the right of the top bar (see
Chapter 4 for more on using the Serial Monitor):

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
 Serial.begin(9600); // initialize Serial
}

void loop()
{
 int rate = analogRead(sensorPin); // read the analog input
 // the next line scales the blink rate between the min and max values
 rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
 rate = constrain(rate, minDuration,maxDuration); // constrain the value

 Serial.println(rate); // print rate to serial monitor
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

You can use the LDR to control the pitch of a sound by connecting a small speaker to
the pin, as shown in Figure 1-9.

1.6 Using Arduino | 19

Figure 1-9. Connections for a speaker with the LDR circuit

You will need to increase the on/off rate on the pin to a frequency in the audio spectrum.
This is achieved, as shown in the following code, by decreasing the min and max
durations:

const int outputPin = 9; // Speaker connected to digital pin 9
const int sensorPin = 0; // connect sensor to analog input 0

const int minDuration = 1; // 1ms on, 1ms off (500 Hz)
const int maxDuration = 10; // 10ms on, 10ms off (50 hz)

void setup()
{
 pinMode(outputPin, OUTPUT); // enable output on the led pin
}

void loop()
{
 int sensorReading = analogRead(sensorPin); // read the analog input
 int rate = map(sensorReading, 200,800,minDuration, maxDuration);
 rate = constrain(rate, minDuration,maxDuration); // constrain the value

 digitalWrite(outputPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(outputPin, LOW); // set the LED off
 delay(rate);
}

20 | Chapter 1: Getting Started

See Also
See Recipe 3.5 for details on using the constrain function.

See Recipe 5.7 for a discussion on the map function.

If you are interested in creating sounds, see Chapter 9 for a full discussion on audio
output with Arduino.

1.6 Using Arduino | 21

CHAPTER 2

Making the Sketch Do Your Bidding

2.0 Introduction
Though much of an Arduino project will involve integrating the Arduino board with
supporting hardware, you need to be able to tell the board what to do with the rest of
your project. This chapter introduces core elements of Arduino programming, shows
nonprogrammers how to use common language constructs, and provides an overview
of the language syntax for readers who are not familiar with C or C++, the language
that Arduino uses.

Since making the examples interesting requires making Arduino do something, the
recipes use physical capabilities of the board that are explained in detail in later chap-
ters. If any of the code in this chapter is not clear, feel free to jump forward, particularly
to Chapter 4 for more on serial output and Chapter 5 for more on using digital and
analog pins. You don’t need to understand all the code in the examples, though, to see
how to perform the specific capabilities that are the focus of the recipes. Here are some
of the more common functions used in the examples that are covered in the next few
chapters:

Serial.println(value);
Prints the value to the Arduino IDE’s Serial Monitor so you can view Arduino’s
output on your computer; see Recipe 4.1.

pinMode(pin, mode);
Configures a digital pin to read (input) or write (output) a digital value; see the
introduction to Chapter 5.

digitalRead(pin);
Reads a digital value (HIGH or LOW) on a pin set for input; see Recipe 5.1.

digitalWrite(pin, value);
Writes the digital value (HIGH or LOW) to a pin set for output; see Recipe 5.1.

23

2.1 Structuring an Arduino Program
Problem
You are new to programming and want to understand the building blocks of an Arduino
program.

Solution
Programs for Arduino are usually referred to as sketches; the first users were artists and
designers and sketch highlights the quick and easy way to have an idea realized. The
terms sketch and program are interchangeable. Sketches contain code—the instructions
the board will carry out. Code that needs to run only once (such as to set up the board
for your application) must be placed in the setup function. Code to be run continuously
after the initial setup has finished goes into the loop function. Here is a typical sketch:

const int ledPin = 13; // LED connected to digital pin 13

 // The setup() method runs once, when the sketch starts
 void setup()
 {
 pinMode(ledPin, OUTPUT); // initialize the digital pin as an output
 }

 // the loop() method runs over and over again,
 void loop()
 {
 digitalWrite(ledPin, HIGH); // turn the LED on
 delay(1000); // wait a second
 digitalWrite(ledPin, LOW); // turn the LED off
 delay(1000); // wait a second
 }

When the Arduino IDE finishes uploading the code, and every time you power on the
board after you’ve uploaded this code, it starts at the top of the sketch and carries out
the instructions sequentially. It runs the code in setup once and then goes through the
code in loop. When it gets to the end of loop (marked by the closing bracket, }) it goes
back to the beginning of loop.

Discussion
This example continuously flashes an LED by writing HIGH and LOW outputs to a pin.
See Chapter 5 to learn more about using Arduino pins. When the sketch begins, the
code in setup sets the pin mode (so it’s capable of lighting an LED). After the code in
setup is completed, the code in loop is repeatedly called (to flash the LED) for as long
as the Arduino board is powered on.

24 | Chapter 2: Making the Sketch Do Your Bidding

You don’t need to know this to write Arduino sketches, but experienced C/C++ pro-
grammers may wonder where the expected main() entry point function has gone. It’s
there, but it’s hidden under the covers by the Arduino build environment. The build
process creates an intermediate file that includes the sketch code and the following
additional statements:

int main(void)
{
 init();

 setup();

 for (;;)
 loop();

 return 0;
}

The first thing that happens is a call to an init() function that initializes the Arduino
hardware. Next, your sketch’s setup() function is called. Finally, your loop() function
is called over and over. Because the for loop never terminates, the return statement is
never executed.

See Also
Recipe 1.4 explains how to upload a sketch to the Arduino board.

Chapter 17 and http://www.arduino.cc/en/Hacking/BuildProcess provide more on the
build process.

2.2 Using Simple Primitive Types (Variables)
Problem
Arduino has different types of variables to efficiently represent values. You want to
know how to select and use these Arduino data types.

Solution
Although the int (short for integer, a 16-bit value in Arduino) data type is the most
common choice for the numeric values encountered in Arduino applications, you can
use Table 2-1 to determine the data type that fits the range of values your application
expects.

2.2 Using Simple Primitive Types (Variables) | 25

http://www.arduino.cc/en/Hacking/BuildProcess

Table 2-1. Arduino data types

Numeric types Bytes Range Use

int 2 –32768 to 32767 Represents positive and negative integer values.

unsigned int 2 0 to 65535 Represents only positive values; otherwise, similar to int.

long 4 –2147483648 to
2147483647

Represents a very large range of positive and negative values.

unsigned
long

4 4294967295 Represents a very large range of positive values.

float 4 3.4028235E+38 to –
3.4028235E+38

Represents numbers with fractions; use to approximate real-
world measurements.

double 4 Same as float In Arduino, double is just another name for float.

boolean 1 false (0) or true (1) Represents true and false values.

char 1 –128 to 127 Represents a single character. Can also represent a signed value
between –128 and 127.

byte 1 0 to 255 Similar to char, but for unsigned values.

Other types Use

String Represents arrays of chars (characters) typically used to contain text.

void Used only in function declarations where no value is returned.

Discussion
Except in situations where maximum performance or memory efficiency is required,
variables declared using int will be suitable for numeric values if the values do not
exceed the range (shown in the first row in Table 2-1) and if you don’t need to work
with fractional values. Most of the official Arduino example code declares numeric
variables as int. But sometimes you do need to choose a type that specifically suits your
application.

Sometimes you need negative numbers and sometimes you don’t, so numeric types
come in two varieties: signed and unsigned. unsigned values are always positive. Vari-
ables without the keyword unsigned in front are signed so that they can represent neg-
ative and positive values. One reason to use unsigned values is when the range of
signed values will not fit the range of the variable (an unsigned variable has twice the
capacity of a signed variable). Another reason programmers choose to use unsigned
types is to clearly indicate to people reading the code that the value expected will never
be a negative number.

boolean types have two possible values: true or false. They are commonly used for
things like checking the state of a switch (if it’s pressed or not). You can also use HIGH
and LOW as equivalents to true and false where this makes more sense; digital
Write(pin, HIGH) is a more expressive way to turn on an LED than digitalWrite(pin,
true) or digitalWrite(pin,1), although all of these are treated identically when the

26 | Chapter 2: Making the Sketch Do Your Bidding

sketch actually runs, and you are likely to come across all of these forms in code posted
on the Web.

See Also
The Arduino reference at http://www.arduino.cc/en/Reference/HomePage provides de-
tails on data types.

2.3 Using Floating-Point Numbers
Problem
Floating-point numbers are used for values expressed with decimal points (this is the
way to represent fractional values). You want to calculate and compare these values in
your sketch.

Solution
The following code shows how to declare floating-point variables, illustrates problems
you can encounter when comparing floating-point values, and demonstrates how to
overcome them:

/*
 * Floating-point example
 * This sketch initialized a float value to 1.1
 * It repeatedly reduces the value by 0.1 until the value is 0
 */

float value = 1.1;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 value = value - 0.1; // reduce value by 0.1 each time through the loop
 if(value == 0)
 Serial.println("The value is exactly zero");
 else if(almostEqual(value, 0))
 {
 Serial.print("The value ");
 Serial.print(value,7); // print to 7 decimal places
 Serial.println(" is almost equal to zero");
 }
 else
 Serial.println(value);

 delay(100);

2.3 Using Floating-Point Numbers | 27

http://www.arduino.cc/en/Reference/HomePage

}

// returns true if the difference between a and b is small
// set value of DELTA to the maximum difference considered to be equal
boolean almostEqual(float a, float b)
{
 const float DELTA = .00001; // max difference to be almost equal
 if (a == 0) return fabs(b) <= DELTA;
 if (b == 0) return fabs(a) <= DELTA;
 return fabs((a - b) / max(fabs(a), fabs(b))) <= DELTA ;
}

Discussion
Floating-point math is not exact, and values returned can have a small approximation
error. The error occurs because floating-point values cover a huge range, so the internal
representation of the value can only hold an approximation. Because of this, you need
to test if the values are within a range of tolerance rather than exactly equal.

The Serial Monitor output from this sketch is as follows:

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
The value -0.0000001 is almost equal to zero
-0.10
-0.20

The output continues to produce negative numbers.

You may expect the code to print "The value is exactly zero" after value is 0.1 and
then 0.1 is subtracted from this. But value never equals exactly zero; it gets very close,
but that is not good enough to pass the test: if (value == 0). This is because the only
memory-efficient way that floating-point numbers can contain the huge range in values
they can represent is by storing an approximation of the number.

The solution to this is to check if a variable is close to the desired value, as shown in
this recipe’s Solution.

The almostEqual function tests if the variable value is within 0.00001 of the desired
target and returns true if so. The acceptable range is set with the constant DELTA, you
can change this to smaller or larger values as required. The function named fabs (short
for floating-point absolute value) returns the absolute value of a floating-point variable
and this is used to test the difference between the given parameters.

28 | Chapter 2: Making the Sketch Do Your Bidding

	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What Was Left Out
	Code Style (About the Code)
	Arduino Platform Release Notes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Notes on the Second Edition

	Chapter 1. Getting Started
	1.0 Introduction
	Arduino Software
	Arduino Hardware
	See Also

	1.1 Installing the Integrated Development Environment (IDE)
	Problem
	Solution
	Discussion
	See Also

	1.2 Setting Up the Arduino Board
	Problem
	Solution
	Discussion
	See Also

	1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch
	Problem
	Solution
	Discussion
	See Also

	1.4 Uploading and Running the Blink Sketch
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating and Saving a Sketch
	Problem
	Solution
	Discussion
	See Also

	1.6 Using Arduino
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Making the Sketch Do Your Bidding
	2.0 Introduction
	2.1 Structuring an Arduino Program
	Problem
	Solution
	Discussion
	See Also

	2.2 Using Simple Primitive Types (Variables)
	Problem
	Solution
	Discussion
	See Also

	2.3 Using Floating-Point Numbers
	Problem
	Solution
	Discussion

