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Preface (Readme) 

This is the ninth edition of the text but the first with Farid Golnaraghi as the lead author. 
For this edition, we increased the number of examples, added MATLAB'" ' toolboxes, and 
enhanced the MATLAB GUI software, ACSYS. We added more computer-aided tools for 
students and teachers. The prepublication manuscript was reviewed by many professors, 
and most of the relevant suggestions have been adopted. In this edition, Chapters 1 through 
4 are organized to contain all background material, while Chapters 5 through 10 contain 
material directly related to the subject of control. 

In this edition, the following materials have been moved into appendices on this book's 
Web site at www.wiley.com/college/golnaraghi. 

Appendix A: Elementary Matrix Theory and Algebra 

Appendix B: Difference Equations 

Appendix C: Laplace Transform Table 

Appendix D: z-Transform Table 

Appendix E: Properties and Construction of the Root Loci 

Appendix F: General Nyquist Criterion 

Appendix G: ACSYS 2008: Description of the Software 

Appendix H: Discrete-Data Control Systems 

In addition, the Web site contains the MATLAB files for ACSYS, which are software 
tools for solving control-system problems, and PowerPoint files for the illustrations in the 
text. 

The following paragraphs are aimed at three groups: professors who have adopted the 
book or who we hope will select it as their text; practicing engineers looking for answers to 
solve their day-to-day design problems; and, finally, students who are going to live with the 
book because it has been assigned for the control-systems course they are taking. 

To the Professor: The material assembled in this book is an outgrowth of senior-level 
control-system courses taught by the authors at their universities throughout their teaching 
careers. The first eight editions have been adopted by hundreds of universities in the United 
States and around the world and have been translated into at least six languages. Practically 
all the design topics presented in the eighth edition have been retained. 

This text contains not only conventional MATLAB toolboxes, where students can 
learn MATLAB and utilize their programming skills, but also a graphical MATLAB-based 
software, ACSYS. The ACSYS software added to this edition is very different from the 
software accompanying any other control book. Here, through extensive use of MATLAB 
GUI programming, we have created software that is easy to use. As a result, students will 
need to focus only on learning control problems, not programming! We also have added 
two new applications, SIMLab and Virtual Lab, through which students work on realistic 
problems and conduct speed and position control labs in a software environment. In 
SIMLab, students have access to the system parameters and can alter them (as in any 
simulation). In Virtual Lab, we have introduced a black-box approach in which the students 

iv 

1 MATLAB " is a registered trademark of The Math Works. Inc. 
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Preface v 

have no access to the plant parameters and have to use some sort of system identification 
technique to find them. Through Virtual Lab we have essentially provided students with a 
realistic online lab with all the problems they would encounter in a real speed- or position-
control lab—for example, amplifier saturation, noise, and nonlinearity. We welcome your 
ideas for the future editions of this book. 

Finally, a sample section-by-section for a one-semester course is given in the 
Instructor's Manual, which is available from the publisher to qualified instructors. The 
Manual also contains detailed solutions to all the problems in the book. 

To Practicing Engineers: This book was written with the readers in mind and is very 
suitable for self-study. Our objective was to treat subjects clearly and thoroughly. The book 
does not use the theorem-proof-Q.E.D. style and is without heavy mathematics. The 
authors have consulted extensively for wide sectors of the industry for many years and have 
participated in solving numerous control-systems problems, from aerospace systems to 
industrial controls, automotive controls, and control of computer peripherals. Although it is 
difficult to adopt all the details and realism of practical problems in a textbook at this level, 
some examples and problems reflect simplified versions of real-life systems. 

To Students: You have had it now that you have signed up for this course and your 
professor has assigned this book! You had no say about the choice, though you can form 
and express your opinion on the book after reading it. Worse yet, one of the reasons that 
your professor made the selection is because he or she intends to make you work hard. But 
please don't misunderstand us: what we really mean is that, though this is an easy book to 
study (in our opinion), it is a no-nonsense book. It doesn't have cartoons or nice-looking 
photographs to amuse you. From here on, it is all business and hard work. You should have 
had the prerequisites on subjects found in a typical linear-systems course, such as how to 
solve linear ordinary differential equations, Laplace transform and applications, and time-
response and frequency-domain analysis of linear systems. In this book you will not find 
too much new mathematics to which you have not been exposed before. What is interesting 
and challenging is that you are going to learn how to apply some of the mathematics that 
you have acquired during the past two or three years of study in college. In case you need to 
review some of the mathematical foundations, you can find them in the appendices on this 
book's Web site. The Web site also contains lots of other goodies, including the ACSYS 
software, which is GUI software that uses MATLAB-based programs for solving linear 
control systems problems. You will also find the Simulink"12-based SIMLab and Virtual 
Lab, which will help you to gain understanding of real-world control systems. 

This book has numerous illustrative examples. Some of these are deliberately simple 
for the purpose of illustrating new ideas and subject matter. Some examples are more 
elaborate, in order to bring the practical world closer to you. Furthermore, the objective of 
this book is to present a complex subject in a clear and thorough way. One of the important 
learning strategies for you as a student is not to rely strictly on the textbook assigned. When 
studying a certain subject, go to the library and check out a few similar texts to see how 
other authors treat the same subject. You may gain new perspectives on the subject and 
discover that one author may treat the material with more care and thoroughness than the 
others. Do not be distracted by written-down coverage with oversimplified examples. The 
minute you step into the real world, you will face the design of control systems with 
nonlinearities and/or time-varying elements as well as orders that can boggle your mind. It 

2 Simulink'1* is a registered trademark of The Math Works, Inc. 



may be discouraging to tell you now that strictly linear and first-order systems do not exist 
in the real world. 

Some advanced engineering students in college do not believe that the material they 
learn in the classroom is ever going to be applied directly in industry. Some of our students 
come back from field and interview trips totally surprised to find that the material they 
learned in courses on control systems is actually being used in industry today. They are 
surprised to find that this book is also a popular reference for practicing engineers. 
Unfortunately, these fact-finding, eye-opening, and self-motivating trips usually occur near 
the end of their college days, which is often too late for students to get motivated. 

There are many learning aids available to you: the MATLAB-based ACSYS software 
will assist you in solving all kinds of control-systems problems. The SIMLab and Virtual 
Lab software can be used for simulation of virtual experimental systems. These are all 
found on the Web site. In addition, the Review Questions and Summaries at the end of each 
chapter should be useful to you. Also on the Web site, you will find the errata and other 
supplemental material. 

We hope that you will enjoy this book. It will represent another major textbook 
acquisition (investment) in your college career. Our advice to you is not to sell it back to the 
bookstore at the end of the semester. If you do so but find out later in your professional 
career that you need to refer to a control systems book, you will have to buy it again at a 
higher price. 

Special Acknowledgments: The authors wish to thank the reviewers for their invaluable 
comments and suggestions. The prepublication reviews have had a great impact on the 
revision project. 

The authors thank Simon Fraser students and research associates Michael Ages, 
Johannes Minor, Linda Franak, Arash Jamalian, Jennifer Leone, Neda Parnian, Sean 
MacPherson, Amin Kamalzadeh, and Nathan (Wuyang) Zheng for their help. Farid 
Golnaraghi also wishes to thank Professor Benjamin Kuo for sharing the pleasure of 
writing this wonderful book, and for his teachings, patience, and support throughout this 
experience. 

M. F. Golnaraghi, 
Vancouver, British Columbia, 
Canada 

B. C. Kuo, 
Champaign, Illinois, U.S.A. 

2009 
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I CHAPTER 

Introduction 

• 1-1 INTRODUCTION 

The main objectives of this chapter are: 

1. To define a control system. 

2. To explain why control systems are important. 

3. To introduce the basic components of a control system. 

4. To give some examples of control-system applications. 

5. To explain why feedback is incorporated into most control systems. 

6. To introduce types of control systems. 

One of the most commonly asked questions by a novice on a control system is: What is 
a control system? To answer the question, we can say that in our daily lives there are 
numerous "objectives" that need to be accomplished. For instance, in the domestic 
domain, we need to regulate the temperature and humidity of homes and buildings for 
comfortable living. For transportation, we need to control the automobile and airplane to go 
from one point to another accurately and safely. Industrially, manufacturing processes 
contain numerous objectives for products that will satisfy the precision and cost-
effectiveness requirements. A human being is capable of performing a wide range of 
tasks, including decision making. Some of these tasks, such as picking up objects and 
walking from one point to another, are commonly carried out in a routine fashion. Under 
certain conditions, some of these tasks are to be performed in the best possible way. For 
instance, an athlete running a 100-yard dash has the objective of running that distance in the 
shortest possible time. A marathon runner, on the other hand, not only must run the distance 
as quickly as possible, but, in doing so, he or she must control the consumption of energy 
and devise the best strategy for the race. The means of achieving these "objectives" usually 
involve the use of control systems that implement certain control strategies. 

In recent years, control systems have assumed an increasingly important role in the 
development and advancement of modern civilization and technology. Practically every 
aspect of our day-to-day activities is affected by some type of control system. Control 
systems are found in abundance in all sectors of industry, such as quality control of 
manufactured products, automatic assembly lines, machine-tool control, space technology 
and weapon systems, computer control, transportation systems, power systems, robotics, 
Micro-Electro-Mechanical Systems (MEMS), nanotechnology, and many others. Even the 
control of inventory and social and economic systems may be approached from the theory 
of automatic control. 

• Control systems are in 
abundance in modern 
civilization. 

1 
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Objectives CONTROL 
SYSTEM 

Results 
Figure 1-1 Basic components of a control 
system. 

1 Basic Components of a Control System 

The basic ingredients of a control system can be described by: 

1. Objectives of control. 

2. Control-system components. 

3. Results or outputs. 

The basic relationship among these three components is illustrated in Fig. 1 -1. In more 
technical terms, the objectives can be identified with inputs, or actuating signals, u, and 
the results are also called outputs, or controlled variables, y. In general, the objective 
of the control system is to control the outputs in some prescribed manner by the inputs 
through the elements of the control system. 

2 Examples of Control-System Applications 

Intelligent Systems 
Applications of control systems have significantly increased through the development 
of new materials, which provide unique opportunities for highly efficient actuation and 
sensing, thereby reducing energy losses and environmental impacts. State-of-the-art 
actuators and sensors may be implemented in virtually any system, including biological 
propulsion; locomotion; robotics; material handling; biomedical, surgical, and endoscopic; 
aeronautics; marine; and the defense and space industries. Potential applications of control 
of these systems may benefit the following areas: 

• Machine tools. Improve precision and increase productivity by controlling chatter. 

• Flexible robotics. Enable faster motion with greater accuracy. 

• Photolithography. Enable the manufacture of smaller microelectronic circuits by 
controlling vibration in the photolithography circuit-printing process. 

• Biomechanical and biomedical. Artificial muscles, drug delivery systems, and 
other assistive technologies. 

• Process control. For example, on/off shape control of solar reflectors or aero­
dynamic surfaces. 

Control in Virtual Prototyping and Hardware in the Loop 
The concept of virtual prototyping has become a widely used phenomenon in the 
automotive, aerospace, defense, and space industries. In all these areas, pressure to cut 
costs has forced manufacturers to design and test an entire system in a computer 
environment before a physical prototype is made. Design tools such as MATLAB and 
Simulink enable companies to design and test controllers for different components (e.g., 
suspension, ABS, steering, engines, flight control mechanisms, landing gear, and special­
ized devices) within the system and examine the behavior of the control system on the 
virtual prototype in real time. This allows the designers to change or adjust controller 
parameters online before the actual hardware is developed. Hardware in the loop 
terminology is a new approach of testing individual components by attaching them to 
the virtual and controller prototypes. Here the physical controller hardware is interfaced 
with the computer and replaces its mathematical model within the computer! 



1-1 Introduction 3 

Smart Transportation Systems 
The automobile and its evolution in the last two centuries is arguably the most transform­
ative invention of man. Over years innovations have made cars faster, stronger, and 
aesthetically appealing. We have grown to desire cars that are "intelligent" and provide 
maximum levels of comfort, safety, and fuel efficiency. Examples of intelligent systems in 
cars include climate control, cruise control, anti-lock brake systems (ABSs), active 
suspensions that reduce vehicle vibration over rough terrain or improve stability, air 
springs that self-level the vehicle in high-G turns (in addition to providing a better ride), 
integrated vehicle dynamics that provide yaw control when the vehicle is either over- or 
understeering (by selectively activating the brakes to regain vehicle control), traction 
control systems to prevent spinning of wheels during acceleration, and active sway bars to 
provide "controlled" rolling of the vehicle. The following are a few examples. 

Drive-by-wire and Driver Assist Systems The new generations of intelligent vehicles 
will be able to understand the driving environment, know their whereabouts, monitor their 
health, understand the road signs, and monitor driver performance, even overriding drivers 
to avoid catastrophic accidents. These tasks require significant overhaul of current designs. 
Drive-by-wire technology replaces the traditional mechanical and hydraulic systems with 
electronics and control systems, using electromechanical actuators and human-machine 
interfaces such as pedal and steering feel emulators—otherwise known as haptic systems. 
Hence, the traditional components—such as the steering column, intermediate shafts, 
pumps, hoses, fluids, belts, coolers, brake boosters, and master cylinders—are eliminated 
from the vehicle. Haptic interfaces that can offer adequate transparency to the driver while 
maintaining safety and stability of the system. Removing the bulky mechanical steering 
wheel column and the rest of the steering system has clear advantages in terms of mass 
reduction and safety in modern vehicles, along with improved ergonomics as a result of 
creating more driver space. Replacing the steering wheel with a haptic device that the 
driver controls through the sense of touch would be useful in this regard. The haptic device 
would produce the same sense to the driver as the mechanical steering wheel but with 
improvements in cost, safety, and fuel consumption as a result of eliminating the bulky 
mechanical system. 

Driver assist systems help drivers to avoid or mitigate an accident by sensing the nature 
and significance of the danger. Depending on the significance and timing of the threat, 
these on-board safety systems will initially alert the driver as early as possible to an 
impending danger. Then, they will actively assist or, ultimately, intervene in order to avert 
the accident or mitigate its consequences. Provisions for automatic over-ride features when 
the driver loses control due to fatigue or lack of attention will be an important part of the 
system. In such systems, the so-called advanced vehicle control system monitors the 
longitudinal and lateral control, and by interacting with a central management unit, it will 
be ready to take control of the vehicle whenever the need arises. The system can be readily 
integrated with sensor networks that monitor every aspect of the conditions on the road and 
are prepared to take appropriate action in a safe manner. 

Integration and Utilization of Advanced Hybrid Powertrains Hybrid technologies offer 
improved fuel consumption while enhancing driving experience. Utilizing new energy 
storage and conversion technologies and integrating them with powertrains would be prime 
objectives of this research activity. Such technologies must be compatible with current 
platforms and must enhance, rather than compromise, vehicle function. Sample applica­
tions would include developing plug-in hybrid technology, which would enhance the 
vehicle cruising distance based on using battery power alone, and utilizing sustainable 



energy resources, such as solar and wind power, to charge the batteries. The smart plug-in 
vehicle can be a part of an integrated smart home and grid energy system of the future, 
which would utilize smart energy metering devices for optimal use of grid energy by 
avoiding peak energy consumption hours. 

High Performance Real-time Control, Health Monitoring, and Diagnosis Modern 
vehicles utilize an increasing number of sensors, actuators, and networked embedded 
computers. The need for high performance computing would increase with the introduction 
of such revolutionary features as drive-by-wire systems into modern vehicles. The 
tremendous computational burden of processing sensory data into appropriate control 
and monitoring signals and diagnostic information creates challenges in the design of 
embedded computing technology. Towards this end, a related challenge is to incorporate 
sophisticated computational techniques that control, monitor, and diagnose complex 
automotive systems while meeting requirements such as low power consumption and 
cost effectiveness. 

The following represent more traditional applications of control that have become part 
of our daily lives. 

Steering Control of an Automobile 
As a simple example of the control system, as shown in Fig. 1-1, consider the steering 
control of an automobile. The direction of the two front wheels can be regarded as the 
controlled variable, or the output, y; the direction of the steering wheel is the actuating 
signal, or the input, u. The control system, or process in this case, is composed of the 
steering mechanism and the dynamics of the entire automobile. However, if the objective is 
to control the speed of the automobile, then the amount of pressure exerted on the 
accelerator is the actuating signal, and the vehicle speed is the controlled variable. As a 
whole, we can regard the simplified automobile control system as one with two inputs 
(steering and accelerator) and two outputs (heading and speed). In this case, the two 
controls and two outputs are independent of each other, but there are systems for which the 
controls are coupled. Systems with more than one input and one output are called 
multivariable systems. 

Idle-Speed Control of an Automobile 
As another example of a control system, we consider the idle-speed control of an 
automobile engine. The objective of such a control system is to maintain the engine 
idle speed at a relatively low value (for fuel economy) regardless of the applied engine 
loads (e.g., transmission, power steering, air conditioning). Without the idle-speed control, 
any sudden engine-load application would cause a drop in engine speed that might cause 
the engine to stall. Thus the main objectives of the idle-speed control system are (1) to 
eliminate or minimize the speed droop when engine loading is applied and (2) to maintain 
the engine idle speed at a desired value. Fig. 1-2 shows the block diagram of the idle-speed 
control system from the standpoint of inputs-system-outputs. In this case, the throttle 
angle a and the load torque TL (due to the application of air conditioning, power steering, 
transmission, or power brakes, etc.) are the inputs, and the engine speed to is the output. The 
engine is the controlled process of the system. 

Sun-Tracking Control of Solar Collectors 
To achieve the goal of developing economically feasible non-fossil-fuel electrical power, 
the U.S. government has sponsored many organizations in research and development of 
solar power conversion methods, including the solar-cell conversion techniques. In most of 
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• 
Throttle angle a 
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^ 

Figure 1-2 Idle-speed 
control system. 

Figure 1-3 Solar collector field. 

these systems, the need for high efficiencies dictates the use of devices for sun tracking. 
Fig. 1-3 shows a solar collector field. Fig. 1-4 shows a conceptual method of efficient water 
extraction using solar power. During the hours of daylight, the solar collector would 
produce electricity to pump water from the underground water table to a reservoir (perhaps 
on a nearby mountain or hill), and in the early morning hours, the water would be released 
into the irrigation system. 

One of the most important features of the solar collector is that the collector dish must 
track the sun accurately. Therefore, the movement of the collector dish must be controlled 
by sophisticated control systems. The block diagram of Fig. 1-5 describes the general 
philosophy of the sun-tracking system together with some of the most important compo­
nents. The controller ensures that the tracking collector is pointed toward the sun in the 
morning and sends a "start track" command. The controller constantly calculates the sun's 
rate for the two axes (azimuth and elevation) of control during the day. The controller uses 
the sun rate and sun sensor information as inputs to generate proper motor commands to 
slew the collector. 

1-1-3 Open-Loop Control Systems (Nonfeedback Systems) 

• Open-loop systems are 
economical but usually 
inaccurate. 

The idle-speed control system illustrated in Fig. 1-2, shown previously, is rather un­
sophisticated and is called an open-loop control system. It is not difficult to see that the 
system as shown would not satisfactorily fulfill critical performance requirements. For 
instance, if the throttle angle a is set at a certain initial value that corresponds to a certain 
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Figure 1-5 Important components of the sun-tracking control system. 

engine speed, then when a load torque TL is applied, there is no way to prevent a drop in the 
engine speed. The only way to make the system work is to have a means of adjusting a in 
response to a change in the load torque in order to maintain m at the desired level. The 
conventional electric washing machine is another example of an open-loop control system 
because, typically, the amount of machine wash time is entirely determined by the 
judgment and estimation of the human operator. 

The elements of an open-loop control system can usually be divided into two parts: the 
controller and the controlled process, as shown by the block diagram of Fig. 1 -6. An input 
signal, or command, r, is applied to the controller, whose output acts as the actuating signal 
u; the actuating signal then controls the controlled process so that the controlled variable y 
will perform according to some prescribed standards. In simple cases, the controller can be 

Reference 
input /' 

CONTROLLER 

Actuating 
signal u CONTROLLED 

PROCESS 

Controlled 
variable y 

Figure 1-6 Elements of an open-loop control system. 
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an amplifier, a mechanical linkage, a filter, or other control elements, depending on the 
nature of the system. In more sophisticated cases, the controller can be a computer such as a 
microprocessor. Because of the simplicity and economy of open-loop control systems, we 
find this type of system in many noncritical applications. 

1-1-4 Closed-Loop Control Systems (Feedback Control Systems) 

What is missing in the open-loop control system for more accurate and more adaptive 
control is a link or feedback from the output to the input of the system. To obtain more 
accurate control, the controlled signal y should be fed back and compared with the 
reference input, and an actuating signal proportional to the difference of the input and the 
output must be sent through the system to correct the error. A system with one or more 
feedback paths such as that just described is called a closed-loop system. 

• Closed-loop systems have A closed-loop idle-speed control system is shown in Fig. 1-7. The reference input cor 

many advantages over open- sets the desired idling speed. The engine speed at idle should agree with the reference value 
loop systems. cor, and any difference such as the load torque TL is sensed by the speed transducer and the 

error detector. The controller will operate on the difference and provide a signal to adjust 
the throttle angle a to correct the error. Fig. 1-8 compares the typical performances of open-
loop and closed-loop idle-speed control systems. In Fig. l-8(a), the idle speed of the open-
loop system will drop and settle at a lower value after a load torque is applied. In Fig. 1-8 
(b), the idle speed of the closed-loop system is shown to recover quickly to the preset value 
after the application of TL. 

The objective of the idle-speed control system illustrated, also known as a regulator 
system, is to maintain the system output at a prescribed level. 

Error 
detector 

CONTROLLER ENGINE 

SPEED 
TRANSDUCER 

Figure 1-7 Block diagram of a closed-loop idle-speed control system. 
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Figure 1-8 (a) Typical response of the open-loop idle-speed control system, (b) Typical response of 
the closed-loop idle-speed control system. 
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1-2 WHAT IS FEEDBACK, AND WHAT ARE ITS EFFECTS? 

• Feedback exists 
whenever there is a closed 
sequence of cause-and-
effect relationships. 

The motivation for using feedback, as illustrated by the examples in Section 1-1, is 
somewhat oversimplified. In these examples, feedback is used to reduce the error between 
the reference input and the system output. However, the significance of the effects of 
feedback in control systems is more complex than is demonstrated by these simple 
examples. The reduction of system error is merely one of the many important effects 
that feedback may have upon a system. We show in the following sections that feedback 
also has effects on such system performance characteristics as stability, bandwidth, 
overall gain, impedance, and sensitivity. 

To understand the effects of feedback on a control system, it is essential to examine 
this phenomenon in a broad sense. When feedback is deliberately introduced for the 
purpose of control, its existence is easily identified. However, there are numerous situations 
where a physical system that we recognize as an inherently nonfeedback system turns out 
to have feedback when it is observed in a certain manner. In general, we can state that 
whenever a closed sequence of cause-and-effect relationships exists among the variables 
of a system, feedback is said to exist. This viewpoint will inevitably admit feedback in a 
large number of systems that ordinarily would be identified as nonfeedback systems. 
However, control-system theory allows numerous systems, with or without physical 
feedback, to be studied in a systematic way once the existence of feedback in the sense 
mentioned previously is established. 

We shall now investigate the effects of feedback on the various aspects of system 
performance. Without the necessary mathematical foundation of linear-system theory, at 
this point we can rely only on simple static-system notation for our discussion. Let us 
consider the simple feedback system configuration shown in Fig. 1-9, where r is the input 
signal; y, the output signal; e, the error; and b, the feedback signal. The parameters G and H 
may be considered as constant gains. By simple algebraic manipulations, it is simple to 
show that the input-output relation of the system is 

M = >- = 
G 

r \+GH 
1-1 

Using this basic relationship of the feedback system structure, we can uncover some of the 
significant effects of feedback. 

1-2-1 Effect of Feedback on Overall Gain 

• Feedback may increase 
the gain of a system in one 
frequency range but 
decrease it in another. 

As seen from Eq. (1-1), feedback affects the gain G of a nonfeedback system by a factor of 
1 + GH. The system of Fig. 1-9 is said to have negative feedback, because a minus sign is 
assigned to the feedback signal. The quantity GH may itself include a minus sign, so the 
general effect of feedback is that it may increase or decrease the gain G. In a practical 
control system, G and H are functions of frequency, so the magnitude of 1 4- GH may be 
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Figure 1-9 Feedback system. 
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greater than 1 in one frequency range but less than 1 in another. Therefore, feedback could 
increase the gain of system in one frequency range but decrease it in another. 

1-2-2 Effect of Feedback on Stability 

• A system is unstable if its 
output is out of control. 

Stability is a notion that describes whether the system will be able to follow the input 
command, that is, be useful in general. In a nonrigorous manner, a system is said to be 
unstable if its output is out of control. To investigate the effect of feedback on stability, we 
can again refer to the expression in Eq. (1-1). If GH = - 1 , the output of the system is 
infinite for any finite input, and the system is said to be unstable. Therefore, we may state 
that feedback can cause a system that is originally stable to become unstable. Certainly, 
feedback is a double-edged sword; when it is improperly used, it can be harmful. It should 
be pointed out, however, that we are only dealing with the static case here, and, in general, 
GH = — 1 is not the only condition for instability. The subject of system stability will be 
treated formally in Chapters 2, 5, 7, and 8. 

It can be demonstrated that one of the advantages of incorporating feedback is that it 
can stabilize an unstable system. Let us assume that the feedback system in Fig. 1-9 is 
unstable because GH — — 1. If we introduce another feedback loop through a negative 
feedback gain of F, as shown in Fig. 1-10, the input-output relation of the overall system is 

G y = 

r 1 + GH + GF \-T, 

• Feedback can improve 
stability or be harmful to 
stability. 

It is apparent that although the properties of G and H are such that the inner-loop 
feedback system is unstable, because GH = - 1 , the overall system can be stable by 
properly selecting the outer-loop feedback gain F. In practice, GH is a function of 
frequency, and the stability condition of the closed-loop system depends on the magnitude 
and phase of GH. The bottom line is that feedback can improve stability or be harmful to 
stability if it is not properly applied. 

Sensitivity considerations often are important in the design of control systems. 
Because all physical elements have properties that change with environment and age, 
we cannot always consider the parameters of a control system to be completely stationary 
over the entire operating life of the system. For instance, the winding resistance of an 
electric motor changes as the temperature of the motor rises during operation. Control 
systems with electric components may not operate normally when first turned on because 
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Figure 1-10 Feedback system with two feedback loops. 
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• Note: Feedback can 
increase or decrease the 
sensitivity of a system. 

of the still-changing system parameters during warmup. This phenomenon is sometimes 
called "morning sickness." Most duplicating machines have a warmup period during 
which time operation is blocked out when first turned on. 

In general, a good control system should be very insensitive to parameter variations but 
sensitive to the input commands. We shall investigate what effect feedback has on 
sensitivity to parameter variations. Referring to the system in Fig. 1-9, we consider G 
to be a gain parameter that may vary. The sensitivity of the gain of the overall system M to 
the variation in G is defined as 

dM/M percentage change in M 
o G -

dG/G percentage change in G 
1-3 

where dM denotes the incremental change in M due to the incremental change in G, or dG. 
By using Eq. (1-1), the sensitivity function is written 

dM G_ 1 
M 

cM _ 

dG 1 +GH '1-4) 

This relation shows that if GH is a positive constant, the magnitude of the sensitivity 
function can be made arbitrarily small by increasing GH, provided that the system remains 
stable. It is apparent that, in an open-loop system, the gain of the system will respond in a 
one-to-one fashion to the variation in G (i.e., SQ = 1). Again, in practice, GH is a function 
of frequency; the magnitude of 1 4- GH may be less than unity over some frequency ranges, 
so feedback could be harmful to the sensitivity to parameter variations in certain cases. In 
general, the sensitivity of the system gain of a feedback system to parameter variations 
depends on where the parameter is located. The reader can derive the sensitivity of the 
system in Fig. 1 -9 due to the variation of H. 

1-2-3 Effect of Feedback on External Disturbance or Noise 

• Feedback can reduce the 
effect of noise. 

All physical systems are subject to some types of extraneous signals or noise during 
operation. Examples of these signals are thermal-noise voltage in electronic circuits and 
brush or commutator noise in electric motors. External disturbances, such as wind gusts 
acting on an antenna, are also quite common in control systems. Therefore, control systems 
should be designed so that they are insensitive to noise and disturbancevs and sensitive to 
input commands. 

The effect of feedback on noise and disturbance depends greatly on where these 
extraneous signals occur in the system. No general conclusions can be reached, but in 
many situations, feedback can reduce the effect of noise and disturbance on system 
performance. Let us refer to the system shown in Fig. 1-11, in which /-denotes the command 
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Figure 1-11 Feedback system with a noise signal. 
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signal and n is the noise signal. In the absence of feedback, that is, H= 0, the output)' due to n 
acting alone is 

v = G?n 1-5] 

With the presence of feedback, the system output due to n acting alone is 

G2 
y = 1 + G]G2H 

;i-6) 

Feedback also can affect Comparing Eq. (1-6) with Eq. (1-5) shows that the noise component in the output of 
bandwidth, impedance, 
transient responses, and 
frequency responses. 

Eq. (1-6) is reduced by the factor 1 + GxGiH if the latter is greater than unity and the 
system is kept stable. 

In Chapter 9, the feedforward and forward controller configurations are used along 
with feedback to reduce the effects of disturbance and noise inputs. In general, feedback 
also has effects on such performance characteristics as bandwidth, impedance, transient 
response, and frequency response. These effects will be explained as we continue. 

1-3 TYPES OF FEEDBACK CONTROL SYSTEMS 

Feedback control systems may be classified in a number of ways, depending upon the 
purpose of the classification. For instance, according to the method of analysis and design, 
control systems are classified as linear or nonlinear, and time-varying or time-invariant. 
According to the types of signal found in the system, reference is often made to 
continuous-data or discrete-data systems, and modulated or unmodulated systems. 
Control systems are often classified according to the main purpose of the system. For 
instance, a position-control system and a velocity-control system control the output 
variables just as the names imply. In Chapter 9, the type of control system is defined 
according to the form of the open-loop transfer function. In general, there are many other 
ways of identifying control systems according to some special features of the system. It is 
important to know some of the more common ways of classifying control systems before 
embarking on the analysis and design of these systems. 

1-3-1 Linear versus Nonlinear Control Systems 

• Most real-life control 
systems have nonlinear 
characteristics to some 
extent. 

This classification is made according to the methods of analysis and design. Strictly 
speaking, linear systems do not exist in practice, because all physical systems are nonlinear 
to some extent. Linear feedback control systems are idealized models fabricated by the 
analyst purely for the simplicity of analysis and design. When the magnitudes of signals in 
a control system are limited to ranges in which system components exhibit linear 
characteristics (i.e., the principle of superposition applies), the system is essentially linear. 
But when the magnitudes of signals are extended beyond the range of the linear operation, 
depending on the severity of the nonlinearity, the system should no longer be considered 
linear. For instance, amplifiers used in control systems often exhibit a saturation effect 
when their input signals become large; the magnetic field of a motor usually has saturation 
properties. Other common nonlinear effects found in control systems are the backlash or 
dead play between coupled gear members, nonlinear spring characteristics, nonlinear 
friction force or torque between moving members, and so on. Quite often, nonlinear 
characteristics are intentionally introduced in a control system to improve its performance 
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or provide more effective control. For instance, to achieve minimum-time control, an on-
off (bang-bang or relay) type controller is used in many missile or spacecraft control 
systems. Typically in these systems, jets are mounted on the sides of the vehicle to provide 
reaction torque for attitude control. These jets are often controlled in a full-on or full-off 
fashion, so a fixed amount of air is applied from a given jet for a certain time period to 
control the attitude of the space vehicle. 

• There are no general For linear systems, a wealth of analytical and graphical techniques is available for 
methods for solving a wide design and analysis purposes. A majority of the material in this text is devoted to the 
class of nonlinear systems, analysis and design of linear systems. Nonlinear systems, on the other hand, are usually 

difficult to treat mathematically, and there are no general methods available for solving a 
wide class of nonlinear systems. It is practical to first design the controller based on the 
linear-system model by neglecting the nonlinearities of the system. The designed controller 
is then applied to the nonlinear system model for evaluation or redesign by computer 
simulation. The Virtual Lab introduced in Chapter 6 is mainly used to model the 
characteristics of practical systems with realistic physical components. 

1-3-2 Time-Invariant versus Time-Varying Systems 

When the parameters of a control system are stationary with respect to time during the 
operation of the system, the system is called a time-invariant system. In practice, most 
physical systems contain elements that drift or vary with time. For example, the winding 
resistance of an electric motor will vary when the motor is first being excited and its 
temperature is rising. Another example of a time-varying system is a guided-missile 
control system in which the mass of the missile decreases as the fuel on board is being 
consumed during flight. Although a time-varying system without nonlinearity is still a 
linear system, the analysis and design of this class of systems are usually much more 
complex than that of the linear time-invariant systems. 

Continuous-Data Control Systems 
A continuous-data system is one in which the signals at various parts of the system are all 
functions of the continuous time variable t. The signals in continuous-data systems may be 
further classified as ac or dc. Unlike the general definitions of ac and dc signals used in 
electrical engineering, ac and dc control systems carry special significance in control 
systems terminology. When one refers to an ac control system, it usually means that the 
signals in the system are modulated by some form of modulation scheme. A dc control 
system, on the other hand, simply implies that the signals are unmodulated, but they are 
still ac signals according to the conventional definition. The schematic diagram of a closed-
loop dc control system is shown in Fig. 1-12. Typical waveforms of the signals in response 
to a step-function input are shown in the figure. Typical components of a dc control system 
are potentiometers, dc amplifiers, dc motors, dc tachometers, and so on. 

Figure 1-13 shows the schematic diagram of a typical ac control system that performs 
essentially the same task as the dc system in Fig. 1-12. In this case, the signals in the system 
are modulated; that is, the information is transmitted by an ac carrier signal. Notice that the 
output controlled variable still behaves similarly to that of the dc system. In this case, the 
modulated signals are demodulated by the low-pass characteristics of the ac motor. Ac 
control systems are used extensively in aircraft and missile control systems in which noise 
and disturbance often create problems. By using modulated ac control systems with carrier 
frequencies of 400 Hz or higher, the system will be less susceptible to low-frequency noise. 
Typical components of an ac control system are synchros, ac amplifiers, ac motors, 
gyroscopes, accelerometers, and so on. 
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Figure 1-12 Schematic diagram of a typical dc closed-loop system. 
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Figure 1-13 Schematic diagram of a typical ac closed-loop control system. 

In practice, not all control systems are strictly of the ac or dc type. A system may 
incorporate a mixture of ac and dc components, using modulators and demodulators to 
match the signals at various points in the system. 

Discrete-Data Control Systems 
Discrete-data control systems differ from the continuous-data systems in that the signals at 
one or more points of the system are in the form of either a pulse train or a digital code. 
Usually, discrete-data control systems are subdivided into sampled-data and digital 
control systems. Sampled-dala control systems refer to a more general class of 
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Figure 1-14 Block diagram of a sampled-data control system. 
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Figure 1-15 Digital autopilot system for a guided missile. 

• Digital control systems 
are usually less susceptible 
to noise. 

discrete-data systems in which the signals are in the form of pulse data. A digital control 
system refers to the use of a digital computer or controller in the system so that the signals 
are digitally coded, such as in binary code. 

In general, a sampled-data system receives data or information only intermittently at 
specific instants of time. For example, the error signal in a control system can be supplied 
only in the form of pulses, in which case the control system receives no information about 
the error signal during the periods between two consecutive pulses. Strictly, a sampled-data 
system can also be classified as an ac system, because the signal of the system is pulse 
modulated. 

Figure 1-14 illustrates how a typical sampled-data system operates. A continuous-data 
input signal r{t.) is applied to the system. The error signal e{t) is sampled by a sampling 
device, the sampler, and the output of the sampler is a sequence of pulses. The sampling 
rate of the sampler may or may not be uniform. There are many advantages to incorporating 
sampling into a control system. One important advantage is that expensive equipment used 
in the system may be time-shared among several control channels. Another advantage is 
that pulse data are usually less susceptible to noise. 

Because digital computers provide many advantages in size and flexibility, computer 
control has become increasingly popular in recent years. Many airborne systems contain 
digital controllers that can pack thousands of discrete elements into a space no larger than 
the size of this book. Figure 1-15 shows the basic elements of a digital autopilot for guided-
missile control. 

1-4 SUMMARY 

In this chapter, we introduced some of the basic concepts of what a control system is and what it is 
supposed to accomplish. The basic components of a control system were described. By demonstrat­
ing the effects of feedback in a rudimentary way, the question of why most control systems are closed-
loop systems was also clarified. Most important, it was pointed out that feedback is a double-edged 
sword—it can benefit as well as harm the system to be controlled. This is part of the challenging task 
of designing a control system, which involves consideration of such performance criteria as stability, 
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sensitivity, bandv/idth, and accuracy. Finally, various types of control systems were categorized 
according to the system signals, linearity, and control objectives. Several typical control-system 
examples were given to illustrate the analysis and design of control systems. Most systems 
encountered in real life are nonlinear and time-varying to some extent. The concentration on the 
studies of linear systems is due primarily to the availability of unified and simple-to-understand 
analytical methods in the analysis and design of linear systems. 

REVIEW QUESTIONS 

1. List the advantages and disadvantages of an open-loop system. 

2. List the advantages and disadvantages of a closed-loop system. 

3. Give the definitions of ac and dc control systems. 

4. Give the advantages of a digital control system over a continuous-data control system. 

5. A closed-loop control system is usually more accurate than an open-loop system. (T) 

6. Feedback is sometimes used to improve the sensitivity of a control system. 

7. If an open-loop system is unstable, then applying feedback will always improve 
its stability. 

8. Feedback can increase the gain of a system in one frequency range but decrease 
it in another. 

9. Nonlinear elements are sometimes intentionally introduced to a control system 
to improve its performance. 

10. Discrete-data control systems are more susceptible to noise due to the nature of 
their signals. 

Answers to these review questions can be found on this book's companion Web site: 
www.wiley.com/college/golnaraghi. 

(T) 
(T) 

(T) 

(T) 

(T) 

(T) 

(F) 
(F) 

(F) 

(F) 

(F) 

(F) 

http://www.wiley.com/college/golnaraghi


CHAPTER 

Mathematical Foundation 

The studies of control systems rely to a great extent on applied mathematics. One of the 
major purposes of control-system studies is to develop a set of analytical tools so that the 
designer can arrive with reasonably predictable and reliable designs without depending 
solely on the drudgery of experimentation or extensive computer simulation. 

In this chapter, it is assumed that the reader has some level of familiarity with these 
concepts through earlier courses. Elementary matrix algebra is covered in Appendix A. 
Because of space limitations, as well as the fact that most subjects are considered as review 
material for the reader, the treatment of these mathematical subjects is not exhaustive. The 
reader who wishes to conduct an in-depth study of any of these subjects should refer to 
books that are devoted to them. 

The main objectives of this chapter are: 

1. To introduce the fundamentals of complex variables. 

2. To introduce frequency domain analysis and frequency plots. 

3. To introduce differential equations and state space systems. 

4. To introduce the fundamentals of Laplace transforms. 

5. To demonstrate the applications of Laplace transforms to solve linear ordinary 
differential equations. 

6. To introduce the concept of transfer functions and how to apply them to the 
modeling of linear time-invariant systems. 

7. To discuss stability of linear time-invariant systems and the Routh-Hurwitz 
criterion. 

8. To demonstrate the MATLAB tools using case studies. 

1A COMPLEX-VARIABLE CONCEPT 

To understand complex variables, it is wise to start with the concept of complex numbers 
and their mathematical properties. 

2-1-1 Complex Numbers 

A complex number is represented in rectangular form as 

Z = x + jy (2-1) 

where, j = \/—T and (x, >') are real and imaginary coefficients of z respectively. We can 
treat (x, y) as a point in the Cartesian coordinate frame shown in Fig. 2-1. A point in a 
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Imaginary 

s-plane 

:=x+jy 

-•Real 

JH Z* = x -jy 
Figure 2-1 Complex number r 
representation in rectangular and polar 
forms. 

(2-2) 

rectangular coordinate frame may also be defined by a vector R and an angle 6. It is then 
easy to see that 

x = R cos 9 

y = R sin 0 

where, 

R = magnitude of z 
9 — phase of z and is measured from the x axis. Right-hand rule convention: 

positive phase is in counter clockwise direction. 
Hence, 

R = \ / ^ + . v 2 

c ^ t a n - 1 -
v 

(2-3) 

Introducing Eq. (2-2) into Eq. (2-1), we get 

z = RcosO + jRsmO (2-4) 

Upon comparison of Taylor series of the terms involved, it is easy to confirm 

eJe -Rcos0 + sin9 (2-5) 

Eq. (2-5) is also known as the Euler formula. As a result, Eq. (2-1) may also be represented 
in polar form as 

z = Rej0 = R16 (2-6) 

We define the conjugate of the complex number z in Eq. (2-1) as 

z* =x- jy 
Or, alternatively, 

z* = Rcos9- jRsm9 = Re~j0 

Note: 

Table 2-1 shows basic mathematical properties of complex numbers. 

(2-7) 

(2-8) 

(2-9) 
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TABLE 2-1 Basic Properties of Complex Numbers 

Addition 

Subtraction 

Multiplication 

Division 

JZ) =-V| +./V] 
\ Z2 = ^2 + j}'2 
-*z = (x\ +x2) + i(.vi + yi) 

\z.\ = X\ + j}>] 
\ zi = X2 + jyi 
-*Z = (.tl + X2) - /(>'! + V2) 

fz\ =-V| +y>'i 
{Z2= X2 + /V'2 
-»z - f>i*2 - V1.V2) - y(xiv2 + -V2.V1) 

/ = -1 

J si = .v-| + yvi 

[ Z2 = -¾ + j}'2 

\ z\ = *i - y>'i 
< Complex Conjugate 
( zl = x2 - jyi 

_ Z] 

Z.2 
_ Z\ Z2 _ (X\X2 + V1V2) + j(x\V2 +X2V1 ) 

zi z2 x$ + y2 

Ui^Riei* 
\z2 = R2eJ02 

^z={Rl+R2)eJi^02) 

-*z-(Ri +R2)/(9\ +02) 

fzi=Rt*t* 
\z2 = R->ejl'2 

- 7 . = ( ^ , - ^ 2 ) ^ ^ - ^ ) 
-^z=(Rl'R2)/(el-62) 

(zi=Rie^ 
\ 2 2 = / ? 2 ^ 
-.z=(RiR2y

{e<+0-) 

^z=(RiR2)l(9i+e2) 

r«i =/?i«>tf| 

\ -2 = / ? 2 ^" 2 

_»,-- f£/ufe'-^ - w 
- * - ( * ) * < * - * > 

EXAMPLE 2-1-1 F i n d / a n d / . 

EXAMPLE 2-1-2 Find z" using Eq. (2-6). 

j = V - l = c o s - + . / s i n - = e*i 

/ = eJ'2 = e -'2 

/ = / 7 = - / = 1 

z» = (Rei9)n=R"eJ"f) = R"ln< (2-10) 

2-1-2 Complex Variables 

A complex variable s has two components: a real component a and an imaginary 
component co. Graphically, the real component of s is represented by a CT axis in the 
horizontal direction, and the imaginary component is measured along the vertical jw 
axis, in the complex .y-planc. Fig. 2-2 illustrates the complex .v-plane, in which any 
arbitrary point s = ,9| is defined by the coordinates a = o\, and co = co\, or simply 
Jl = CTl + JCO]. 
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Figure 2-2 Complex .s-plane. 

2-1-3 Functions of a Complex Variable 

The function G(.v) is said to be a function of the complex variable s if, for every value of s, 
there is one or more corresponding values of G(s). Because s is defined to have real and 
imaginary parts, the function G(s) is also represented by its real and imaginary parts; that is, 

G{s)=Re[G{s)] + j\m[G(s)] (2-11) 

where Re[G(.s)] denotes the real part of G(.v), and Im[G(.s-)] represents the imaginary part of 
GO?). The function G(s) is also represented by the complex G(.v)-plane, with Re[G(.?)] as the 
real axis and Im[G(.v)] as the imaginary axis. If for every value of s there is only one 
corresponding value of G(s) in the G(.y)-plane, G(s) is said to be a single-valued function, 
and the mapping from points in the .s-plane onto points in the G(.v)-plane is described as 
single-valued (Fig. 2-3). If the mapping from the G(tf)-plane to the s-plane is also single-
valued, the mapping is called one-to-one. However, there are many functions for which the 
mapping from the function plane to the complex-variable plane is not single-valued. For 
instance, given the function 

G ( j ) = T - 7 n (2-12) 
SIS 1 

j& 

s-plane cox 

.s, = (7, +jo)] 

*. _ 

j ImG 

G(.v)-plane 

i ReC 

*-J G(.v,) 

Figure 2-3 Single-valued mapping from the s-plane to the Gf.v)-plane. 
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it is apparent that, for each value of s, there is only one unique corresponding value for G(s). 
However, the inverse mapping is not true; for instance, the point G(s) = oo is mapped onto 
two points, ,v = 0 and s = —1, in the .y-plane. 

2-1-4 Analytic Function 

A function G(s) of the complex variable s is called an analytic functionin a region of the s-
plane if the function and all its derivatives exist in the region. For instance, the function 
given in Eq. (2-12) is analytic at every point in the s-plane except at the points s — 0 and 
s = —1. At these two points, the value of the function is infinite. As another example, the 
function G(s) = s + 2 is analytic at every point in the finite s-plane. 

2-1-5 Singularities and Poles of a Function 

The singularities of a function are the points in the s-plane at which the function or its 
derivatives do not exist. A pole is the most common type of singularity and plays a very 
important role in the studies of classical control theory. 

The definition of a pole can be stated as: If a function G(s) is analytic and single-
valued in the neighborhood of point pi, it is said to have a pole of order r at s = pj if the 
limit lim \{s — Pi)rG(s)] has a finite, nonzero value. In other words, the denominator of 

G(s) must include the factor (.9 - /¾) , so when s = pi, the function becomes infinite. 
If r — 1, the pole at s — pt is called a simple pole. As an example, the function 

G W - 1 0 ( y + 2 )
 2 (2-13) 

s{s+l){s + 3)2 

has a pole of order 2 at s = —3 and simple poles at s = 0 and s = - 1 . It can also be said that 
the function G(s) is analytic in the .y-plane except at these poles. See Fig. 2-4 for the 
graphical representation of the finite poles of the system. 

2-1-6 Zeros of a Function 

The definition of a zero of a function can be stated as: If the function G(s) is analytic at 
s = Zj, it is said to have a zero of order r at s = zx if the limit lim [(.9 - Zi)~rG(s)] has a 

S - » Zj 

finite, nonzero value. Or, simply, G(s) has a zero of order xats = z\ if I /G(s) has an rth-
order pole at s — z\. For example, the function in Eq. (2-13) has a simple zero at s = —2. 

If the function under consideration is a rational function of .9, that is, a quotient of two 
polynomials of .9, the total number of poles equals the total number of zeros, counting the 
multiple-order poles and zeros and taking into account the poles and zeros at infinity. 
The function in Eq. (2-13) has four finite poles at s — 0, — 1, — 3, and —3; there is one 
finite zero at s — —2, but there are three zeros at infinity, because 

lim G(s) = lim -=• = 0 (2-14) 
S —* OO S —> OO S 

Therefore, the function has a total of four poles and four zeros in the entire s-plane, 
including infinity. See Fig. 2-4 for the graphical representation of the finite zeros of the 
system. 
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Toolbox 2-1-1 

For Eq. (2-13), use "zpk" to create 
zero-pole-gain models by the following 
sequence of MATLAB functions 

» G = z p k ( [ - 2 ] , [0 - 1 -3 - 3 ] , 10) 

Z e r o / p o l e / g a i n : 
10 ( s + 2) 

s ( s + l ) ( s + 3)A2 

Convert the transfer function to 
polynomial form 

» Gp = t f ( G ) 

T r a n s f e r f u n c t i o n : 
10 s + 20 

sA4 + 7 sA3 + 15 sA2 + 9 s 

Alternatively use: 

» c l e a r a l l 
» s = t f ( ' s ' ) ; 
» Gp = 10*(s + 2 ) / ( s * ( s + l ) * ( s + 3)A2) 

Transfer function: 

10 s + 20 

sA4 + 7 sA3 + 15 sA2 + 9 s 

Use "pole" and "zero" to obtain the poles 
and zeros of the transfer function 

» po le (Gp) 

ans = 
0 

- 1 
-3 
- 3 

» zero(Gp) 

ans = 
-2 

Convert the transfer function Gp to 
zero-pole-gain form 

» Gzpk = zpk(Gp) 

Z e r o / p o l e / g a i n : 
10 ( s + 2) 

s ( s + 3)A2 (s + 1) 



22 Chapter 2. Mathematical Foundation 

2-1-7 Polar Representation 

To find the polar representation of G(s) in Eq. (2-12) at s — 2j, we look at individual 
components. That is 

G(s) = 
1 

s = 2j = Rej0 = 2ej%-

s + 1 - 2j + 1 = R ej$ 

R = ^ 2 2 - f 1 = \/5 

1 
0 = tan"1 - = 0.46 rad{- 26.57c 

1 1 
G{2j)=2J(2jTT) = l2e

 v 5 ' 
1 _ , V - ,., ,, \-

2\ /5 

See Fig. 2-5 for a graphical representation of s\ = 2./ + 1 in the .v-plane. 

(2-15) 

(2-16) 

(2-17) 

EXAMPLE 2-1-3 Find the polar representation of G{s) given below for „v = jco, where co is a constant varying from 
zero to infinity. 

16 16 
G W .v2 + 10.v+16 (,v + 2)(.v + 8) 

To evaluate Eq. (2-18) at s = jco, we look at individual components. Thus, 

jco+ 2= \ / 2 2 + co2 «?#' 

co = R\ sin c\>\ 

2 = R\co$<p\ 

JO) 

R = \/\+22 

R{ = \ / 2 2 + co2 

0 , = tan — 

.s-plane 

5, = 1 +J2 

)=tan-'

(2-18) 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

(2-23) 

Figure 2-5 Graphical representation of 
S\ = 2j + I in the .v-plane. 

2

1
1.11 63.43

1 
 -
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s-plane 

Figure 2-6 Graphical representation of 
components of 

(<oj+2)ia>j + ») 

jco + 2 = R\(j sin cp} + cos </>] 

jco + 2 = Rie^ 

jco + 8 = y/tf+ate** 

= tan 
- , 6>//?2 

8//?2 

16= 16 e" 

See Fig. 2-6 for a graphical representation of components of 

Hence, 

16 
(o>/ + 2)(ctf/+8)' 

1 1 

Ja) + 2 y/22 + co2 e#t 

1 1 

)6> + % j&+a?e#i 

As a result, G(s = jco) becomes: 

16 

V2^ + or V8- + or 
rm+*i) = | G ( » | e ^ 

/here 

/? = G(a)) = | C ( » | = 
^ 2 + 4 ) ( 0 , 2 + 64) 

Similarly, we can define 

_i ImG(jo)) _,. 
= tan R l G b i = Z G ( 5 = > ) = -01-

(2-24) 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

(2-29) 

(2-30) 

(2-31) 

(2-32) 

Table 2-2 describes different /? and <p values as &> changes. As shown, the magnitude decreases as 
the frequency increases. The phase goes from 0° to -180°. 
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TABLE 2-2 Numerical Values of Sample Magnitude and Phase of the 
System in Example 2-1-3 

co rad/s R 

0.1 

1 

10 

100 

0.999 

0.888 

0.123 

0.0016 

-3.58 

-33.69 

-130.03 

-174.28 

Alternative Approach: If we multiply both numerator and denominator of Eq. (2-18) by the 

complex conjugate of the denominator, i.e. 

G(jw) = 

{-jco + 2)(-jco + 8) 

{-jco + 2)(-jco + S) 

16(-jco + 2){-jco + 8) 

= 1, we get 

[co- -22)(^2 

16 

(co2 +4)(co2 + 64) 

= Real + Imaginary 

82) 

[ ( 1 6 - - j\0o>] 

_\6\J(16-co2)2+(10co) 
( ^ + 4 ) ( w 2 + 6 4 ) 

16 j: 

~ y/(co2+4)(co2+64)e 

= ReJ* 

(2-33) 

•J'l> 

_, -Wco/R \m(G(jco)) 
where cp — tan 7— ;rr—; = ^ ,„,—rr 

F (16 -co2)/R Ke(G(jco)) 
See Fig. 2-7 for a graphical representation of — 

16 
for a fixed value of co. 

(<o/+ 2) (¢0/ + 8) 
So as you have noticed, the frequency response can be determined graphically. Consider the 
following second order system: 

G(s) = 
K 

(s + p\)(s + p2) 
(2-34) 

J CD 

-\0(O/R 
>=^GU««tan- {]6_^VR 

R=-
16 

'(co1 I 4)(ftr+64) 

Figure 2-7 Graphical representation of 16 
toj+2)(a>j+b) 

for a fixed value of co. 



Toolbox 2-1-2 

Here are MATLAB commands to treat complex variables: 

Z = complex ( a , b ) 

creates a complex output, Z, from the two real inputs Z — a-\- bi 

ZC = con j (Z) 

returns the complex conjugate of the elements of Z 

X = r e a l (Z) 

returns the real part of the elements of the complex array Z 

Y=imag (Z) 

returns the imaginary part of the elements of array Z 

R= abs (Z) 

returns the complex modulus (magnitude), which is the same as 

R= s q r t ( r e a l ( Z ) .A2 + imag(Z) .A2) 

t h e t a = a n g l e ( Z ) 

returns the phase angles, in radians, for each element of complex array Z 

The angles lie between the "real axis" in the s-plane and the magnitude R 

Z = R . * e x p ( i * t h e t a ) 

converts back to the original complex Z 

» Z = complex (3 ,2 ) 

Z = 
3.0000 + 2 .00001 

» ZC = conj (Z) 

ZC = 
3.0000 - 2.0000i 

» R = abs(Z) 

R = 
3.6056 

» theta= angle(Z) 

theta = 
0.5880 

» ZRT = R.*exp(i*theta) 

ZRT = 
3.0000 + 2.00001 
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where (-/^) and (-p2) are poles of the function G(s). By definition, if s = jco, G( jco) is the frequency 
response function of G(s), because co has a unit of frequency (rad/s): 

G(s) = ——- * - (2-35) 

The magnitude of G( y<y) is 

R = |C( » | = — £ — (2-36) 

and the phase angle of G( jco) is 

¢=/-0( jco) = / K — / /Vo 4- /?i — / JKU + P2 

= -01 - 02 

For the general case, where 

(2-37) 

C(.v) = K - ^ (2-38) 

J>+Pf) 
c=i 

The magnitude and phase of G{s) are as follows 

» \r>< > M «» lj«» + Zl1-**l/» + a« 
7<»+Pi[---1/0)+PIII (2-39) 

0 = / G ( » = (f i + • • • + fm) - ( 0 , + - - -+ 0„) 

2-2 FREQUENCY-DOMAIN PLOTS 

Let G(s) be the forward-path transfer function1 of a linear control system with unity 
feedback. The frequency-domain analysis of the closed-loop system can be conducted 
from the frequency-domain plots of G(s) with s replaced by jco. 

The function G( jco) is generally a complex function of the frequency co and can be 
written as 

G(j(o) = \G(jco)\lG(jco) (2-40) 

where |G(,/w)| denotes the magnitude of G(jco), and /G(jco) is the phase of G(jco). 
The following frequency-domain plots of G(jco) versus co are often used in the 

analysis and design of linear control systems in the frequency domain. 

1. Polar plot. A plot of the magnitude versus phase in the polar coordinates as co is 
varied from zero to infinity 

2. Bode plot. A plot of the magnitude in decibels versus co (or log|0a>) in semilog 
(or rectangular) coordinates 

3. Magnitude-phase plot. A plot of the magnitude (in decibels) versus the phase on 
rectangular coordinates, with co as a variable parameter on the curve 

2-2-1 Computer-Aided Construction of the Frequency-Domain Plots 

The data for the plotting of the frequency-domain plots are usually quite time consuming to 
generate if the computation is carried out manually, especially if the function is of high 
order. In this textbook, we use MATLAB and the ACSYS software for this purpose. 

For the formal definition of a "transfer function,*' refer to Section 2-7-2. 
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JO) 

2 Polar Plots 

.v-planc 

--joh 

JCOf 

j Im C 

G(j(0)-p\ane 

ReG 

Figure 2-8 Polar plot shown as a mapping of the positive half of the yVt»-axis in the s-plane onto 
the G( y«)-plane. 

From an analytical standpoint, the analyst and designer should be familiar with the 
properties of the frequency-domain plots so that proper interpretations can be made on 
these computer-generated plots. 

The polar plot of a function of the complex variable s, G(s), is a plot of the magnitude of 
G( jco) versus the phase of G( jco) on polar coordinates as co is varied from zero to infinity. 
From a mathematical viewpoint, the process can be regarded as the mapping of the positive 
half of the imaginary axis of the s-plane onto the G( /<y)-plane. A simple example of this 
mapping is shown in Fig. 2-8. For any frequency co — co\, the magnitude and phase of 
G(jco]) are represented by a vector in the G(jco)-plane. In measuring the phase, 
counterclockwise is referred to as positive, and clockwise is negative. 

EXAMPLE 2-2-1 To illustrate the construction of the polar plot of a function G(s), consider the function 

1 
G(s) = 

1+Ts 

where T is a positive constant. Setting s = jco, we have 

1 
G(jco) = 

1 + jcoT 

In terms of magnitude and phase, Eq. (2-42) is rewritten as 

1 
G{jco) = 

V\ + co2T2 

(2-41) 

(2-42) 

(2-43) 

When co is zero, the magnitude of G(jco) is unity, and the phase of G(jco) is at 0°. Thus, at co — 0, 
G(jco) is represented by a vector of unit length directed in the 0° direction. As co increases, the 
magnitude of G( jco) decreases, and the phase becomes more negative. As co increases, the length of 
the vector in the polar coordinates decreases and the vector rotates in the clockwise (negative) 
direction. When co approaches infinity, the magnitude of G( jco) becomes zero, and the phase reaches 
-90° . This is presented by a vector with an infinitesimally small length directed along the -90°-axis 
in the G(jco)-plane. By substituting other finite values of co into Eq. (2-43), the exact plot of G(jco) 
turns out to be a semicircle, as shown in Fig. 2-9. 
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jlmG 
G (/'ft>)-plane 

Figure 2-9 Polar plot of G( jco) = l 

\+jo>TY 

EXAMPLE 2-2-2 As a second illustrative example, consider the function 

where T\ and T2 are positive real constants. Eq. (2-44) is re-written as 

,>2T2 

1 + CO I i 

(2-44) 

(2-45) 

The polar plot of G( ycu), in this case, depends on the relative magnitudes of T\ and T2. If T2 is greater 
than T\, the magnitude of G( y'o)) is always greater than unity as co is varied from zero to infinity, and 
the phase of G( jco) is always positive. If T2 is less than 2*1, the magnitude of G( jco) is always less than 
unity, and the phase is always negative. The polar plots of G(jco) of Eq. (2-45) that correspond to 
these two conditions are shown in Fig. 2-10. 

The general shape of the polar plot of a function G( jco) can be determined from the following 
information. 

1. The behavior of the magnitude and phase of G( jco) at co = 0 and co — co. 

2. The intersections of the polar plot with the real and imaginary axes, and the values of co at 
these intersections 

j Im G 

(T2 < 7",) 

Figure 2-10 Polar plots of G( jco) = (1 + Ja>T2) 
{l+jo>Ti)' 

TJT, Re G 
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Toolbox 2-2-1 

The Nyquist diagram for Eq. (2-44) for two cases is obtained by the following sequence of MATLAB 
functions: 

Tl = 10; 
T2 = 5; 
nural = [T2 1] ; 
denl = [Tl 1] ; 
Gl=tf(numl,denl); 
nyquist(Gl); 
hold on; 
num2 = [Tl 1] ; 
den2 = [T2 1] ; 
G2 = tf (num2,den2) ; 
nyquist (G2) ; 
title ( ' Nyquist diagram of Gl and G2' ) 

Note: The "nyquist" function provides a complete polar diagram, where co is varying from — oo to -t-oc. 

Nyquist diagram of G1 and G2 
0.5 p 

0.4 -

0.3 -

0.2 -

w 0.1 -

g 
«3 

E -0.1 -

-0,2 -

-0.3 -

-0.4 -

-0.5 -

-1 -0.5 0 0.5 1 1.5 2 

Comparing the results in Toolbox 2-2-1 and Fig. 2-10, it is clear that the polar plot reflects only a 
portion of the Nyquist diagram. In many control-system applications, such as the Nyquist stability 
criterion (see Chapter 8), an exact plot of the frequency response is not essential. Often, a rough 
sketch of the polar plot of the transfer function is adequate for stability analysis in the frequency 
domain. 
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EXAMPLE 2-2-3 In frequency-domain analyses ofcontrol systems, often we have to determine the basic properties of a 
polar plot. Consider the following transfer function: 

°W=^TT) ( 2- 4 6> 
By substituting s = jco in Eq. (2-46), the magnitude and phase of G( jco) at co = 0 and co = oo are 
computed as follows: 

lim |O(/0>)| = lim — = oo 
<u—»0 <u—»0 Co 

lim /G{jco) = lim l\0/jco = -90° 
o) —»0 co —»0 

lim \G(jco)\= lim - ^ = 0 
a) —• oo o) —> oc ( y -

lim /.G{jco) = lim /lO/ycy2 = - 1 8 0 ° 

(2-47) 

(2-48) 

(2-49) 

(2-50) 

Thus, the properties of the polar plot of G( jco) atco = 0 and w = oc are ascertained. Next, we determine 
the intersections, if any, of the polar plot with the two axes of the G( jco)-p\ane. If the polar plot of G( jco) 
intersects the real axis, at the point of intersection, the imaginary part of G(jco) is zero; that is, 

lm[G(jco)] = 0 (2-51) 

To express G(jco) as the sum of its real and imaginary parts, we must rationalize G(jco) by multi­
plying its numerator and denominator by the complex conjugate of its denominator. Therefore, 
G(jco) is written 

\0{-jco){-jco+\) - 1 0 f t ) 2 10tt> 
~ V + o>2 (2-52) G(jco) = -J jco{ jco +l){-jco){-jco+l) co4 

= Rc[G(jco)] + jlm[G(jco)] 

When we set Im[G( jco)] to zero, we get co = oo, meaning that the G( jco) plot intersects only with the 
real axis of the G(jco)-plane at the origin. 

Similarly, the intersection of G(jco) with the imaginary axis is found by setting Re[G(ya>)] of 
Eq. (2-52) to zero. The only real solution for co is also co ~ oo, which corresponds to the origin of the 
G( jco)-p\ane. The conclusion is that the polar plot of G( jco) does not intersect any one of the axes at 
any finite nonzero frequency. Under certain conditions, we are interested in the properties of the 
G( jco) at infinity, which corresponds to co = 0 in this case. From Eq. (2-52), we see that lm[G( jco)] = 
oo and Re[G( jco)] = —10 at co = 0. Based on this information as well as knowledge of the angles of 
G(jco) at co = 0 and co = oo, the polar plot of G(jco) is easily sketched without actual plotting, as 
shown in Fig. 2-11. 

G(/'(U)-plano jlmG' 

— 10 Figure 2-11 Polar plot of G{s) = -
^+rr 
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EXAMPLE 2-2-4 Given the transfer function 

G(s) = 
10 

(2-53) 
s(s+\)(s + 2) 

we want to make a rough sketch of the polar plot of G( jco). The following calculations are made for 
the properties of the magnitude and phase of G(jco) at (o = 0 and co = oo: 

lim \G{ /ft)) I — lim — = oo 
co — 0 co —Oft) 

lim /.G(jo))= lim /5/jco ~-90c 

co—»0 <w — 0 

10 

(2-54) 

(2-55) 

lim \G(ja>)\= lim -^ = 0 (2-56) 
CO —» OC CO —» CO ft)-1 

To find the intersections of the G(jco) plot on the real and imaginary axes of the G(jco)-plane, we 
rationalize G(jco) to give 

\0{-jco)(-jco + ! ) ( - > + 2) 
^ Xyft ) + l)(/ft) + 2 ) ( - » ( - y f t ) + l)(-yVu + 2) 

After simplification, the last equation is written 

G(j(o) = Re[G(y'ft))] 4- jlm[G(jco)} = 
-30 710(2 - •2\ 

(2-57) 

(2-58) 
9ft)2 + ( 2 - a)2)2 9ft)3 -I- 0)(2 - ft)2)2 

Setting Re[G(y"ft))] to zero, we have co = oc, and G(y'oo) = 0, which means that the G(jco) plot 
intersects the imaginary axis only at the origin. Setting Im[G( jco)} to zero, we have co = ±\/2 rad/sec. 
This gives the point of intersection on the real axis at 

G(±yV2) = - 5 / 3 (2-59) 

The result, co = —y/2 rad/sec, has no physical meaning, because the frequency is negative; it simply 
represents a mapping point on the negative y'ft)-axis of the j-plane. In general, if G(s) is a rational 
function of .v (a quotient of two polynomials of „?), the polar plot of G( jco) for negative values of co is the 
mirror image of that for positive co, with the mirror placed on the real axis of the G(y'ft>)-plane. From 
Eq. (2-58), we also see that Re[G(y'0)] = oc and lm[G(y'0)] = oo. With this information, it is now 
possible to make a sketch of the polar plot for the transfer function in Eq. (2-53), as shown in Fig. 2-12. 

Although the method of obtaining the rough sketch of the polar plot of a transfer function as 
described is quite straightforward, in general, for complicated transfer functions that may have 
multiple crossings on the real and imaginary axes of the transfer-function plane, the algebraic 
manipulation may again be quite involved. Furthermore, the polar plot is basically a tool for analysis; 
it is somewhat awkward for design purposes. We shall show in the next section that approximate 
information on the polar plot can always be obtained from the Bode plot, which can be sketched 

G-plane 

Figure 2-12 Polar plot of G(s) = 10 
sts+lM-H-2)" 
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without any calculations. Thus, for more complicated transfer functions, sketches of the polar plots 
can be obtained with the help of the Bode plots, unless MATLAB is used. 

Bode Plot (Corner Plot or Asymptotic Plot) 

The Bode plot of the function G( jco) is composed of two plots, one with the amplitude of 
G(jco) in decibels (dB) versus log10a) or co and the other with the phase of G{jco) in 
degrees as a function of log10o) or co. A Bode plot is also known as a corner plot or an 
asymptotic plot of G(jco). These names stem from the fact that the Bode plot can be 
constructed by using straight-line approximations that are asymptotic to the actual plot. 

In simple terms, the Bode plot has the following features: 

1. Because the magnitude of G( jco) in the Bode plot is expressed in dB, product and 
division factors in G[ jco) became additions and subtractions, respectively. The 
phase relations are also added and subtracted from each other algebraically. 

2. The magnitude plot of the Bode plot of G( jco) can be approximated by straight-line 
segments, which allow the simple sketching of the plot without detailed computation. 

Because the straight-line approximation of the Bode plot is relatively easy to construct, the 
data necessary for the other frequency-domain plots, such as the polar plot and the 
magnitude-versus-phase plot, can be easily generated from the Bode plot. 

Consider the function 

c(s) = y+^+^)-(; + ̂ )g-^ (2.60) 
W sJ(s+Pi){s+P2)---{s+P») 

where K and T(/ are real constants, and the z's and the ;;'s may be real or complex (in 
conjugate pairs) numbers. In Chapter 7, Eq. (2-60) is the preferred form for root-locus 
construction, because the poles and zeros of G(.v) are easily identified. For constructing the 
Bode plot manually, G(s) is preferably written in the following form: 

/ : ,0+ ^ ) d + ^) - - - (1+ rw.v) TdS 
U{S) */{l + Ta.s)(l + Ths) - - - ( 1 + T„s) U ° U 

where K\ is a real constant, the Fs may be real or complex (in conjugate pairs) numbers, 
and Trfis the real time delay. If the Bode plot is to be constructed with a computer program, 
then either form of Eq. (2-60) or Eq. (2-61) can be used. 

Because practically all the terms in Eq. (2-61) are of the same form, then without loss 
of generality, we can use the following transfer function to illustrate the construction of the 
Bode diagram. 

C ( v ) = ^ 1 + ^ ) ( 1 + ^ ) e-Tl, ( 9 „ 6 2 ) 

°[S) s( 1 + TaS) (1 + 2fsM, + j*/«Q (- *Z) 

where K, Tc/, T\, T2, Ta, f, and con are real constants. It is assumed that the second-order 
polynomial in the denominator has complex-conjugate zeros. 

The magnitude of G( jco) in dB is obtained by multiplying the logarithm (base 10) of 
\G(jco)\ by 20; we have 

| G ( » | d B = 2 0 1 o g H ) | G ( . H | 

= 20logi0|AT| + 201og10| 1 + jcoTi | + 20 log1()| 1 4- jcoT2\ 

- 2 0 1 o g 1 0 | > | -201og1 0 | l +j<oTa\ -201og1 0 | l + j2t;co- co2/col\ (2-63) 
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The phase of G( jco) is 

/_G{ jco) = IK + /(1 + jtoT\ ) + / ( 1 + M 2 ) - I jco - / ( 1 + > r f l 

- / ( 1 + 2$to/con - a)2 /&>*) — )̂7 /̂ rad (2-64) 

In general, the function G(jco) may be of higher order than that of Eq. (2-62) and 
have many more factored terms. However, Eqs. (2-63) and (2-64) indicate that 
additional terms in G(jco) would simply produce more similar terms in the magnitude 
and phase expressions, so the basic method of construction of the Bode plot would be 

Toolbox 2-2-2 

The Bode plot for Example 2-1-3, using the MATLAB "bode" function, is obtained by the following 
sequence of MATLAB functions. 

Approach 1 

num = [ 1 6 ] ; 
d e n = [1 10 16] ; 
G = t f ( n u m , d e n ) ; 
bode(G) ; 

Approach 2 

s - t f C s * ) ; 
G=16/(sA2 + 10*s + 1 6 ) ; 
bode(G) ; 

The "bode" function computes the magnitude and phase of the frequency response of linear time 
invariant models. The magnitude is plotted in decibels (dB) and the phase in degrees. Compare the 
results to the values in Table 2-2. 

Bode Diagram 
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