


Jaeger-1820037 jae80458˙FM˙i-xxvi January 22, 2010 15:50

MICROELECTRONIC
CIRCUIT DESIGN

i



This page intentionally left blank 



Jaeger-1820037 jae80458˙FM˙i-xxvi January 22, 2010 21:9

Fourth Edition

MICROELECTRONIC
CIRCUIT DESIGN

Richard C. Jaeger
Auburn University

Travis N. Blalock
University of Virginia

TM

iii



Jaeger-1820037 jae80458˙FM˙i-xxvi January 22, 2010 15:50

TM

MICROELECTRONIC CIRCUIT DESIGN, FOURTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York,
NY 10020. Copyright c© 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Previous editions c© 2008, 2004,
and 1997. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database
or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in
any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

1 2 3 4 5 6 7 8 9 0 WDQ/WDQ 1 0 9 8 7 6 5 4 3 2 1 0

ISBN 978-0-07-338045-2
MHID 0-07-338045-8

Vice President & Editor-in-Chief: Marty Lange
Vice President, EDP / Central Publishing Services: Kimberly Meriwether-David
Global Publisher: Raghothaman Srinivasan
Director of Development: Kristine Tibbetts
Developmental Editor: Darlene M. Schueller
Senior Sponsoring Editor: Peter E. Massar
Senior Marketing Manager: Curt Reynolds
Senior Project Manager: Jane Mohr
Senior Production Supervisor: Kara Kudronowicz
Senior Media Project Manager: Sandra M. Schnee
Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Senior Photo Research Coordinator: John C. Leland
Photo Research: LouAnn K. Wilson
Compositor: MPS Limited, A Macmillan Company
Typeface: 10/12 Times Roman
Printer: Worldcolor

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data
Jaeger, Richard C.

Microelectronic circuit design / Richard C. Jaeger, Travis N. Blalock. — 4th ed.
p. cm.

ISBN 978-0-07-338045-2
1. Integrated circuits—Design and construction. 2. Semiconductors—Design and construction. 3. Electronic circuit

design. I. Blalock, Travis N. II. Title.
TK7874.J333 2010
621.3815—dc22 2009049847

www.mhhe.com

iv

www.mhhe.com


Jaeger-1820037 jae80458˙FM˙i-xxvi January 22, 2010 15:50

TO
T o J o a n , m y l o v i n g w i f e a n d p a r t n e r

—R i c h a r d C . J a e g e r

I n m e m o r y o f m y f a t h e r , P r o f e s s o r T h e r o n V a u g h n
B l a l o c k , a n i n s p i r a t i o n t o m e a n d t o t h e c o u n t l e s s
s t u d e n t s w h o m h e m e n t o r e d b o t h i n e l e c t r o n i c
d e s i g n a n d i n l i f e .

—T r a v i s N . B l a l o c k

v



Jaeger-1820037 jae80458˙FM˙i-xxvi January 22, 2010 15:50

BRIEF CONTENTS

Preface xx

P A R T O N E

Solid State Electronics and Devices
1 Introduction to Electronics 3
2 Solid-State Electronics 42
3 Solid-State Diodes and Diode Circuits 74
4 Field-Effect Transistors 145
5 Bipolar Junction Transistors 217

P A R T T W O

Digital Electronics
6 Introduction to Digital Electronics 287
7 Complementary MOS (CMOS) Logic Design 367
8 MOS Memory and Storage Circuits 416
9 Bipolar Logic Circuits 460

P A R T T H R E E

Analog Electronics
10 Analog Systems and Ideal Operational Amplifiers 529
11 Nonideal Operational Amplifiers and Feedback

Amplifier Stability 600

12 Operational Amplifier Applications 697
13 Small-Signal Modeling and Linear Amplification 786
14 Single-Transistor Amplifiers 857
15 Differential Amplifiers and Operational Amplifier

Design 968
16 Analog Integrated Circuit Design Techniques 1046
17 Amplifier Frequency Response 1128
18 Transistor Feedback Amplifiers and Oscillators 1228

A P P E N D I X E S

A Standard Discrete Component Values 1300
B Solid-State Device Models and SPICE Simulation

Parameters 1303
C Two-Port Review 1310

Index 1313

vi



Jaeger-1820037 jae80458˙FM˙i-xxvi January 22, 2010 15:50

CONTENTS

Preface xx

P A R T O N E

SOLID STATE ELECTRONIC
AND DEVICES 1

CHAPTER 1

INTRODUCTION TO ELECTRONICS 3

1.1 A Brief History of Electronics:
From Vacuum Tubes to Giga-Scale
Integration 5

1.2 Classification of Electronic Signals 8
1.2.1 Digital Signals 9
1.2.2 Analog Signals 9
1.2.3 A/D and D/A Converters—Bridging

the Analog and Digital
Domains 10

1.3 Notational Conventions 12
1.4 Problem-Solving Approach 13
1.5 Important Concepts from Circuit Theory 15

1.5.1 Voltage and Current Division 15
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PREFACE

Through study of this text, the reader will develop a com-
prehensive understanding of the basic techniques of mod-
ern electronic circuit design, analog and digital, discrete
and integrated. Even though most readers may not ulti-
mately be engaged in the design of integrated circuits (ICs)
themselves, a thorough understanding of the internal circuit
structure of ICs is prerequisite to avoiding many pitfalls that
prevent the effective and reliable application of integrated
circuits in system design.

Digital electronics has evolved to be an extremely im-
portant area of circuit design, but it is included almost as
an afterthought in many introductory electronics texts. We
present a more balanced coverage of analog and digital cir-
cuits. The writing integrates the authors’ extensive indus-
trial backgrounds in precision analog and digital design with
their many years of experience in the classroom. A broad
spectrum of topics is included, and material can easily be
selected to satisfy either a two-semester or three-quarter
sequence in electronics.

IN THIS EDITION
This edition continues to update the material to achieve
improved readability and accessibility to the student. In
addition to general material updates, a number of spe-
cific changes have been included in Parts I and II, Solid-
State Electronics and Devices and Digital Electronics,
respectively. A new closed-form solution to four-resistor
MOSFET biasing is introduced as well as an improved
iterative strategy for diode Q-point analysis. JFET devices
are important in analog design and have been reintro-
duced at the end of Chapter 4. Simulation-based logic gate
scaling is introduced in the MOS logic chapters, and an
enhanced discussion of noise margin is included as a new
Electronics-in-Action (EIA) feature. Current-mode logic
(CML) is heavily used in high performance SiGe ICs, and
a CML section is added to the Bipolar Logic chapter.

This revision contains major reorganization and revi-
sion of the analog portion (Part III) of the text. The introduc-
tory amplifier material (old Chapter 10) is now introduced

in a “just-in-time” basis in the three op-amp chapters. Spe-
cific sections have been added with qualitative descriptions
of the operation of basic op-amp circuits and each transistor
amplifier configuration as well as the transistors themselves.

Feedback analysis using two-ports has been eliminated
from Chapter 18 in favor of a consistent loop-gain analy-
sis approach to all feedback configurations that begins in
the op-amp chapters. The important successive voltage and
current injection technique for finding loop-gain is now in-
cluded in Chapter 11, and Blackman’s theorem is utilized to
find input and output resistances of closed-loop amplifiers.
SPICE examples have been modified to utilize three- and
five-terminal built-in op-amp models.

Chapter 10, Analog Systems and Ideal Operational
Amplifiers, provides an introduction to amplifiers and cov-
ers the basic ideal op-amp circuits.

Chapter 11, Characteristics and Limitations of Opera-
tional Amplifiers, covers the limitations of nonideal op amps
including frequency response and stability and the four clas-
sic feedback circuits including series-shunt, shunt-shunt,
shunt-series and series-series feedback amplifiers.

Chapter 12, Operational Amplifier Applications, col-
lects together all the op-amp applications including multi-
stage amplifiers, filters, A/D and D/A converters, sinusoidal
oscillators, and multivibrators.

Redundant material in transistor amplifier chapters 13
and 14 has been merged or eliminated wherever possible.
Other additions to the analog material include discussion of
relations between MOS logic inverters and common-source
amplifiers, distortion reduction through feedback, the rela-
tionship between step response and phase margin, NMOS
differential amplifiers with NMOS load transistors, the reg-
ulated cascode current source, and the Gilbert multiplier.

Because of the renaissance and pervasive use of RF
circuits, the introductory section on RF amplifiers, now in
Chapter 17, has been expanded to include shunt-peaked
and tuned amplifiers, and the use of inductive degeneration
in common-source amplifiers. New material on mixers in-
cludes passive, active, single- and double-balanced mixers
and the widely used Gilbert mixer.

xx
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Preface xxi

Chapter 18, Transistor Feedback Amplifiers and
Oscillators, presents examples of transistor feedback am-
plifiers and transistor oscillator implementations. The tran-
sistor oscillator section has been expanded to include a
discussion of negative resistance in oscillators and the
negative Gm oscillator cell.

Several other important enhancements include:

• SPICE support on the web now includes
examples in NI Multisim™ software in
addition to PSpice® .

• At least 35 percent revised or new problems.
• New PowerPoint® slides are available from

McGraw-Hill.
• A group of tested design problems are also

available.

The Structured Problem Solving Approach continues to be
utilized throughout the examples. We continue to expand the
popular Electronics-in-Action Features with the addition of
Diode Rectifier as an AM Demodulator; High Performance
CMOS Technologies; A Second Look at Noise Margins
(graphical flip-flop approach); Offset Voltage, Bias Cur-
rent and CMRR Measurement; Sample-and-Hold Circuits;
Voltage Regulator with Series Pass Transistor; Noise Fac-
tor, Noise Figure and Minimum Detectable Signal; Series-
Parallel and Parallel-Series Network Transformations; and
Passive Diode Ring Mixer.

Chapter Openers enhance the readers understanding of
historical developments in electronics. Design notes high-
light important ideas that the circuit designer should re-
member. The World Wide Web is viewed as an integral
extension of the text, and a wide range of supporting mate-
rials and resource links are maintained and updated on the
McGraw-Hill website (www.mhhe.com/jaeger).

Features of the book are outlined below.

The Structured Problem-Solving Approach is used
throughout the examples.

Electronics-in-Action features in each chapter.

Chapter openers highlighting developments in the
field of electronics.

Design Notes and emphasis on practical circuit
design.

Broad use of SPICE throughout the text and
examples.

Integrated treatment of device modeling in SPICE.

Numerous Exercises, Examples, and Design
Examples.

Large number of new problems.

Integrated web materials.

Continuously updated web resources and links.

Placing the digital portion of the book first is also bene-
ficial to students outside of electrical engineering, partic-
ularly computer engineering or computer science majors,
who may only take the first course in a sequence of elec-
tronics courses.

The material in Part II deals primarily with the internal
design of logic gates and storage elements. A comprehen-
sive discussion of NMOS and CMOS logic design is pre-
sented in Chapters 6 and 7, and a discussion of memory
cells and peripheral circuits appears in Chapter 8. Chap-
ter 9 on bipolar logic design includes discussion of ECL,
CML and TTL. However, the material on bipolar logic has
been reduced in deference to the import of MOS technol-
ogy. This text does not include any substantial design at
the logic block level, a topic that is fully covered in digital
design courses.

Parts I and II of the text deal only with the large-signal
characteristics of the transistors. This allows readers to be-
come comfortable with device behavior and i-v characteris-
tics before they have to grasp the concept of splitting circuits
into different pieces (and possibly different topologies) to
perform dc and ac small-signal analyses. (The concept of a
small-signal is formally introduced in Part III, Chapter 13.)

Although the treatment of digital circuits is more ex-
tensive than most texts, more than 50 percent of the mate-
rial in the book, Part III, still deals with traditional analog
circuits. The analog section begins in Chapter 10 with a
discussion of amplifier concepts and classic ideal op-amp
circuits. Chapter 11 presents a detailed discussion of non-
ideal op amps, and Chapter 12 presents a range of op-amp
applications. Chapter 13 presents a comprehensive devel-
opment of the small-signal models for the diode, BJT, and
FET. The hybrid-pi model and pi-models for the BJT and
FET are used throughout.

Chapter 14 provides in-depth discussion of single-
stage amplifier design and multistage ac coupled amplifiers.
Coupling and bypass capacitor design is also covered in
Chapter 14. Chapter 15 discusses dc coupled multistage
amplifiers and introduces prototypical op amp circuits.
Chapter 16 continues with techniques that are important in
IC design and studies the classic 741 operational amplifier.

Chapter 17 develops the high-frequency models for the
transistors and presents a detailed discussion of analysis of
high-frequency circuit behavior. The final chapter presents
examples of transistor feedback amplifiers. Discussion of
feedback amplifier stability and oscillators conclude the
text.

www.mhhe.com/jaeger
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DESIGN
Design remains a difficult issue in educating engineers.
The use of the well-defined problem-solving methodology
presented in this text can significantly enhance the students
ability to understand issues related to design. The design
examples assist in building an understanding of the design
process.

Part II launches directly into the issues associated
with the design of NMOS and CMOS logic gates. The
effects of device and passive-element tolerances are dis-
cussed throughout the text. In today’s world, low-power,
low-voltage design, often supplied from batteries, is play-
ing an increasingly important role. Logic design examples
have moved away from 5 V to lower power supply levels.
The use of the computer, including MATLAB® , spread-
sheets, or standard high-level languages to explore design
options is a thread that continues throughout the text.

Methods for making design estimates and decisions
are stressed throughout the analog portion of the text. Ex-
pressions for amplifier behavior are simplified beyond the
standard hybrid-pi model expressions whenever appropri-
ate. For example, the expression for the voltage gain of an
amplifier in most texts is simply written as |Av| = gm RL ,
which tends to hide the power supply voltage as the funda-
mental design variable. Rewriting this expression in approx-
imate form as gm RL

∼= 10VCC for the BJT, or gm RL
∼= VDD

for the FET, explicitly displays the dependence of amplifier
design on the choice of power supply voltage and provides a
simple first-order design estimate for the voltage gain of the
common-emitter and common-source amplifiers. The gain
advantage of the BJT stage is also clear. These approxima-
tion techniques and methods for performance estimation
are included as often as possible. Comparisons and design
tradeoffs between the properties of BJTs and FETs are in-
cluded throughout Part III.

Worst-case and Monte-Carlo analysis techniques are
introduced at the end of the first chapter. These are not top-
ics traditionally included in undergraduate courses. How-
ever, the ability to design circuits in the face of wide
component tolerances and variations is a key component
of electronic circuit design, and the design of circuits
using standard components and tolerance assignment are
discussed in examples and included in many problems.

PROBLEMS AND INSTRUCTOR
SUPPORT
Specific design problems, computer problems, and SPICE
problems are included at the end of each chapter. Design
problems are indicated by , computer problems are in-

dicated by , and SPICE problems are indicated by .
The problems are keyed to the topics in the text with the
more difficult or time-consuming problems indicated by *
and **. An Instructor’s Manual containing solutions to all
the problems is available from the authors. In addition, the
graphs and figures are available as PowerPoint files and can
be retrieved from the website. Instructor notes are available
as PowerPoint slides.

ELECTRONIC TEXTBOOK OPTION
This text is offered through CourseSmart for both instruc-
tors and students. CourseSmart is an online resource where
students can purchase the complete text online at almost half
the cost of a traditional text. Purchasing the eTextbook al-
lows students to take advantage of CourseSmart’s web tools
for learning, which include full text search, notes and high-
lighting, and email tools for sharing notes between class-
mates. To learn more about CourseSmart options, contact
your sales representative or visit www.CourseSmart.com.

COSMOS
Complete Online Solutions Manual Organization System
(COSMOS). Professors can benefit from McGraw-Hill’s
COSMOS electronic solutions manual. COSMOS enables
instructors to generate a limitless supply of problem mate-
rial for assignment, as well as transfer and integrate their
own problems into the software. For additional information,
contact your McGraw-Hill sales representative.

COMPUTER USAGE AND SPICE
The computer is used as a tool throughout the text. The au-
thors firmly believe that this means more than just the use
of the SPICE circuit analysis program. In today’s comput-
ing environment, it is often appropriate to use the computer
to explore a complex design space rather than to try to re-
duce a complicated set of equations to some manageable
analytic form. Examples of the process of setting up equa-
tions for iterative evaluation by computer through the use
of spreadsheets, MATLAB, and/or standard high-level lan-
guage programs are illustrated in several places in the text.
MATLAB is also used for Nyquist and Bode plot generation
and is very useful for Monte Carlo analysis.

On the other hand, SPICE is used throughout the text.
Results from SPICE simulation are included throughout
and numerous SPICE problems are to be found in the
problem sets. Wherever helpful, a SPICE analysis is used
with most examples. This edition also emphasizes the dif-
ferences and utility of the dc, ac, transient, and transfer
function analysis modes in SPICE. A discussion of SPICE

www.CourseSmart.com
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device modeling is included following the introduction
to each semiconductor device, and typical SPICE model
parameters are presented with the models.
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CHAPTER-BY-CHAPTER SUMMARY

PART I—SOLID-STATE ELECTRONICS
AND DEVICES
Chapter 1 provides a historical perspective on the field of
electronics beginning with vacuum tubes and advancing to
giga-scale integration and its impact on the global economy.
Chapter 1 also provides a classification of electronic signals
and a review of some important tools from network anal-
ysis, including a review of the ideal operational amplifier.
Because developing a good problem-solving methodology
is of such import to an engineer’s career, the comprehen-
sive Structured Problem Solving Approach is used to help
the students develop their problem solving skills. The struc-
tured approach is discussed in detail in the first chapter and
used in all the subsequent examples in the text. Component
tolerances and variations play an extremely important role
in practical circuit design, and Chapter 1 closes with intro-
ductions to tolerances, temperature coefficients, worst-case
design, and Monte Carlo analysis.

Chapter 2 deviates from the recent norm and discusses
semiconductor materials including the covalent-bond and
energy-band models of semiconductors. The chapter in-
cludes material on intrinsic carrier density, electron and hole
populations, n- and p-type material, and impurity doping.
Mobility, resistivity, and carrier transport by both drift and
diffusion are included as topics. Velocity saturation is dis-
cussed, and an introductory discussion of microelectronic
fabrication has been merged with Chapter 2.

Chapter 3 introduces the structure and i-v character-
istics of solid-state diodes. Discussions of Schottky diodes,
variable capacitance diodes, photo-diodes, solar cells, and
LEDs are also included. This chapter introduces the con-
cepts of device modeling and the use of different levels
of modeling to achieve various approximations to reality.
The SPICE model for the diode is discussed. The con-
cepts of bias, operating point, and load-line are all intro-
duced, and iterative mathematical solutions are also used to
find the operating point with MATLAB and spreadsheets.
Diode applications in rectifiers are discussed in detail and a

discussion of the dynamic switching characteristics of
diodes is also presented.

Chapter 4 discusses MOS and junction field-effect
transistors, starting with a qualitative description of the
MOS capacitor. Models are developed for the FET i-v char-
acteristics, and a complete discussion of the regions of op-
eration of the device is presented. Body effect is included.
MOS transistor performance limits including scaling, cut-
off frequency, and subthreshold conduction are discussed as
well as basic �-based layout methods. Biasing circuits and
load-line analysis are presented. The FET SPICE models
and model parameters are discussed in Chapter 4.

Chapter 5 introduces the bipolar junction transistor
and presents a heuristic development of the Transport (sim-
plified Gummel-Poon) model of the BJT based upon su-
perposition. The various regions of operation are discussed
in detail. Common-emitter and common-base current gains
are defined, and base transit-time, diffusion capacitance and
cutoff frequency are all discussed. Bipolar technology and
physical structure are introduced. The four-resistor bias cir-
cuit is discussed in detail. The SPICE model for the BJT and
the SPICE model parameters are discussed in Chapter 5.

PART II—DIGITAL ELECTRONICS
Chapter 6 begins with a compact introduction to digital
electronics. Terminology discussed includes logic levels,
noise margins, rise-and-fall times, propagation delay, fan
out, fan in, and power-delay product. A short review of
Boolean algebra is included. The introduction to MOS logic
design is now merged with Chapter 6 and follows the histor-
ical evolution of NMOS logic gates focusing on the design
of saturated-load, and depletion-load circuit families. The
impact of body effect on MOS logic circuit design is dis-
cussed in detail. The concept of reference inverter scaling
is developed and employed to affect the design of other in-
verters, NAND gates, NOR gates, and complex logic func-
tions throughout Chapters 6 and 7. Capacitances in MOS

xxiv
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circuits are discussed, and methods for estimating the prop-
agation delay and power-delay product of NMOS logic are
presented. Details of several of the propagation delay anal-
yses are moved to the MCD website, and the delay equation
results for the various families have been collapsed into a
much more compact form. The pseudo NMOS logic gate is
discussed and provides a bridge to CMOS logic in Chapter 7.

CMOS represents today’s most important integrated
circuit technology, and Chapter 7 provides an in-depth
look at the design of CMOS logic gates including invert-
ers, NAND and NOR gates, and complex logic gates. The
CMOS designs are based on simple scaling of a reference
inverter design. Noise margin and latchup are discussed as
well as a comparison of the power-delay products of vari-
ous MOS logic families. Dynamic logic circuits and cascade
buffer design are discussed in Chapter 7. A discussion of
BiCMOS logic circuitry has been added to Chapter 9 after
bipolar logic is introduced.

Chapter 8 ventures into the design of memory and
storage circuits, including the six-transistor, four-transistor,
and one-transistor memory cells. Basic sense-amplifier cir-
cuits are introduced as well as the peripheral address and
decoding circuits needed in memory designs. ROMs and
flip-flop circuitry are included in Chapter 8.

Chapter 9 discusses bipolar logic circuits including
emitter-coupled logic and transistor-transistor logic. The
use of the differential pair as a current switch and the large-
signal properties of the emitter follower are introduced. An
introduction to CML, widely used in SiGe design, follows
the ECL discussion. Operation of the BJT as a saturated
switch is included and followed by a discussion of low volt-
age and standard TTL. An introduction to BiCMOS logic
now concludes the chapter on bipolar logic.

PART III—ANALOG ELECTRONICS
Chapter 10 provides a succinct introduction to analog elec-
tronics. The concepts of voltage gain, current gain, power
gain, and distortion are developed and have been merged
on a “just-in-time” basic with the discussion of the classic
ideal operational amplifier circuits that include the invert-
ing, noninverting, summing, and difference amplifiers and
the integrator and differentiator. Much care has been taken
to be consistent in the use of the notation that defines these
quantities as well as in the use of dc, ac, and total signal
notation throughout the book. Bode plots are reviewed and
amplifiers are classified by frequency response. MATLAB
is utilized as a tool for producing Bode plots. SPICE simu-
lation using built-in SPICE models is introduced.

Chapter 11 focuses on a comprehensive discussion of
the characteristics and limitations of real operational am-

plifiers including the effects of finite gain and input resis-
tance, nonzero output resistance, input offset voltage, input
bias and offset currents, output voltage and current limits,
finite bandwidth, and common-mode rejection. A consis-
tent loop-gain analysis approach is used to study the four
classic feedback configurations, and Blackman’s theorem is
utilized to find input and output resistances of closed-loop
amplifiers. The important successive voltage and current
injection technique for finding loop-gain is now included
in Chapter 11. Relationships between the Nyquist and
Bode techniques are explicitly discussed. Stability of first-,
second- and third-order systems is discussed, and the con-
cepts of phase and gain margin are introduced. Relation-
ships between Nyquist and Bode techniques are explicitly
discussed. A section concerning the relationship between
phase margin and time domain response has been added.
The macro model concept is introduced and the discussion
of SPICE simulation of op-amp circuits using various levels
of models continues in Chapter 11.

Chapter 12 covers a wide range of operational am-
plifier applications that include multistage amplifiers, the
instrumentation amplifier, and continuous time and discrete
time active filters. Cascade amplifiers are investigated in-
cluding a discussion of the bandwidth of multistage ampli-
fiers. An introduction to D/A and A/D converters appears
in this chapter. The Barkhausen criterion for oscillation are
presented and followed by a discussion of op-amp-based si-
nusoidal oscillators. Nonlinear circuits applications includ-
ing rectifiers, Schmitt triggers, and multivibrators conclude
the material in Chapter 12.

Chapter 13 begins the general discussion of linear
amplification using the BJT and FET as C-E and C-S am-
plifiers. Biasing for linear operation and the concept of
small-signal modeling are both introduced, and small-signal
models of the diode, BJT, and FET are all developed. The
limits for small-signal operation are all carefully defined.
The use of coupling and bypass capacitors and inductors
to separate the ac and dc designs is explored. The impor-
tant 10VCC and VDD design estimates for the voltage gain
of the C-E and C-S amplifiers are introduced, and the role
of transistor amplification factor in bounding circuit perfor-
mance is discussed. The role of Q-point design on power
dissipation and signal range is also introduced.

Chapter 14 proceeds with an in-depth comparison
of the characteristics of single-transistor amplifiers, in-
cluding small-signal amplitude limitations. Appropriate
points for signal injection and extraction are identified,
and amplifiers are classified as inverting amplifiers (C-E,
C-S), noninverting amplifiers (C-B, C-G), and followers
(C-C, C-D). The treatment of MOS and bipolar devices is
merged from Chapter 14 on, and design tradeoffs between
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the use of the BJT and the FET in amplifier circuits is an
important thread that is followed through all of Part III. A
detailed discussion of the design of coupling and bypass
capacitors and the role of these capacitors in controlling
the low frequency response of amplifiers appears in this
chapter.

Chapter 15 explores the design of multistage direct
coupled amplifiers. An evolutionary approach to multistage
op amp design is used. MOS and bipolar differential ampli-
fiers are first introduced. Subsequent addition of a second
gain stage and then an output stage convert the differential
amplifiers into simple op amps. Class A, B, and AB oper-
ation are defined. Electronic current sources are designed
and used for biasing of the basic operational amplifiers. Dis-
cussion of important FET-BJT design tradeoffs are included
wherever appropriate.

Chapter 16 introduces techniques that are of particu-
lar import in integrated circuit design. A variety of current
mirror circuits are introduced and applied in bias circuits
and as active loads in operational amplifiers. A wealth of
circuits and analog design techniques are explored through
the detailed analysis of the classic 741 operational ampli-
fier. The bandgap reference and Gilbert analog multiplier
are introduced in Chapter 16.

Chapter 17 discusses the frequency response of ana-
log circuits. The behavior of each of the three categories of
single-stage amplifiers (C-E/C-S, C-B/C-G, and C-C/C-D)
is discussed in detail, and BJT behavior is contrasted with
that of the FET. The frequency response of the transistor
is discussed, and the high frequency, small-signal models
are developed for both the BJT and FET. Miller multipli-
cation is used to obtain estimates of the lower and upper
cutoff frequencies of complex multistage amplifiers. Gain-
bandwidth products and gain-bandwidth tradeoffs in design
are discussed. Cascode amplifier frequency response, and
tuned amplifiers are included in this chapter.

Because of the renaissance and pervasive use of RF
circuits, the introductory section on RF amplifiers has been
expanded to include shunt-peaked and tuned amplifiers, and
the use of inductive degeneration in common-source ampli-
fiers. New material on mixers includes passive and active
single- and double-balanced mixers and the widely used
Gilbert mixer.

Chapter 18 presents detailed examples of feedback
as applied to transistor amplifier circuits. The loop-gain
analysis approach introduced in Chapter 11 is used to find
the closed-loop amplifier gain of various amplifiers, and
Blackman’s theorem is utilized to find input and output
resistances of closed-loop amplifiers.

Amplifier stability is also discussed in Chapter 18, and
Nyquist diagrams and Bode plots (with MATLAB) are used
to explore the phase and gain margin of amplifiers. Ba-
sic single-pole op amp compensation is discussed, and the
unity gain-bandwidth product is related to amplifier slew
rate. Design of op amp compensation to achieve a desired
phase margin is discussed. The discussion of transistor os-
cillator circuits includes the Colpitts, Hartley and negative
Gm configurations. Crystal oscillators are also discussed.

Three Appendices include tables of standard compo-
nent values (Appendix A), summary of the device models
and sample SPICE parameters (Appendix B) and review
of two-port networks (Appendix C). Data sheets for repre-
sentative solid-state devices and operational amplifiers are
available via the WWW.

Flexibility
The chapters are designed to be used in a variety of differ-
ent sequences, and there is more than enough material for a
two-semester or three-quarter sequence in electronics. One
can obviously proceed directly through the book. On the
other hand, the material has been written so that the BJT
chapter can be used immediately after the diode chapter if so
desired (i.e., a 1-2-3-5-4 chapter sequence). At the present
time, the order actually used at Auburn University is:

1. Introduction
2. Solid-State Electronics
3. Diodes
4. FETs
6. Digital Logic
7. CMOS Logic
8. Memory
5. The BJT
9. Bipolar Logic

10–18. Analog in sequence

The chapters have also been written so that Part II, Digital
Electronics, can be skipped, and Part III, Analog Electron-
ics, can be used directly after completion of the coverage
of the solid-state devices in Part I. If so desired, many of
the quantitative details of the material in Chapter 2 may be
skipped. In this case, the sequence would be

1. Introduction
2. Solid-State Electronics
3. Diodes
4. FETs
5. The BJT

10–18. Analog in sequence
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Chapter Goals
• Present a brief history of electronics

• Quantify the explosive development of integrated
circuit technology

• Discuss initial classification of electronic signals

• Review important notational conventions and concepts
from circuit theory

• Introduce methods for including tolerances in circuit
analysis

• Present the problem-solving approach used in this
text

November 2007 was the 60th anniversary of the 1947 dis-
covery of the bipolar transistor by John Bardeen and Walter
Brattain at Bell Laboratories, a seminal event that marked
the beginning of the semiconductor age (see Figs. 1.1
and 1.2). The invention of the transistor and the subsequent
development of microelectronics have done more to shape
the modern era than any other event. The transistor and
microelectronics have reshaped how business is transacted,
machines are designed, information moves, wars are fought,
people interact, and countless other areas of our lives.

This textbook develops the basic operating principles
and design techniques governing the behavior of the de-
vices and circuits that form the backbone of much of the
infrastructure of our modern world. This knowledge will
enable students who aspire to design and create the next

Figure 1.1 John Bardeen, William Shockley, and
Walter Brattain in Brattain’s laboratory in 1948.
Reprinted with permission of Alacatel-Lucent USA Inc.

Figure 1.2 The first germanium bipolar transistor.
Lucent Technologies Inc./ Bell Labs

generation of this technological revolution to build a solid
foundation for more advanced design courses. In addition,
students who expect to work in some other technology area
will learn material that will help them understand micro-
electronics, a technology that will continue to have impact
on how their chosen field develops. This understanding will
enable them to fully exploit microelectronics in their own
technology area. Now let us return to our short history of
the transistor.

3



Jaeger-1820037 book January 15, 2010 21:25

4 Chapter 1 Introduction to Electronics

After the discovery of the transistor, it was but a few
months until William Shockley developed a theory that de-
scribed the operation of the bipolar junction transistor. Only
10 years later, in 1956, Bardeen, Brattain, and Shockley re-
ceived the Nobel prize in physics for the discovery of the
transistor.

In June 1948 Bell Laboratories held a major press con-
ference to announce the discovery. In 1952 Bell Laborato-
ries, operating under legal consent decrees, made licenses
for the transistor available for the modest fee of $25,000 plus
future royalty payments. About this time, Gordon Teal, an-
other member of the solid-state group, left Bell Laboratories

to work on the transistor at Geophysical Services, Inc.,
which subsequently became Texas Instruments (TI). There
he made the first silicon transistors, and TI marketed the
first all-transistor radio. Another early licensee of the tran-
sistor was Tokyo Tsushin Kogyo, which became the Sony
Company in 1955. Sony subsequently sold a transistor radio
with a marketing strategy based on the idea that everyone
could now have a personal radio; thus was launched the
consumer market for transistors. A very interesting account
of these and other developments can be found in [1, 2] and
their references.

Activity in electronics began more than a century ago with the first radio transmissions in 1895
by Marconi, and these experiments were followed after only a few years by the invention of the first
electronic amplifying device, the triode vacuum tube. In this period, electronics—loosely defined as
the design and application of electron devices—has had such a significant impact on our lives that
we often overlook just how pervasive electronics has really become. One measure of the degree of
this impact can be found in the gross domestic product (GDP) of the world. In 2008 the world GDP
was approximately U.S. $71 trillion, and of this total more than 10 percent was directly traceable to
electronics. See Table 1.1 [3–5].

We commonly encounter electronics in the form of telephones, radios, televisions, and audio
equipment, but electronics can be found even in seemingly mundane appliances such as vacuum
cleaners, washing machines, and refrigerators. Wherever one looks in industry, electronics will be
found. The corporate world obviously depends heavily on data processing systems to manage its
operations. In fact, it is hard to see how the computer industry could have evolved without the use of
its own products. In addition, the design process depends ever more heavily on computer-aided design
(CAD) systems, and manufacturing relies on electronic systems for process control—in petroleum
refining, automobile tire production, food processing, power generation, and so on.

T A B L E 1.1
Estimated Worldwide Electronics Market

CATEGORY SHARE (%)

Data processing hardware 23
Data processing software and services 18
Professional electronics 10
Telecommunications 9
Consumer electronics 9
Active components 9
Passive components 7
Computer integrated manufacturing 5
Instrumentation 5
Office electronics 3
Medical electronics 2
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1.1 A BRIEF HISTORY OF ELECTRONICS: FROM VACUUM TUBES
TO GIGA-SCALE INTEGRATION

Because most of us have grown up with electronic products all around us, we often lose perspective
of how far the industry has come in a relatively short time. At the beginning of the twentieth century,
there were no commercial electron devices, and transistors were not invented until the late 1940s!
Explosive growth was triggered by first the commercial availability of the bipolar transistor in the late
1950s, and then the realization of the integrated circuit (IC) in 1961. Since that time, signal processing
using electron devices and electronic technology has become a pervasive force in our lives.

Table 1.2 lists a number of important milestones in the evolution of the field of electronics. The
Age of Electronics began in the early 1900s with the invention of the first electronic two-terminal
devices, called diodes. The vacuum diode, or diode vacuum tube, was invented by Fleming in
1904; in 1906 Pickard created a diode by forming a point contact to a silicon crystal. (Our study of
electron devices begins with the introduction of the solid-state diode in Chapter 3.)

The invention of the three-element vacuum tube known as the triode was an extremely important
milestone. The addition of a third element to a diode enabled electronic amplification to take place
with good isolation between the input and output ports of the device. Silicon-based three-element
devices now form the basis of virtually all electronic systems. Fabrication of tubes that could be
used reliably in circuits followed the invention of the triode by a few years and enabled rapid circuit
innovation. Amplifiers and oscillators were developed that significantly improved radio transmission
and reception. Armstrong invented the super heterodyne receiver in 1920 and FM modulation in
1933. Electronics developed rapidly during World War II, with great advances in the field of radio
communications and the development of radar. Although first demonstrated in 1930, television did
not begin to come into widespread use until the 1950s.

An important event in electronics occurred in 1947, when John Bardeen, Walter Brattain,
and William Shockley at Bell Telephone Laboratories invented the bipolar transistor.1 Although
field-effect devices had actually been conceived by Lilienfeld in 1925, Heil in 1935, and Shockley
in 1952 [2], the technology to produce such devices on a commercial basis did not yet exist. Bipolar
devices, however, were rapidly commercialized.

Then in 1958, the nearly simultaneous invention of the integrated circuit (IC) by Kilby at Texas
Instruments and Noyce and Moore at Fairchild Semiconductor produced a new technology that would
profoundly change our lives. The miniaturization achievable through IC technology made available
complex electronic functions with high performance at low cost. The attendant characteristics of high
reliability, low power, and small physical size and weight were additional important advantages.

In 2000, Jack St. Clair Kilby received a share of the Nobel prize for the invention of the inte-
grated circuit. In the mind of the authors, this was an exceptional event as it represented one of the
first awards to an electronic technologist.

Most of us have had some experience with personal computers, and nowhere is the impact of
the integrated circuit more evident than in the area of digital electronics. For example, 4-gigabit (Gb)
dynamic memory chips, similar to those in Fig. 1.3(c), contain more than 4 billion transistors.
Creating this much memory using individual vacuum tubes [depicted in Fig. 1.3(a)] or even discrete
transistors [shown in Fig. 1.3(b)] would be an almost inconceivable feat.

Levels of Integration
The dramatic progress of integrated circuit miniaturization is shown graphically in Figs. 1.4 and
1.5. The complexities of memory chips and microprocessors have grown exponentially with time.
In the four decades since 1970, the number of transistors on a microprocessor chip has increased by

1 The term transistor is said to have originated as a contraction of “transfer resistor,’’ based on the voltage-controlled resistance of the
characteristics of the MOS transistor.
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T A B L E 1.2
Milestones in Electronics

YEAR EVENT

1874 Ferdinand Braun invents the solid-state rectifier.
1884 American Institute of Electrical Engineers (AIEE) formed.
1895 Marconi makes first radio transmissions.
1904 Fleming invents diode vacuum tube—Age of Electronics begins.
1906 Pickard creates solid-state point-contact diode (silicon).
1906 Deforest invents triode vacuum tube (audion).

1910–1911 “Reliable” tubes fabricated.
1912 Institute of Radio Engineers (IRE) founded.

1907–1927 First radio circuits developed from diodes and triodes.
1920 Armstrong invents super heterodyne receiver.
1925 TV demonstrated.
1925 Lilienfeld files patent application on the field-effect device.

1927–1936 Multigrid tubes developed.
1933 Armstrong invents FM modulation.
1935 Heil receives British patent on a field-effect device.
1940 Radar developed during World War II—TV in limited use.
1947 Bardeen, Brattain, and Shockley at Bell Laboratories invent

bipolar transistors.
1950 First demonstration of color TV.
1952 Shockley describes the unipolar field-effect transistor.
1952 Commercial production of silicon bipolar transistors begins

at Texas Instruments.
1952 Ian Ross and George Dacey demonstrate the junction field-effect

transistor.
1956 Bardeen, Brattain, and Shockley receive Nobel prize for invention

of bipolar transistors.
1958 Integrated circuit developed simultaneously by Kilby at Texas

Instruments and Noyce and Moore at Fairchild Semiconductor.
1961 First commercial digital IC available from Fairchild Semiconductor.
1963 AIEE and IRE merge to become the Institute of Electrical and

Electronic Engineers (IEEE)
1967 First semiconductor RAM (64 bits) discussed at the IEEE

International Solid-State Circuits Conference (ISSCC).
1968 First commercial IC operational amplifier—the �A709—introduced

by Fairchild Semiconductor.
1970 One-transistor dynamic memory cell invented by Dennard at IBM.
1970 Low-loss optical fiber invented.
1971 4004 microprocessor introduced by Intel.
1972 First 8-bit microprocessor—the 8008—introduced by Intel.
1974 First commercial 1-kilobit memory chip developed.
1974 8080 microprocessor introduced.
1978 First 16-bit microprocessor developed.
1984 Megabit memory chip introduced.
1987 Erbium doped, laser-pumped optical fiber amplifiers demonstrated.
1995 Experimental gigabit memory chip presented at the IEEE ISSCC.
2000 Alferov, Kilby, and Kromer share the Nobel prize in physics for

optoelectronics, invention of the integrated circuit, and heterostructure
devices, respectively.
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(a) (b)

(d)(c)

Figure 1.3 Comparison of (a) vacuum tubes, (b) individual transistors, (c) integrated circuits in dual-in-line packages (DIPs),
and (d) ICs in surface mount packages.
Source: (a) Courtesy ARRL Handbook for Radio Amateurs, 1992
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Figure 1.5 DRAM feature size versus year.

a factor of one million as depicted in Fig. 1.4. Similarly, memory density has grown by a factor of
more than 10 million from a 64-bit chip in 1968 to the announcement of 4-Gbit chip production in
the late 2009.

Since the commercial introduction of the integrated circuit, these increases in density have
been achieved through a continued reduction in the minimum line width, or minimum feature size,
that can be defined on the surface of the integrated circuit (see Fig. 1.5). Today most corporate semi-
conductor laboratories around the world are actively working on deep submicron processes with
feature sizes below 50 μm—less than one two-hundredth the diameter of a human hair.
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As the miniaturization process has continued, a series of commonly used abbreviations has
evolved to characterize the various levels of integration. Prior to the invention of the integrated circuit,
electronic systems were implemented in discrete form. Early ICs, with fewer than 100 components,
were characterized as small-scale integration, or SSI. As density increased, circuits became identi-
fied as medium-scale integration (MSI, 100–1000 components/chip), large-scale integration (LSI,
103 − 104 components/chip), and very-large-scale integration (VLSI, 104–109 components/chip).
Today discussions focus on ultra-large-scale integration (ULSI) and giga-scale integration (GSI,
above 109 components/chip).

E L E C T R O N I C S I N A C T I O N

Cellular Phone Evolution
The impact of technology scaling is ever present in our daily lives. One example appears
visually in the pictures of cellular phone evolution below. Early mobile phones were often
large and had to be carried in a relatively large pouch (hence the term “bag phone”). The next
generation of analog phones could easily fit in your hand, but they had poor battery life caused
by their analog communications technology. Implementations of second- and third-generation
digital cellular technology are considerably smaller and have much longer battery life. As
density continues to increase, additional functions such as personal digital assistants (PDA),
cameras and GPS are integrated with the digital phone.

(a) (b) (c)

A decade of cellular phone evolution: (a) early Uniden “bag phone,” (b) Nokia analog phone, and (c) Apple iPhone.
Source: (c) iPhone: c© Lourens Smak/Alamy/RF

Cell phones also represent excellent examples of the application of mixed-signal inte-
grated circuits that contain both analog and digital circuitry on the same chip. ICs in the cell
phone contain analog radio frequency receiver and transmitter circuitry, analog-to-digital and
digital-to-analog converters, CMOS logic and memory, and power conversion circuits.

1.2 CLASSIFICATION OF ELECTRONIC SIGNALS

The signals that electronic devices are designed to process can be classified into two broad categories:
analog and digital. Analog signals can take on a continuous range of values, and thus represent
continuously varying quantities; purely digital signals can appear at only one of several discrete
levels. Examples of these types of signals are described in more detail in the next two subsections,
along with the concepts of digital-to-analog and analog-to-digital conversion, which make possible
the interface between the two systems.
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Figure 1.6 A time-varying binary digital signal.

1.2.1 DIGITAL SIGNALS
When we speak of digital electronics, we are most often referring to electronic processing of binary
digital signals, or signals that can take on only one of two discrete amplitude levels as illustrated in
Fig. 1.6. The status of binary systems can be represented by two symbols: a logical 1 is assigned to
represent one level, and a logical 0 is assigned to the second level.2 The two logic states generally
correspond to two separate voltages—VH and VL—representing the high and low amplitude levels,
and a number of voltage ranges are in common use. Although VH = 5 V and VL = 0 V represented
the primary standard for many years, these have given way to lower voltage levels because of power
consumption and semiconductor device limitations. Systems employing VH = 3.3, 2.5, and 1.5 V,
with VL = 0 V, are now used in many types of electronics.

However, binary voltage levels can also be negative or even bipolar. One high-performance
logic family called ECL uses VH = −0.8 V and VL = −2.0 V, and the early standard RS-422 and
RS-232 communication links between a small computer and its peripherals used VH = +12 V and
VL = −12 V. In addition, the time-varying binary signal in Fig. 1.6 could equally well represent the
amplitude of a current or that of an optical signal being transmitted down a fiber in an optical digital
communication system. The more recent USB and Firewire standards returned to the use of a single
positive supply voltage.

Part II of this text discusses the design of a number of families of digital circuits using various
semiconductor technologies. These include CMOS,3 NMOS, and PMOS logic, which use field-effect
transistors, and the TTL and ECL families, which are based on bipolar transistors.

1.2.2 ANALOG SIGNALS
Although quantities such as electronic charge and electron spin are truly discrete, much of the
physical world is really analog in nature. Our senses of vision, hearing, smell, taste, and touch
are all analog processes. Analog signals directly represent variables such as temperature, humidity,
pressure, light intensity, or sound—all of which may take on any value, typically within some finite
range. In reality, classification of digital and analog signals is largely one of perception. If we look
at a digital signal similar to the one in Fig. 1.6 with an oscilloscope, we find that it actually makes a
continuous transition between the high and low levels. The signal cannot make truly abrupt transitions
between two levels. Designers of high-speed digital systems soon realize that they are really dealing
with analog signals. The time-varying voltage or current plotted in Fig. 1.7 could be the electrical
representation of temperature, flow rate, or pressure versus time, or the continuous audio output from
a microphone. Some analog transducers produce output voltages in the range of 0 to 5 or 0 to 10 V,
whereas others are designed to produce an output current that ranges between 4 and 20 mA. At the
other extreme, signals brought in by a radio antenna can be as small as a fraction of a microvolt.

To process the information contained in these analog signals, electronic circuits are used to se-
lectively modify the amplitude, phase, and frequency content of the signals. In addition, significant

2 This assignment facilitates the use of Boolean algebra, reviewed in Chapter 6.
3 For now, let us accept these initials as proper names without further definition. The details of each of these circuits are developed in

Part II.
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v(t) or i(t)

(b)

Figure 1.7 (a) A continuous analog signal; (b) sampled data version of signal in (a).
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Figure 1.8 Block diagram representation for a (a) D/A converter and a (b) A/D converter.

increases in the voltage, current, and power level of the signal are usually needed. All these modi-
fications to the signal characteristics are achieved using various forms of amplifiers, and Part III of
this text discusses the analysis and design of a wide range of amplifiers using operational amplifiers
and bipolar and field-effect transistors.

1.2.3 A/D AND D/A CONVERTERS—BRIDGING THE ANALOG
AND DIGITAL DOMAINS

For analog and digital systems to be able to operate together, we must be able to convert signals
from analog to digital form and vice versa. We sample the input signal at various points in time as in
Fig. 1.7(b) and convert or quantize its amplitude into a digital representation. The quantized value
can be represented in binary form or can be a decimal representation as given by the display on a
digital multimeter. The electronic circuits that perform these translations are called digital-to-analog
(D/A) and analog-to-digital (A/D) converters.

Digital-to-Analog Conversion
The digital-to-analog converter, often referred to as a D/A converter or DAC, provides an interface
between the digital signals of computer systems and the continuous signals of the analog world. The
D/A converter takes digital information, most often in binary form, as input and generates an output
voltage or current that may be used for electronic control or analog information display. In the DAC
in Fig. 1.8(a), an n-bit binary input word (b1, b2, . . . , bn) is treated as a binary fraction and multiplied
by a full-scale reference voltage VFS to set the output of the D/A converter. The behavior of the DAC
can be expressed mathematically as

vO = (b12−1 + b22−2 + · · · + bn2−n)VFS for bi ∈ {1, 0} (1.1)

Examples of typical values of the full-scale voltage VFS are 1, 2, 5, 5.12, 10, and 10.24 V. The smallest
voltage change that can occur at the output takes place when the least significant bit bn , or LSB,
in the digital word changes from a 0 to a 1. This minimum voltage change is also referred to as the
resolution of the converter and is given by

VLSB = 2−n VFS (1.2)
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Figure 1.9 (a) Input–output relationship and (b) quantization error for 3-bit ADC.

At the other extreme, b1 is referred to as the most significant bit, or MSB, and has a weight of
one-half VFS.

Exercise: A 10-bit D/A converter has VF S = 5.12 V. What is the output voltage for a binary
input code of (1100010001)? What is VLSB? What is the size of the MSB?

Answers: 3.925 V; 5 mV; 2.56 V

Analog-to-Digital Conversion
The analog-to-digital converter (A/D converter or ADC) is used to transform analog information
in electrical form into digital data. The ADC in Fig. 1.8(b) takes an unknown continuous analog
input signal, usually a voltage vX , and converts it into an n-bit binary number that can be easily
manipulated by a computer. The n-bit number is a binary fraction representing the ratio between the
unknown input voltage vX and the converter’s full-scale voltage VFS.

For example, the input–output relationship for an ideal 3-bit A/D converter is shown in Fig. 1.9(a).
As the input increases from zero to full scale, the output digital code word stair-steps from 000 to
111.4 The output code is constant for an input voltage range equal to 1 LSB of the ADC. Thus, as
the input voltage increases, the output code first underestimates and then overestimates the input
voltage. This error, called quantization error, is plotted against input voltage in Fig. 1.9(b).

For a given output code, we know only that the value of the input voltage lies somewhere within a
1-LSB quantization interval. For example, if the output code of the 3-bit ADC is 100, corresponding
to a voltage VFS/2, then the input voltage can be anywhere between 7

16 VFS and 9
16 VFS, a range of

VFS/8 V or 1 LSB. From a mathematical point of view, the ADC circuitry in Fig. 1.8(b) picks the
values of the bits in the binary word to minimize the magnitude of the quantization error vε between
the unknown input voltage vX and the nearest quantized voltage level:

vε = |vX − (b12−1 + b22−2 + · · · + bn2−n)VFS| (1.3)

4 The binary point is understood to be to the immediate left of the digits of the code word. As the code word stair-steps from 000 to 111,
the binary fraction steps from 0.000 to 0.111.
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Exercise: An 8-bit A/D converter has VF S = 5 V. What is the digital output code word for an
input of 1.2 V? What is the voltage range corresponding to 1 LSB of the converter?

Answers: 00111101; 19.5 mV

1.3 NOTATIONAL CONVENTIONS

In many circuits we will be dealing with both dc and time-varying values of voltages and currents.
The following standard notation will be used to keep track of the various components of an electrical
signal. Total quantities will be represented by lowercase letters with capital subscripts, such as vT

and iT in Eq. (1.4). The dc components are represented by capital letters with capital subscripts as,
for example, VDC and IDC in Eq. (1.4); changes or variations from the dc value are represented by
signal components vsig and isig.

vT = VDC + vsig or iT = IDC + isig (1.4)

As examples, the total base-emitter voltage vBE of a transistor and the total drain current iD of a
field-effect transistor are written as

vBE = VBE + vbe and iD = ID + id (1.5)

Unless otherwise indicated, the equations describing a given network will be written assuming
a consistent set of units: volts, amperes, and ohms. For example, the equation 5 V = (10,000 �)I1 +
0.6 V will be written as 5 = 10,000I1 + 0.6.

The fourth upper/lowercase combination, such as Vbe or Id , is reserved for the amplitude of a
sinusoidal signal’s phasor representation as defined in Section 1.7.

Exercise: Suppose the voltage at a circuit node is described by

vA = (5 sin 2000π t + 4 + 3 cos 1000πt) V

What are the expressions for VA and va?

Answers: VA = 4 V; va = (5 sin 2000π t + 3 cos 1000π t) V

Resistance and Conductance Representations
In the circuits throughout this text, resistors will be indicated symbolically as Rx or rx , and the values
will be expressed in �, k�, M�, and so on. During analysis, however, it may be more convenient to
work in terms of conductance with the following convention:

Gx = 1

Rx
and gπ = 1

rπ

(1.6)

For example, conductance Gx always represents the reciprocal of the value of Rx , and gπ represents
the reciprocal of rπ . The values next to a resistor symbol will always be expressed in terms of
resistance (�, k�, M�).

Dependent Sources
In electronics, dependent (or controlled) sources are used extensively. Four types of dependent
sources are summarized in Fig. 1.10, in which the standard diamond shape is used for controlled
sources. The voltage-controlled current source (VCCS), current-controlled current source
(CCCS), and voltage-controlled voltage source (VCVS) are used routinely in this text to model
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Figure 1.10 Controlled sources. (a) Voltage-controlled current source (VCCS). (b) Current-controlled current source
(CCCS). (c) Voltage-controlled voltage source (VCVS). (d) Current-controlled voltage source (CCVS).

transistors and amplifiers or to simplify more complex circuits. Only the current-controlled voltage
source (CCVS) sees limited use.

1.4 PROBLEM-SOLVING APPROACH

Solving problems is a centerpiece of an engineer’s activity. As engineers, we use our creativity to
find new solutions to problems that are presented to us. A well-defined approach can aid signi-
ficantly in solving problems. The examples in this text highlight an approach that can be used in
all facets of your career, as a student and as an engineer in industry. The method is outlined in the
following nine steps:

1. State the problem as clearly as possible.
2. List the known information and given data.
3. Define the unknowns that must be found to solve the problem.
4. List your assumptions. You may discover additional assumptions as the analysis progresses.
5. Develop an approach from a group of possible alternatives.
6. Perform an analysis to find a solution to the problem. As part of the analysis, be sure to draw

the circuit and label the variables.
7. Check the results. Has the problem been solved? Is the math correct? Have all the unknowns

been found? Have the assumptions been satisfied? Do the results satisfy simple consistency
checks?

8. Evaluate the solution. Is the solution realistic? Can it be built? If not, repeat steps 4–7 until a
satisfactory solution is obtained.

9. Computer-aided analysis. SPICE and other computer tools are highly useful to check the results
and to see if the solution satisfies the problem requirements. Compare the computer results to
your hand results.

To begin solving a problem, we must try to understand its details. The first four steps, which
attempt to clearly define the problem, can be the most important part of the solution process. Time
spent understanding, clarifying, and defining the problem can save much time and frustration.

The first step is to write down a statement of the problem. The original problem description may
be quite vague; we must try to understand the problem as well as, or even better than, the individual
who posed the problem. As part of this focus on understanding the problem, we list the information
that is known and unknown. Problem-solving errors can often be traced to imprecise definition of
the unknown quantities. For example, it is very important for analysis to draw the circuit properly
and to clearly label voltages and currents on our circuit diagrams.

Often there are more unknowns than constraints, and we need engineering judgment to reach
a solution. Part of our task in studying electronics is to build up the background for selecting
between various alternatives. Along the way, we often need to make approximations and assumptions
that simplify the problem or form the basis of the chosen approach. It is important to state these
assumptions, so that we can be sure to check their validity at the end. Throughout this text you
will encounter opportunities to make assumptions. Most often, you should make assumptions that
simplify your computational effort yet still achieve useful results.
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The exposition of the known information, unknowns, and assumptions helps us not only to
better understand the problem but also to think about various alternative solutions. We must choose
the approach that appears to have the best chance of solving the problem. There may be more
than one satisfactory approach. Each person will view the problem somewhat differently, and the
approach that is clearest to one individual may not be the best for another. Pick the one that seems
best to you. As part of defining the approach, be sure to think about what computational tools are
available to assist in the solution, including MATLAB® , Mathcad® , spreadsheets, SPICE, and your
calculator.

Once the problem and approach are defined as clearly as possible, then we can perform any
analysis required and solve the problem. After the analysis is completed we need to check the
results. A number of questions should be resolved. First, have all the unknowns been found? Do the
results make sense? Are they consistent with each other? Are the results consistent with assumptions
used in developing the approach to the problem?

Then we need to evaluate the solution. Are the results viable? For example, are the voltage, cur-
rent, and power levels reasonable? Can the circuit be realized with reasonable yield with real compo-
nents? Will the circuit continue to function within specifications in the face of significant component
variations? Is the cost of the circuit within specifications? If the solution is not satisfactory, we
need to modify our approach and assumptions and attempt a new solution. An iterative solution is
often required to meet the specifications in realistic design situations. SPICE and other computer
tools are highly useful for checking results and ensuring that the solution satisfies the problem
requirements.

The solutions to the examples in this text have been structured following the problem-solving
approach introduced here. Although some examples may appear trivial, the power of the structured
approach increases as the problem becomes more complex.

WHAT ARE REASONABLE NUMBERS?

Part of our results check should be to decide if the answer is “reasonable” and makes sense. Over
time we must build up an understanding of what numbers are reasonable. Most solid-state devices
that we will encounter are designed to operate from voltages ranging from a battery voltage of 1 V
on the low end to no more than 40–50 V5 at the high end. Typical power supply voltages will be
in the 10- to 20-V range, and typical resistance values encountered will range from tens of � up to
many G�.

Based on our knowledge of dc circuits, we should expect that the voltages in our circuits
not exceed the power supply voltages. For example, if a circuit is operating from +8- and −5-V
supplies, all of our calculated dc voltages must be between −5 and +8 V. In addition, the peak-to-peak
amplitude of an ac signal should not exceed 13 V, the difference of the two supply voltages. With
a 10-V supply, the maximum current that can go through a 100-� resistor is 100 mA; the current
through a 10-M� resistor can be no more than 1 �A. Thus we should remember the following “rules”
to check our results:

1. With few exceptions, the dc voltages in our circuits cannot exceed the power supply voltages.
The peak-to-peak amplitude of an ac signal should not exceed the difference of the power supply
voltages.

2. The currents in our circuits will range from microamperes to no more than a hundred milliamperes
or so.

5 The primary exception is in the area of power electronics, where one encounters much larger voltages and currents than the ones
discussed here.
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1.5 IMPORTANT CONCEPTS FROM CIRCUIT THEORY

Analysis and design of electronic circuits make continuous use of a number of important tech-
niques from basic network theory. Circuits are most often analyzed using a combination of
Kirchhoff’s voltage law, abbreviated KVL, and Kirchhoff’s current law, abbreviated KCL.
Occasionally, the solution relies on systematic application of nodal or mesh analysis. Thévenin
and Norton circuit transformations are often used to help simplify circuits, and the notions of
voltage and current division also represent basic tools of analysis. Models of active devices invari-
ably involve dependent sources, as mentioned in the last section, and we need to be familiar with
dependent sources in all forms. Amplifier analysis also uses two-port network theory. A review of
two-port networks is deferred until the introductory discussion of amplifiers in Chapter 10. If the
reader feels uncomfortable with any of the concepts just mentioned, this is a good time for review.
To help, a brief review of these important circuit techniques follows.

1.5.1 VOLTAGE AND CURRENT DIVISION
Voltage and current division are highly useful circuit analysis techniques that can be derived directly
from basic circuit theory. They are both used routinely throughout this text, and it is very important
to be sure to understand the conditions for which each technique is valid! Examples of both methods
are provided next.

Voltage division is demonstrated by the circuit in Fig. 1.11(a) in which the voltages v1 and v2

can be expressed as

v1 = ii R1 and v2 = ii R2 (1.7)

Applying KVL to the single loop,

vi = v1 + v2 = ii (R1 + R2) and ii = vi

R1 + R2
(1.8)

Combining Eqs. (1.7) and (1.8) yields the basic voltage division formula:

v1 = vi
R1

R1 + R2
and v2 = vi

R2

R1 + R2
(1.9)

For the resistor values in Fig. 1.11(a),

v1 = 10 V
8 k�

8 k� + 2 k�
= 8.00 V and v2 = 10 V

2 k�

8 k� + 2 k�
= 2.00 V (1.10)

R1 8 k�

v2

v1

vi

+

–ii

R2

+ –

2 k�10 V
3 k�

ii

5 mA

i2
R1 R2

2 k�

i1

vi

+

–

(a) (b)

Figure 1.11 (a) A resistive voltage divider, (b) Current division in a simple network.
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Note that the voltage divider relationships in Eq. (1.9) can be applied only when the current through
the two resistor branches is the same. Also, note that the formulas are correct if the resistances
are replaced by complex impedances and the voltages are represented as phasors.

V1 = VS
Z1

Z1 + Z2
and V2 = VS

Z2

Z1 + Z2

VOLTAGE DIVIDER RESTRICTIONSDESIGN
NOTE

Current division is also very useful. Let us find the currents i1 and i2 in the circuit in Fig. 1.11(b).
Using KCL at the single node,

ii = i1 + i2 where i1 = vi

R1
and i2 = vi

R2
(1.11)

and solving for vS yields

vi = ii
1

1

R1
+ 1

R2

= ii
R1 R2

R1 + R2
= ii (R1‖R2) (1.12)

in which the notation R1‖R2 represents the parallel combination of resistors R1 and R2. Combining
Eqs. (1.11) and (1.12) yields the current division formulas:

i1 = ii
R2

R1 + R2
and i2 = ii

R1

R1 + R2
(1.13)

For the values in Fig. 1.11(b),

i1 = 5 mA
3 k�

2 k� + 3 k�
= 3.00 mA i2 = 5 mA

2 k�

2 k� + 3 k�
= 2.00 mA

It is important to note that the same voltage must appear across both resistors in order for the
current division expressions in Eq. (1.13) to be valid. Here again, the formulas are correct if the
resistances are replaced by complex impedances and the currents are represented as phasors.

I1 = IS
Z2

Z1 + Z2
and I2 = IS

Z1

Z1 + Z2

CURRENT DIVIDER RESTRICTIONSDESIGN
NOTE

1.5.2 THÉVENIN AND NORTON CIRCUIT REPRESENTATIONS
Let us now review the method for finding Thévenin and Norton equivalent circuits, including a
dependent source; the circuit in Fig. 1.12(a) serves as our illustration. Because the linear network in the
dashed box has only two terminals, it can be represented by either the Thévenin or Norton equivalent
circuits in Figs. 1.12(b) and 1.12(c). The work of Thévenin and Norton permits us to reduce complex
circuits to a single source and equivalent resistance. We illustrate these two important techniques
with the next four examples.
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R1

RS 1 k�vi

� = 50

vo

+

_

�i1

i1

in

R th

R th

(b)(a)

vth

(c)

Figure 1.12 (a) Two-terminal circuit and its (b) Thévenin and (c) Norton equivalents.

EXAMPLE 1.1 THÉVENIN AND NORTON EQUIVALENT CIRCUITS

Let’s practice finding the Thévenin and Norton equivalent circuits for the network in Fig. 1.12(a).

PROBLEM Find the Thévenin and Norton equivalent representations for the circuit in Fig. 1.12(a).

SOLUTION Known Information and Given Data: Circuit topology and values appear in Fig. 1.12(a).

Unknowns: Thévenin equivalent voltage vth, Thévenin equivalent resistance Rth, and Norton
equivalent current in .

Approach: Voltage source vth is defined as the open-circuit voltage at the terminals of the circuit.
Rth is the equivalent at the terminals of the circuit terminals with all independent sources set to
zero. Source in represents the short-circuit current available at the output terminals and is equal to
vth/Rth.

Assumptions: None

Analysis: We will first find the value of vth, then Rth and finally in . Open-circuit voltage vth can
be found by applying KCL at the output terminals.

βi1 = vo − vi

R1
+ vo

RS
= G1(vo − vi ) + GSvo (1.14)

by applying the notational convention for conductance from Sec. 1.3 (GS = 1/RS).
Current i1 is given by

i1 = G1(vi − vo) (1.15)

Substituting Eq. (1.15) into Eq. (1.14) and combining terms yields

G1(β + 1)vi = [G1(β + 1) + GS]vo (1.16)

The Thévenin equivalent output voltage is then found to be

vo = G1(β + 1)

[G1(β + 1) + GS]
vi = (β + 1)RS

[(β + 1)RS + R1]
vi (1.17)

where the second relationship was found by multiplying numerator and denominator by (R1 RS).
For the values in this problem,

vo = (50 + 1)1 k�

[(50 + 1) 1 k� + 20 k�]
vi = 0.718vi and vth = 0.718vi (1.18)
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Rth represents the equivalent resistance present at the output terminals with all independent sources
set to zero. To find the Thévenin equivalent resistance Rth, we first set the independent sources
in the network to zero. Remember, however, that any dependent sources must remain active. A test
voltage or current source is then applied to the network terminals and the corresponding current
or voltage calculated. In Fig. 1.13 vi is set to zero, voltage source vx is applied to the network, and
the current ix must be determined so that

Rth = vx

ix
(1.19)

can be calculated.

RS�i1 1 k�

20 k�i1 ix

R1

vx(vi = 0)

� = 50

Figure 1.13 A test source vx is applied to the network to find Rth.

ix = −i1 − βi1 + GSvx in which i1 = −G1vx (1.20)

Combining and simplifying these two expressions yields

ix = [(β + 1)G1 + GS]vx and Rth = vx

ix
= 1

(β + 1)G1 + GS
(1.21)

The denominator of Eq. (1.21) represents the sum of two conductances, which corresponds to the
parallel combination of two resistances. Therefore, Eq. (1.21) can be rewritten as

Rth = 1

(β + 1)G1 + GS
=

RS
R1

(β + 1)

RS + R1

(β + 1)

= RS

∥∥∥∥ R1

(β + 1)
(1.22)

For the values in this example,

Rth = RS

∥∥∥∥ R1

(β + 1)
= 1 k�

∥∥∥∥ 20 k�

(50 + 1)
= 1 k�‖392 � = 282 � (1.23)

Norton source in represents the short circuit current available from the original network. Since we
already have the Thévenin equivalent circuit, we can use it to find the value of in .

in = νth

Rth
= 0.718vi

282�
= 2.55 × 10−3νi

The Thévenin and Norton equivalent circuits for Fig. 1.12 calculated in the previous example
appear for comparison in Fig. 1.14.



Jaeger-1820037 book January 15, 2010 21:25

1.5 Important Concepts from Circuit Theory 19

in

R th = 282 �

R th = 282 �

(a)

vth

vth = 0.718vs

(b)

in = (2.55 �10–3)vs

Figure 1.14 Completed (a) Thévenin and (b) Norton equivalent circuits for the two-terminal network in Fig. 1.12(a).

Check of Results: We have found the three unknowns required. A recheck of the calculations
indicates they are done correctly. The value of vth is the same order of magnitude as vi , so its value
should not be unusually large or small. The value of Rth is less than 1 k�, which seems reasonable,
since we should not expect the resistance to exceed the value of RS that appears in parallel with
the output terminals. We can double-check everything by directly calculating in from the original
circuit. If we short the output terminals in Fig. 1.12, we find the short-circuit current (See Ex. 1.2)
to be in = (β + 1) vi/R1 = 2.55 × 10−3vi and in agreement with the other method.

EXAMPLE 1.2 NORTON EQUIVALENT CIRCUIT

Practice finding the Norton equivalent circuit for a network containing a dependent source.

PROBLEM Find the Norton equivalent (Fig. 1.12(c)) for the circuit in Fig. 1.12(a).

SOLUTION Known Information and Given Data: Circuit topology and circuit values appear in Fig. 1.12(a).
The value of Rth was calculated in the previous example.

Unknowns: Norton equivalent current in .

Approach: The Norton equivalent current is found by determining the current coming out of the
network when a short circuit is applied to the terminals.

Assumptions: None.

Analysis: For the circuit in Fig. 1.15, the output current will be

in = i1 + βi1 and i1 = G1vi (1.24)

The short circuit across the output forces the current through RS to be 0. Combining the two
expressions in Eq. (1.24) yields

in = (β + 1)G1vi = (β + 1)

R1
vi (1.25)

or

in = (50 + 1)

20 k�
vi = vi

392 �
= (2.55 mS)vi (1.26)

The resistance in the Norton equivalent circuit also equals Rth found in Eq. (1.23).
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RS

0

1 k�

20 k�

in

i1

R1

vi

� = 50

�i1

Figure 1.15 Circuit for determining short-circuit output current.

Check of Results: We have found the Norton equivalent current. Note that vth = in Rth and this
result can be used to check the calculations: in Rth = (2.55 mS)vs(282 �) = 0.719 vs , which
agrees within round-off error with the previous example.

E L E C T R O N I C S I N A C T I O N

Player Characteristics
The headphone amplifier in a personal music player represents an everyday example of a basic
audio amplifier. The traditional audio band spans the frequencies from 20 Hz to 20 kHz, a range
that extends beyond the hearing capability of most individuals at both the upper and lower ends.

iPod: c© The McGraw-Hill
Companies, Inc./Jill Braaten,

photographer

vth

Rth

32 �

2 V

Thévenin equivalent
circuit for output stage

The characteristics of the Apple iPod in the accompanying figure are representative of a high
quality audio output stage in an MP3 player or a computer sound card. The output can be
represented by a Thévenin equivalent circuit with vth = 2 V and Rth = 32 ohms, and the
output stage is designed to deliver a power of approximately 15 mW into each channel of a
headphone with a matched impedance of 32 ohms. The output power is approximately constant
over the 20 Hz–20 kHz frequency range. At the lower and upper cutoff frequencies, fL and
fH , the output power will be reduced by 3 dB, a factor of 2.
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Power versus frequency for an audio amplifier

The distortion characteristics of the amplifier are also important, and this is an area that
often distinguishes one sound card or MP3 player from another. A good audio system will
have a total harmonic distortion (THD) specification of less than 0.1 percent at full power.

1.6 FREQUENCY SPECTRUM OF ELECTRONIC SIGNALS

Fourier analysis and the Fourier series represent extremely powerful tools in electrical engineering.
Results from Fourier theory show that complicated signals are actually composed of a continuum
of sinusoidal components, each having a distinct amplitude, frequency, and phase. The frequency
spectrum of a signal presents the amplitude and phase of the components of the signal versus
frequency.

Nonrepetitive signals have continuous spectra with signals that may occupy a broad range of
frequencies. For example, the amplitude spectrum of a television signal measured during a small
time interval is depicted in Fig. 1.16. The TV video signal is designed to occupy the frequency range
from 0 to 4.5 MHz.6 Other types of signals occupy different regions of the frequency spectrum.
Table 1.3 identifies the frequency ranges associated with various categories of common signals.

In contrast to the continuous spectrum in Fig. 1.16, Fourier series analysis shows that any
periodic signal, such as the square wave of Fig. 1.17, contains spectral components only at discrete
frequencies7 that are related directly to the period of the signal. For example, the square wave of
Fig. 1.17 having an amplitude VO and period T can be represented by the Fourier series

v(t) = VDC + 2VO

π

(
sin ωot + 1

3
sin 3ωot + 1

5
sin 5ωot + · · ·

)
(1.27)

in which ωo = 2π/T (rad/s) is the fundamental radian frequency of the square wave. We refer to
fo = 1/T (Hz) as the fundamental frequency of the signal, and the frequency components at 2 fo,
3 fo, 4 fo, . . . are called the second, third, fourth, and so on harmonic frequencies.

6 This signal is combined with a much higher carrier frequency prior to transmission.
7 There are an infinite number of components, however.
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Amplitude

0 4.5 MHz
f

Figure 1.16 Spectrum of a TV signal.

T A B L E 1.3
Frequencies Associated with Common Signals

CATEGORY FREQUENCY RANGE

Audible sounds 20 Hz – 20 kHz
Baseband video (TV) signal 0 – 4.5 MHz
AM radio broadcasting 540 –1600 kHz
High-frequency radio communications 1.6 – 54 MHz
VHF television (Channels 2–6) 54 – 88 MHz
FM radio broadcasting 88 – 108 MHz
VHF radio communication 108 – 174 MHz
VHF television (Channels 7–13) 174 – 216 MHz
Maritime and government communications 216 – 450 MHz
Business communications 450 – 470 MHz
UHF television (Channels 14–69) 470 – 806 MHz
Fixed and mobile communications including 806 – 902 MHz
Allocations for analog and digital cellular 928 – 960 MHz
Telephones, personal communications, and other 1710 –1990 MHz
Wireless devices 2310 –2690 MHz
Satellite television 3.7 – 4.2 GHz
Wireless devices 5.0 – 5.5 GHz

Amplitude

(a) (b)

0 T    2T 3T

VDC VO

t

Amplitude

0 fO 2fO 3fO 4fO 5fO
f

Figure 1.17 A periodic signal (a) and its amplitude spectrum (b).

1.7 AMPLIFIERS

The characteristics of analog signals are most often manipulated using linear amplifiers that affect
the amplitude and/or phase of the signal without changing its frequency. Although a complex signal
may have many individual components, as just described in Sec. 1.6, linearity permits us to use the
superposition principle to treat each component individually.

For example, suppose the amplifier with voltage gain A in Fig. 1.18(a) is fed a sinusoidal input
signal component vi with amplitude Vi , frequency ωi , and phase φ:

vi = Vi sin(ωi t + φ) (1.28)

Then, if the amplifier is linear, the output corresponding to this signal component will also be a
sinusoidal signal at the same frequency but with a different amplitude and phase:

vo = Vo sin(ωi t + φ + θ) (1.29)

Using phasor notation, the input and output signals would be represented as

Vi = Vi � φ and Vo = Vo � (φ + θ) (1.30)

The voltage gain of the amplifier is defined in terms of these phasors:

A = Vo

Vi
= Vo � (φ + θ)

Vi � φ
= Vo

Vi

� θ (1.31)
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Figure 1.18 (a) Symbol for amplifier
with single input and voltage gain A;
(b) differential amplifier having two
inputs and gain A.
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Figure 1.19 Input and output voltage waveforms for an amplifier with gain
Av = −5 and vi = 1 sin 2000π t V.

This amplifier has a voltage gain with magnitude equal to Vo/Vi and a phase shift of θ . In general,
both the magnitude and phase of the voltage gain will be a function of frequency. Note that amplifiers
also often provide current gain and power gain as well as voltage gain, but these concepts will not
be explored further until Chapter 10.

The curves in Fig. 1.19 represent the input and output voltage waveforms for an inverting
amplifier with Av = −5 and vi = 1 sin 2000π t V. Both the factor of five increase in signal amplitude
and the 180◦ phase shift (multiplication by −1) are apparent in the graph.

At this point, a note regarding the phase angle is needed. In Eqs. (1.28) and (1.29), ωt , φ, and
θ must have the same units. With ωt normally expressed in radians, φ should also be in radians.
However, in electrical engineering texts, φ is often expressed in degrees. We must be aware of this
mixed system of units and remember to convert degrees to radians before making any numeric
calculations.

Exercise: The input and output voltages of an amplifier are expressed as

vi = 0.001 sin(2000πt) V and vo = −5 cos(2000πt + 25◦) V

in which vi and vo are specified in volts when t is seconds. What are Vi, VO, and the voltage
gain of the amplifier?

Answers: 0.001� 0◦; 5� −65◦; 5000� −65◦

1.7.1 IDEAL OPERATIONAL AMPLIFIERS
The operational amplifier, “op amp” for short, is a fundamental building block in electronic design
and is discussed in most introductory circuit courses. A brief review of the ideal op amp is provided
here; an in-depth study of the properties of ideal and nonideal op amps and the circuits used to build
the op amp itself are the subjects of Chapters 11, 12, 15, and 16. Although it is impossible to realize
the ideal operational amplifier, its use allows us to quickly understand the basic behavior to be
expected from a given circuit and serves as a model to help in circuit design.
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