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   Preface 

  OBJECTIVES  
 The main objective of a first course in mechanics should be to 
develop in the engineering student the ability to analyze any problem 
in a simple and logical manner and to apply to its solution a few, well-
understood, basic principles. This text is designed for the first courses 
in statics and dynamics offered in the sophomore or junior year, and 
it is hoped that it   will help the instructor achieve this goal.  †    

 GENERAL APPROACH  
 Vector analysis is introduced early in the text and is used throughout 
the presentation of statics and dynamics. This approach leads to more 
concise derivations of the fundamental principles of mechanics. It also 
results in simpler solutions of three-dimensional problems in statics 
and makes it possible to analyze many advanced problems in kine-
matics and kinetics, which could not be solved by scalar methods. The 
emphasis in this text, however, remains on the correct understanding 
of the principles of mechanics and on their application to the solution 
of engineering problems, and vector analysis is presented chiefly as a 
convenient tool.  ‡   

   Practical Applications Are Introduced Early.   One of the char-
acteristics of the approach used in this book is that mechanics of 
particles  is clearly separated from the mechanics of  rigid bodies.  This 
approach makes it possible to consider simple practical applications 
at an early stage and to postpone the introduction of the more diffi-
cult concepts. For example:

   •   In  Statics,  the statics of particles is treated first (Chap. 2); after 
the rules of addition and subtraction of vectors are introduced, 
the principle of equilibrium of a particle is immediately applied 
to practical situations involving only concurrent forces. The stat-
ics of rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, 
the vector and scalar products of two vectors are introduced and 
used to define the moment of a force about a point and about 
an axis. The presentation of these new concepts is followed by a 
thorough and rigorous discussion of equivalent systems of forces 
leading, in Chap. 4, to many practical applications involving the 
equilibrium of rigid bodies under general force systems.  

†This text is available in separate volumes, Vector Mechanics for Engineers: Statics, ninth 
edition, and Vector Mechanics for Engineers: Dynamics, ninth edition.

‡In a parallel text, Mechanics for Engineers: fifth edition, the use of vector algebra is 
limited to the addition and subtraction of vectors, and vector differentiation is omitted.
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  •   In  Dynamics,  the same division is observed. The basic concepts of 
force, mass, and acceleration, of work and energy, and of impulse 
and momentum are introduced and first applied to problems in-
volving only particles. Thus, students can familiarize themselves 
with the three basic methods used in dynamics and learn their 
respective advantages before facing the difficulties associated 
with the motion of rigid bodies.   

    New Concepts Are Introduced in Simple Terms.   Since this text 
is designed for the first course in statics and dynamics, new concepts 
are presented in simple terms and every step is explained in detail. 
On the other hand, by discussing the broader aspects of the prob-
lems considered, and by stressing methods of general applicability, a 
definite maturity of approach is achieved. For example:

• In Statics, the concepts of partial constraints and statical indeter-
minacy are introduced early and are used throughout statics.

• In Dynamics, the concept of potential energy is discussed in the 
general case of a conservative force. Also, the study of the plane 
motion of rigid bodies is designed to lead naturally to the study 
of their general motion in space. This is true in kinematics as well 
as in kinetics, where the principle of equivalence of external and 
effective forces is applied directly to the analysis of plane motion, 
thus facilitating the transition to the study of three-dimensional 
motion.   

 Fundamental Principles Are Placed in the Context of Simple 
Applications.   The fact that mechanics is essentially a  deductive  
science based on a few fundamental principles is stressed. Derivations 
have been presented in their logical sequence and with all the rigor 
warranted at this level. However, the learning process being largely 
 inductive,  simple applications are considered first. For example:

   •   The statics of particles precedes the statics of rigid bodies, and 
problems involving internal forces are postponed until Chap. 6.  

  •   In Chap. 4, equilibrium problems involving only coplanar forces 
are considered first and solved by ordinary algebra, while prob-
lems involving three-dimensional forces and requiring the full use 
of vector algebra are discussed in the second part of the chapter.   

   •   The kinematics of particles (Chap. 11) precedes the kinematics 
of rigid bodies (Chap. 15).  

  •   The fundamental principles of the kinetics rigid bodies are first 
applied to the solution of two-dimensional problems (Chaps. 16 
and 17), which can be more easily visualized by the student, while 
three-dimensional problems are postponed until Chap. 18.      

 The Presentation of the Principles of Kinetics Is Unified.   The 
ninth edition of  Vector Mechanics for Engineers  retains the unified 
presentation of the principles of kinetics which characterized the previ-
ous eight editions. The concepts of linear and angular momentum are 
introduced in Chap. 12, so that Newton’s second law of motion can be 
presented not only in its conventional form  F  5  m  a , but also as a law 
relating, respectively, the sum of the forces acting on a particle and the 
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xviisum of their moments to the rates of change of the linear and angular 
momentum of the particle. This makes possible an earlier introduction 
of the principle of conservation of angular momentum and a more 
meaningful discussion of the motion of a particle under a central force 
(Sec. 12.9). More importantly, this approach can be readily extended 
to the study of the motion of a system of particles (Chap. 14) and leads 
to a more concise and unified treatment of the kinetics of rigid bodies 
in two and three dimensions (Chaps. 16 through 18).   

 Free-Body Diagrams Are Used Both to Solve Equilibrium 
Problems and to Express the Equivalence of Force Systems.   
Free-body diagrams are introduced early, and their importance is 
emphasized throughout the text. They are used not only to solve 
equilibrium problems but also to express the equivalence of two sys-
tems of forces or, more generally, of two systems of vectors. The 
advantage of this approach becomes apparent in the study of the 
dynamics of rigid bodies, where it is used to solve three-dimensional 
as well as two-dimensional problems. By placing the emphasis on 
“free-body-diagram equations” rather than on the standard algebraic 
equations of motion, a more intuitive and more complete under-
standing of the fundamental principles of dynamics can be achieved. 
This approach, which was first introduced in 1962 in the first edition 
of  Vector Mechanics for Engineers,  has now gained wide acceptance 
among mechanics teachers in this country. It is, therefore, used in 
preference to the method of dynamic equilibrium and to the equa-
tions of motion in the solution of all sample problems in this book.   

 A Four-Color Presentation Uses Color to Distinguish Vectors.  
 Color has been used, not only to enhance the quality of the illustrations, 
but also to help students distinguish among the various types of vec-
tors they will encounter. While there is no intention to “color code” 
this text, the same color is used in any given chapter to represent vec-
tors of the same type. Throughout  Statics,  for example, red is used 
exclusively to represent forces and couples, while position vectors are 
shown in blue and dimensions in black. This makes it easier for the 
students to identify the forces acting on a given particle or rigid body 
and to follow the discussion of sample problems and other examples 
given in the text. In  Dynamics,  for the chapters on kinetics, red is used 
again for forces and couples, as well as for effective forces. Red is also 
used to represent impulses and momenta in free-body-diagram equa-
tions, while green is used for velocities, and blue for accelerations. In 
the two chapters on kinematics, which do not involve any forces, blue, 
green, and red are used, respectively, for displacements, velocities, and 
accelerations.   

 A Careful Balance Between SI and U.S. Customary Units Is 
Consistently Maintained.   Because of the current trend in the 
American government and industry to adopt the international sys-
tem of units (SI metric units), the SI units most frequently used in 
mechanics are introduced in Chap. 1 and are used throughout the 
text. Approximately half of the sample problems and 60 percent of 
the homework problems are stated in these units, while the  remainder 

Preface

bee29400_fm_i-xxiv.indd Page xvii  12/18/08  3:39:32 PM user-s172bee29400_fm_i-xxiv.indd Page xvii  12/18/08  3:39:32 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



are in U.S. customary units. The authors believe that this approach 
will best serve the need of students, who, as engineers, will have to 
be conversant with both systems of units. 
  It also should be recognized that using both SI and U.S. custom-
ary units entails more than the use of conversion factors. Since the SI 
system of units is an absolute system based on the units of time, length, 
and mass, whereas the U.S. customary system is a gravitational system 
based on the units of time, length, and force, different approaches are 
required for the solution of many problems. For example, when SI 
units are used, a body is generally specified by its mass expressed in 
kilograms; in most problems of statics it will be necessary to determine 
the weight of the body in newtons, and an additional calculation will 
be required for this purpose. On the other hand, when U.S. customary 
units are used, a body is specified by its weight in pounds and, in 
dynamics problems, an additional calculation will be required to deter-
mine its mass in slugs (or lb ? s 2 /ft). The authors, therefore, believe 
that problem assignments should include both systems of units. 
  The  Instructor’s and Solutions Manual  provides six different 
lists of assignments so that an equal number of problems stated in 
SI units and in U.S. customary units can be selected. If so desired, 
two complete lists of assignments can also be selected with up to 
75 percent of the problems stated in SI units.   

 Optional Sections Offer Advanced or Specialty Topics.   A 
large number of optional sections have been included. These sections 
are indicated by asterisks and thus are easily distinguished from those 
which form the core of the basic mechanics course. They may be omit-
ted without prejudice to the understanding of the rest of the text. 
  The topics covered in the optional sections in statics include 
the reduction of a system of forces to a wrench, applications to hydro-
statics, shear and bending-moment diagrams for beams, equilibrium 
of cables, products of inertia and Mohr’s circle, mass products of 
inertia and principal axes of inertia for three-dimensional bodies, and 
the method of virtual work. An optional section on the determination 
of the principal axes and the mass moments of inertia of a body of 
arbitrary shape is included (Sec. 9.18). The sections on beams are 
especially useful when the course in statics is immediately followed 
by a course in mechanics of materials, while the sections on the inertia 
properties of three-dimensional bodies are primarily intended for the 
students who will later study in dynamics the three-dimensional motion 
of rigid bodies. 
  The topics covered in the optional sections in dynamics 
include graphical methods for the solution of rectilinear-motion 
problems, the trajectory of a particle under a central force, the 
deflection of fluid streams, problems involving jet and rocket pro-
pulsion, the kinematics and kinetics of rigid bodies in three dimen-
sions, damped mechanical vibrations, and electrical analogues. 
These topics will be found of particular interest when dynamics is 
taught in the junior year. 
  The material presented in the text and most of the problems 
require no previous mathematical knowledge beyond algebra, trigo-
nometry, and elementary calculus; all the elements of vector algebra 
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xixnecessary to the understanding of the text are carefully presented in 
Chaps. 2 and 3. However, special problems are included, which make 
use of a more advanced knowledge of calculus, and certain sections, 
such as Secs. 19.8 and 19.9 on damped vibrations, should be assigned 
only if students possess the proper mathematical background. In por-
tions of the text using elementary calculus, a greater emphasis is 
placed on the correct understanding and application of the concepts 
of differentiation and integration than on the nimble manipulation 
of mathematical formulas. In this connection, it should be mentioned 
that the determination of the centroids of composite areas precedes 
the calculation of centroids by integration, thus making it possible to 
establish the concept of moment of area firmly before introducing 
the use of integration.  

      CHAPTER ORGANIZATION AND PEDAGOGICAL FEATURES   
 Chapter Introduction.   Each chapter begins with an introductory 
section setting the purpose and goals of the chapter and describing 
in simple terms the material to be covered and its application to the 
solution of engineering problems. Chapter outlines provide students 
with a preview of chapter topics.   

 Chapter Lessons.   The body of the text is divided into units, each 
consisting of one or several theory sections, one or several sample 
problems, and a large number of problems to be assigned. Each unit 
corresponds to a well-defined topic and generally can be covered in 
one lesson. In a number of cases, however, the instructor will find it 
desirable to devote more than one lesson to a given topic.  The 
Instructor’s and Solutions Manual  contains suggestions on the cover-
age of each lesson.   

 Sample Problems.   The sample problems are set up in much the 
same form that students will use when solving the assigned problems. 
They thus serve the double purpose of amplifying the text and dem-
onstrating the type of neat, orderly work that students should culti-
vate in their own solutions.   

 Solving Problems on Your Own.   A section entitled  Solving 
Problems on Your Own  is included for each lesson, between the 
sample problems and the problems to be assigned. The purpose of 
these sections is to help students organize in their own minds the 
preceding theory of the text and the solution methods of the sample 
problems so that they can more successfully solve the homework 
problems. Also included in these sections are specific suggestions 
and strategies which will enable students to more efficiently attack 
any assigned problems.   

 Homework Problem Sets.   Most of the problems are of a practi-
cal nature and should appeal to engineering students. They are pri-
marily designed, however, to illustrate the material presented in the 
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text and to help students understand the principles of mechanics. 
The problems are grouped according to the portions of material they 
illustrate and are arranged in order of increasing difficulty. Problems 
requiring special attention are indicated by asterisks. Answers to 
70 percent of the problems are given at the end of the book.  Problems 
for which the answers are given are set in straight type in the text, 
while problems for which no answer is given are set in italic.   

 Chapter Review and Summary.   Each chapter ends with a 
review and summary of the material covered in that chapter. Mar-
ginal notes are used to help students organize their review work, and 
cross-references have been included to help them find the portions 
of material requiring their special attention.   

 Review Problems.   A set of review problems is included at the end 
of each chapter. These problems provide students further opportunity 
to apply the most important concepts introduced in the chapter.   

 Computer Problems.   Each chapter includes a set of problems 
designed to be solved with computational software. Many of these 
problems provide an introduction to the design process. In Statics, 
for example, they may involve the analysis of a structure for various 
configurations and loading of the structure or the determination of 
the equilibrium positions of a mechanism which may require an itera-
tive method of solution. In Dynamics, they may involve the determi-
nation of the motion of a particle under initial conditions, the kinematic 
or kinetic analysis of mechanisms in successive positions, or the 
numerical integration of various equations of motion. Developing the 
algorithm required to solve a given mechanics problem will benefit 
the students in two different ways: (1) it will help them gain a better 
understanding of the mechanics principles involved; (2) it will provide 
them with an opportunity to apply their computer skills to the solu-
tion of a meaningful engineering problem.    

  SUPPLEMENTS  
 An extensive supplements package for both instructors and students 
is available with the text.  

 Instructor’s and Solutions Manual.    The Instructor’s and  Solutions 
Manual  that accompanies the ninth edition features typeset, one-per-
page solutions to all homework problems. This manual also features 
a number of tables designed to assist instructors in creating a sched-
ule of assignments for their courses. The various topics covered in the 
text are listed in Table I, and a suggested number of periods to be 
spent on each topic is indicated. Table II provides a brief description 
of all groups of problems and a classification of the problems in each 
group according to the units used. Sample lesson schedules are 
shown in Tables III, IV, and V.   

xx Preface

bee29400_fm_i-xxiv.indd Page xx  12/18/08  3:39:33 PM user-s172bee29400_fm_i-xxiv.indd Page xx  12/18/08  3:39:33 PM user-s172 /Volumes/204/MHDQ078/work%0/indd%0/Volumes/204/MHDQ078/work%0/indd%0



xxi McGRAW-HILL CONNECT ENGINEERING 
 McGraw-Hill Connect Engineering is a web-based assignment and 
assessment platform that gives students the means to better connect 
with their coursework, their instructors, and the important concepts 
that they will need to know for success now and in the future. With 
Connect Engineering, instructors can deliver assignments, quizzes, 
and tests easily online. Students can practice important skills at their 
own pace and on their own schedule. 
  Connect Engineering for  Vector Mechanics for Engineers  is 
available at  www.mhhe.com/beerjohnston  and includes algorithmic 
problems from the text, Lecture PowerPoints, an image bank, and 
animations.   

 Hands-on Mechanics.   Hands-on Mechanics is a website designed 
for instructors who are interested in incorporating three-dimensional, 
hands-on teaching aids into their lectures. Developed through a 
partnership between the McGraw-Hill Engineering Team and the 
Department of Civil and Mechanical Engineering at the United 
States Military Academy at West Point, this website not only pro-
vides detailed instructions for how to build 3-D teaching tools using 
materials found in any lab or local hardware store but also provides 
a community where educators can share ideas, trade best practices, 
and submit their own demonstrations for posting on the site. Visit 
 www.handsonmechanics.com .    

  ELECTRONIC TEXTBOOK OPTIONS  
 Ebooks are an innovative way for students to save money and create 
a greener environment at the same time. An ebook can save students 
about half the cost of a traditional textbook and offers unique  features 
like a powerful search engine, highlighting, and the ability to share 
notes with classmates using ebooks. 
  McGraw-Hill offers two ebook options: purchasing a download-
able book from VitalSource or a subscription to the book from Course-
Smart. To talk about the ebook options, contact your McGraw-Hill 
sales rep or visit the sites directly at  www.vitalsource.com  and 
 www.coursesmart.com .   

  ACKNOWLEDGMENTS  
 A special thanks go to our colleagues who thoroughly checked the 
solutions and answers of all problems in this edition and then pre-
pared the solutions for the accompanying Instructor’s and Solution 
Manual: Amy Mazurek of Williams Memorial Institute and Dean 
Updike of Lehigh University.   
  We are pleased to recognize Dennis Ormond of Fine Line 
Illustrations for the artful illustrations which contribute so much to 
the effectiveness of the text. 
  The authors thank the many companies that provided photo-
graphs for this edition. We also wish to recognize the determined 
efforts and patience of our photo researcher Sabina Dowell. 
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a Introduction

 In the latter part of the seventeenth 

century, Sir Isaac Newton stated the 

fundamental principles of mechanics, 

which are the foundation of much of 

today’s engineering. 
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   C H A P T E R 

1

 Introduction      
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Chapter 1  Introduction
 1.1 What Is Mechanics?
 1.2 Fundamental Concepts and 

Principles
 1.3 Systems of Units
 1.4 Conversion from One System of 

Units to Another
 1.5 Method of Problem Solution
 1.6 Numerical Accuracy

 1.1 WHAT IS MECHANICS?
Mechanics can be defined as that science which describes and predicts 
the conditions of rest or motion of bodies under the action of forces. It 
is divided into three parts: mechanics of rigid bodies, mechanics of 
deformable bodies, and mechanics of fluids.
 The mechanics of rigid bodies is subdivided into statics and 
dynamics, the former dealing with bodies at rest, the latter with bodies 
in motion. In this part of the study of mechanics, bodies are assumed 
to be perfectly rigid. Actual structures and machines, however, are 
never absolutely rigid and deform under the loads to which they are 
subjected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are studied in 
mechanics of materials, which is a part of the mechanics of deformable 
bodies. The third division of mechanics, the mechanics of fluids, is 
subdivided into the study of incompressible fluids and of compressible 
fluids. An important subdivision of the study of incompressible fluids 
is hydraulics, which deals with problems involving water.
 Mechanics is a physical science, since it deals with the study of 
physical phenomena. However, some associate mechanics with math-
ematics, while many consider it as an engineering subject. Both these 
views are justified in part. Mechanics is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study. 
However, it does not have the empiricism found in some engineering 
sciences, i.e., it does not rely on experience or observation alone; by its 
rigor and the emphasis it places on deductive reasoning it resembles 
mathematics. But, again, it is not an abstract or even a pure science; 
mechanics is an applied science. The purpose of mechanics is to explain 
and predict physical phenomena and thus to lay the foundations for 
engineering applications.

1.2 FUNDAMENTAL CONCEPTS AND PRINCIPLES
Although the study of mechanics goes back to the time of Aristotle 
(384–322 b.c.) and Archimedes (287–212 b.c.), one has to wait until 
Newton (1642–1727) to find a satisfactory formulation of its funda-
mental principles. These principles were later expressed in a modi-
fied form by d’Alembert, Lagrange, and Hamilton. Their validity 
remained unchallenged, however, until Einstein formulated his theory 
of relativity (1905). While its limitations have now been recognized, 
newtonian mechanics still remains the basis of today’s engineering 
sciences.
 The basic concepts used in mechanics are space, time, mass, and 
force. These concepts cannot be truly defined; they should be accepted 
on the basis of our intuition and experience and used as a mental frame 
of reference for our study of mechanics.
 The concept of space is associated with the notion of the position 
of a point P. The position of P can be defined by three lengths mea-
sured from a certain reference point, or origin, in three given direc-
tions. These lengths are known as the coordinates of P.

2
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3    To define an event, it is not sufficient to indicate its position in 
space. The  time  of the event should also be given. 
    The concept of  mass  is used to characterize and compare bodies 
on the basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in the 
same manner; they will also offer the same resistance to a change in 
translational motion. 
    A  force  represents the action of one body on another. It can be 
exerted by actual contact or at a distance, as in the case of gravitational 
forces and magnetic forces. A force is characterized by its  point of 
application , its  magnitude , and its  direction ; a force is represented by 
a  vector  (Sec. 2.3). 
    In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in  relativistic 
mechanics , where the time of an event depends upon its position, and 
where the mass of a body varies with its velocity.) On the other hand, 
the concept of force is not independent of the other three. Indeed, one 
of the fundamental principles of newtonian mechanics listed below 
indicates that the resultant force acting on a body is related to the mass 
of the body and to the manner in which its velocity varies with time. 
    You will study the conditions of rest or motion of particles and 
rigid bodies in terms of the four basic concepts we have introduced. By 
 particle  we mean a very small amount of matter which may be assumed 
to occupy a single point in space. A  rigid body  is a combination of a 
large number of particles occupying fixed positions with respect to 
each other. The study of the mechanics of particles is obviously a pre-
requisite to that of rigid bodies. Besides, the results obtained for a 
particle can be used directly in a large number of problems dealing 
with the conditions of rest or motion of actual bodies. 
    The study of elementary mechanics rests on six fundamental 
principles based on experimental evidence.  

 The Parallelogram Law for the Addition of Forces.   This states 
that two forces acting on a particle may be replaced by a single force, 
called their  resultant , obtained by drawing the diagonal of the paral-
lelogram which has sides equal to the given forces (Sec. 2.2).   

 The Principle of Transmissibility.   This states that the conditions 
of equilibrium or of motion of a rigid body will remain unchanged if a 
force acting at a given point of the rigid body is replaced by a force of 
the same magnitude and same direction, but acting at a different point, 
provided that the two forces have the same line of action (Sec. 3.3).   

 Newton’s Three Fundamental Laws.   Formulated by Sir Isaac 
Newton in the latter part of the seventeenth century, these laws can be 
stated as follows:  

 FIRST LAW.   If the resultant force acting on a particle is zero, the 
particle will remain at rest (if originally at rest) or will move with con-
stant speed in a straight line (if originally in motion) (Sec. 2.10).   

1.2 Fundamental Concepts and Principles
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4 Introduction  SECOND LAW.   If the resultant force acting on a particle is not zero, 
the particle will have an acceleration proportional to the magnitude of 
the resultant and in the direction of this resultant force. 
  As you will see in Sec. 12.2, this law can be stated as 

    F 5 ma (1.1)  

 where  F ,  m , and  a  represent, respectively, the resultant force acting on 
the particle, the mass of the particle, and the acceleration of the parti-
cle, expressed in a consistent system of units.   

 THIRD LAW.   The forces of action and reaction between bodies in 
contact have the same magnitude, same line of action, and opposite 
sense (Sec. 6.1).    

 Newton’s Law of Gravitation.   This states that two particles of 
mass  M  and  m  are mutually attracted with equal and opposite forces  F  
and  2F  ( Fig. 1.1 ) of magnitude  F  given by the formula 

   
F 5 G  

Mm

r  

2  (1.2)  

    where  r  5 distance between the two particles 
     G  5 universal constant called the  constant of gravitation  

   Newton’s law of gravitation introduces the idea of an action exerted at 
a distance and extends the range of application of Newton’s third law: 
the action  F  and the reaction  2F  in  Fig. 1.1  are equal and opposite, 
and they have the same line of action. 
    A particular case of great importance is that of the attraction of 
the earth on a particle located on its surface. The force  F  exerted by 
the earth on the particle is then defined as the  weight   W  of the parti-
cle. Taking  M  equal to the mass of the earth,  m  equal to the mass of the 
particle, and  r  equal to the radius  R  of the earth, and introducing the 
constant 

   
g 5

GM

R2  
(1.3)

  

   the magnitude  W  of the weight of a particle of mass  m  may be ex-
pressed as †  

  W 5 mg (1.4) 

  The value of  R  in formula (1.3) depends upon the elevation of the 
point considered; it also depends upon its latitude, since the earth is 
not truly spherical. The value of  g  therefore varies with the position of 
the point considered. As long as the point actually remains on the sur-
face of the earth, it is sufficiently accurate in most engineering compu-
tations to assume that  g  equals 9.81 m/s 2  or 32.2 ft/s 2 . 

  †A more accurate definition of the weight  W  should take into account the rotation of the 
earth.  

  Fig. 1.1      

M

–F

F

m

r

Photo 1.1 When in earth orbit, people and 
objects are said to be weightless even though the 
gravitational force acting is approximately 90% of 
that experienced on the surface of the earth. This 
apparent contradiction will be resolved in Chapter 
12 when we apply  Newton’s second law to the 
motion of particles.
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5    The principles we have just listed will be introduced in the course 
of our study of mechanics as they are needed. The study of the statics 
of particles carried out in Chap. 2, will be based on the parallelogram 
law of addition and on Newton’s first law alone. The principle of trans-
missibility will be introduced in Chap. 3 as we begin the study of the 
statics of rigid bodies, and Newton’s third law in Chap. 6 as we analyze 
the forces exerted on each other by the various members forming a 
structure. In the study of dynamics, Newton’s second law and Newton’s 
law of gravitation will be introduced. It will then be shown that Newton’s 
first law is a particular case of Newton’s second law (Sec. 12.2) and that 
the principle of transmissibility could be derived from the other prin-
ciples and thus eliminated (Sec. 16.5). In the meantime, however, 
Newton’s first and third laws, the parallelogram law of addition, and 
the principle of transmissibility will provide us with the necessary and 
sufficient foundation for the entire study of the statics of particles, 
rigid bodies, and systems of rigid bodies. 
    As noted earlier, the six fundamental principles listed above are 
based on experimental evidence. Except for Newton’s first law and the 
principle of transmissibility, they are independent principles which 
cannot be derived mathematically from each other or from any other 
elementary physical principle. On these principles rests most of the 
intricate structure of newtonian mechanics. For more than two centu-
ries a tremendous number of problems dealing with the conditions of 
rest and motion of rigid bodies, deformable bodies, and fluids have 
been solved by applying these fundamental principles. Many of the 
solutions obtained could be checked experimentally, thus providing a 
further verification of the principles from which they were derived. It 
is only in the twentieth century that Newton’s mechanics was found at 
fault, in the study of the motion of atoms and in the study of the motion 
of certain planets, where it must be supplemented by the theory of 
relativity. But on the human or engineering scale, where velocities are 
small compared with the speed of light, Newton’s mechanics has yet to 
be disproved.     

  1.3   SYSTEMS OF UNITS   
 With the four fundamental concepts introduced in the preceding sec-
tion are associated the so-called  kinetic units , i.e., the units of  length, 
time, mass , and  force . These units cannot be chosen independently if 
Eq. (1.1) is to be satisfied. Three of the units may be defined arbi-
trarily; they are then referred to as  basic units . The fourth unit, how-
ever, must be chosen in accordance with Eq. (1.1) and is referred to as 
a  derived unit . Kinetic units selected in this way are said to form a 
 consistent system of units .  

  International System of Units (SI Units †).     In this system, which 
will be in universal use after the United States has completed its con-
version to SI units, the base units are the units of length, mass, and 
time, and they are called, respectively, the  meter  (m), the  kilogram  
(kg), and the  second  (s). All three are arbitrarily defined. The second, 

†SI stands for  Système International d’Unités  (French).  

1.3   Systems of Units
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6 Introduction which was originally chosen to represent 1/86 400 of the mean solar 
day, is now defined as the duration of 9 192 631 770 cycles of the radia-
tion corresponding to the transition between two levels of the funda-
mental state of the cesium-133 atom. The meter, originally defined as 
one ten-millionth of the distance from the equator to either pole, is 
now defined as 1 650 763.73 wavelengths of the orange-red light cor-
responding to a certain transition in an atom of krypton-86. The kilo-
gram, which is approximately equal to the mass of 0.001 m 3  of water, 
is defined as the mass of a platinum-iridium standard kept at the Inter-
national Bureau of Weights and Measures at Sèvres, near Paris, France. 
The unit of force is a derived unit. It is called the  newton  (N) and is 
defined as the force which gives an acceleration of 1 m/s 2  to a mass of 
1 kg ( Fig. 1.2 ). From Eq. (1.1) we write 

  1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2 (1.5) 

  The SI units are said to form an  absolute  system of units. This means 
that the three base units chosen are independent of the location where 
measurements are made. The meter, the kilogram, and the second 
may be used anywhere on the earth; they may even be used on another 
planet. They will always have the same significance. 
    The  weight  of a body, or the  force of gravity  exerted on that body, 
should, like any other force, be expressed in newtons. From Eq. (1.4) 
it follows that the weight of a body of mass 1 kg ( Fig. 1.3 ) is 

  W 5 mg
  5 (1 kg)(9.81 m/s2) 
  5 9.81 N  

   Multiples and submultiples of the fundamental SI units may be 
obtained through the use of the prefixes defined in  Table 1.1 . The 
multiples and submultiples of the units of length, mass, and force most 
frequently used in engineering are, respectively, the  kilometer  (km) 
and the  millimeter  (mm); the  megagram  †    (Mg) and the  gram  (g); and 
the  kilonewton  (kN). According to  Table 1.1 , we have 

  1 km 5 1000 m       1 mm 5 0.001 m
  1 Mg 5 1000 kg   1 g 5 0.001 kg

 1 kN 5 1000 N

  The conversion of these units into meters, kilograms, and  newtons, 
respectively, can be effected by simply moving the decimal point 
three places to the right or to the left. For example, to convert 
3.82 km into meters, one moves the decimal point three places to the 
right: 

 3.82 km 5 3820 m 

   Similarly, 47.2 mm is converted into meters by moving the decimal 
point three places to the left: 

 47.2 mm 5 0.0472 m

  Fig. 1.2      

a = 1 m/s2

m = 1 kg F = 1 N

  Fig. 1.3 
      

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

† Also known as a  metric ton .
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7

  Using scientific notation, one may also write 

  3.82 km 5 3.82 3 103 m  
  47.2 mm 5 47.2 3 1023 m 

    The multiples of the unit of time are the  minute  (min) and the 
 hour  (h). Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these multi-
ples cannot be converted as readily as the others. 
   By using the appropriate multiple or submultiple of a given unit, 
one can avoid writing very large or very small numbers. For example, 
one usually writes 427.2 km rather than 427 200 m, and 2.16 mm 
rather than 0.002 16 m. † 

 Units of Area and Volume.  The unit of area is the  square meter  
(m 2 ), which represents the area of a square of side 1 m; the unit of vol-
ume is the  cubic meter  (m 3 ), equal to the volume of a cube of side 1 m. 
In order to avoid exceedingly small or large numerical values in the 
computation of areas and volumes, one uses systems of subunits 
obtained by respectively squaring and cubing not only the millimeter 
but also two intermediate submultiples of the meter, namely, the 
  decimeter  (dm) and the  centimeter  (cm). Since, by definition, 

   1 dm 5 0.1 m 5 1021 m   
   1 cm 5 0.01 m 5 1022 m
 1 mm 5 0.001 m 5 1023 m

 TABLE 1.1   Sl Prefixes 

 Multiplication Factor   Prefix †   Symbol 

    1 000 000 000 000 5 10 12    tera   T  
   1 000 000 000 5 10 9    giga   G  
   1 000 000 5 10 6    mega   M  
   1 000 5 10 3    kilo   k  
  100 5 10 2    hecto ‡   h
   10 5 10 1    deka ‡    da  
  0.1 5 10 21   deci ‡   d 
  0.01 5 10 22   centi ‡   c 
  0.001 5 10 23   milli   m 
  0.000 001 5 10 26   micro   m 
  0.000 000 001 5 10 29   nano   n 
  0.000 000 000 001 5 10 212   pico   p 
  0.000 000 000 000 001 5 10 215   femto   f 
  0.000 000 000 000 000 001 5 10 218   atto   a 

 †The first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second. 
 ‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.   

 †It should be noted that when more than four digits are used on either side of the decimal 
point to express a quantity in SI units—as in 427 200 m or 0.002 16 m—spaces, never 
commas, should be used to separate the digits into groups of three. This is to avoid 
confusion with the comma used in place of a decimal point, which is the convention in 
many countries. 

1.3   Systems of Units
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8 Introduction   the submultiples of the unit of area are 

  1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2   
  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2   
  1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2  

  and the submultiples of the unit of volume are 

   1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3   
   1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3   
   1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3  

  It should be noted that when the volume of a liquid is being measured, 
the cubic decimeter (dm 3 ) is usually referred to as a  liter  (L). 
    Other derived SI units used to measure the moment of a force, 
the work of a force, etc., are shown in  Table 1.2 . While these units will 
be introduced in later chapters as they are needed, we should note an 
important rule at this time: When a derived unit is obtained by divid-
ing a base unit by another base unit, a prefix may be used in the 
numerator of the derived unit but not in its denominator. For example, 
the constant  k  of a spring which stretches 20 mm under a load of 
100 N will be expressed as 

  
k 5

100 N
20 mm

5
100 N

0.020 m
5 5000 N/m    or    k 5 5 kN/m

   

but never as  k  5 5 N/mm.  

 TABLE 1.2   Principal SI Units Used in Mechanics          

  Quantity   Unit   Symbol   Formula    

  Acceleration   Meter per second squared   . . .   m/s 2   
  Angle   Radian   rad    †  
Angular acceleration   Radian per second squared   . . .   rad/s 2   
 Angular velocity   Radian per second   . . .   rad/s  
  Area   Square meter   . . .   m 2   
  Density   Kilogram per cubic meter   . . .   kg/m 3   
  Energy   Joule   J   N ? m 
  Force   Newton   N   kg ? m/s 2   
 Frequency   Hertz   Hz  s 21 
 Impulse   Newton-second   . . .   kg ? m/s  
  Length   Meter   m    ‡  
Mass   Kilogram   kg    ‡   
  Moment of a force   Newton-meter   . . .   N ? m  
  Power   Watt   W   J/s  
  Pressure   Pascal   Pa   N/m 2   
  Stress   Pascal   Pa   N/m 2   
  Time   Second   s    ‡   
  Velocity   Meter per second   . . .   m/s  
  Volume  
   Solids   Cubic meter   . . .   m 3   
   Liquids   Liter   L   10 23 m 3   
  Work   Joule   J   N ? m 

†Supplementary unit (1 revolution 5 2p rad 5 3608).    
‡Base unit.      
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9 U.S. Customary Units.  Most practicing American engineers still 
commonly use a system in which the base units are the units of length, 
force, and time. These units are, respectively, the  foot  (ft), the  pound  
(lb), and the  second  (s). The second is the same as the corresponding 
SI unit. The foot is defined as 0.3048 m. The pound is defined as the 
 weight  of a platinum standard, called the  standard pound , which is 
kept at the National Institute of Standards and Technology outside 
Washington, the mass of which is 0.453 592 43 kg. Since the weight of 
a body depends upon the earth’s gravitational attraction, which varies 
with location, it is specified that the standard pound should be placed 
at sea level and at a latitude of 458 to properly define a force of 1 lb. 
Clearly the U.S. customary units do not form an absolute system of 
units. Because of their dependence upon the gravitational attraction of 
the earth, they form a  gravitational  system of units. 
   While the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be so used in engi-
neering computations, since such a unit would not be consistent with 
the base units defined in the preceding paragraph. Indeed, when acted 
upon by a force of 1 lb, that is, when subjected to the force of gravity, 
the standard pound receives the acceleration of gravity,  g  5 32.2 ft/s 2  
( Fig. 1.4 ), not the unit acceleration required by Eq. (1.1). The unit of 
mass consistent with the foot, the pound, and the second is the mass 
which receives an acceleration of 1 ft/s 2  when a force of 1 lb is applied 
to it ( Fig. 1.5 ). This unit, sometimes called a  slug , can be derived from 
the equation  F 5 ma  after substituting 1 lb and 1 ft/s 2  for  F  and  a , 
respectively. We write 

  F 5 ma    1 lb 5 (1 slug)(1 ft/s2)

  and obtain 

   
1 slug 5

1 lb
1 ft/s2 5 1 lb ? s2/ft

  
(1.6)

   Comparing  Figs. 1.4  and  1.5 , we conclude that the slug is a mass 32.2 
times larger than the mass of the standard pound. 
    The fact that in the U.S. customary system of units bodies are 
characterized by their weight in pounds rather than by their mass in 
slugs will be a convenience in the study of statics, where one constantly 
deals with weights and other forces and only seldom with masses. 
However, in the study of dynamics, where forces, masses, and acceler-
ations are involved, the mass  m  of a body will be expressed in slugs 
when its weight  W  is given in pounds. Recalling Eq. (1.4), we write 

   
m 5

W
g  

(1.7)
  

   where  g  is the acceleration of gravity ( g  5 32.2 ft/s 2 ). 
    Other U.S. customary units frequently encountered in engineer-
ing problems are the  mile  (mi), equal to 5280 ft; the  inch  (in.), equal to 
1

12 ft; and the  kilopound  (kip), equal to a force of 1000 lb. The  ton  is 
often used to represent a mass of 2000 lb but, like the pound, must be 
converted into slugs in engineering computations. 
    The conversion into feet, pounds, and seconds of quantities 
expressed in other U.S. customary units is generally more involved and 

  Fig. 1.4       

a = 32.2 ft /s2

m = 1 lb

F = 1 lb

Fig. 1.5      

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

1.3   Systems of Units
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10 Introduction requires greater attention than the corresponding operation in SI 
units. If, for example, the magnitude of a velocity is given as  v  5 
30 mi/h, we convert it to ft/s as follows. First we write 

  
v 5 30  

mi
h   

   Since we want to get rid of the unit miles and introduce instead the 
unit feet, we should multiply the right-hand member of the equation 
by an expression containing miles in the denominator and feet in the 
numerator. But, since we do not want to change the value of the right-
hand member, the expression used should have a value equal to unity. 
The quotient (5280 ft)/(1 mi) is such an expression. Operating in a 
similar way to transform the unit hour into seconds, we write 

  
v 5 a30 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b

  

   Carrying out the numerical computations and canceling out units which 
appear in both the numerator and the denominator, we obtain 

  
v 5 44 

ft
s

5 44 ft/s
    

 1.4   CONVERSION FROM ONE SYSTEM OF UNITS 
TO ANOTHER  

 There are many instances when an engineer wishes to convert into SI 
units a numerical result obtained in U.S. customary units or vice versa. 
Because the unit of time is the same in both systems, only two kinetic 
base units need be converted. Thus, since all other kinetic units can be 
derived from these base units, only two conversion factors need be 
remembered.  

 Units of Length.   By definition the U.S. customary unit of length is 

   1 ft 5 0.3048 m (1.8)  

   It follows that 

  1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m  

   or 
 1 mi 5 1.609 km (1.9)  

   Also
 1 in. 5 1

12 ft 5 1
12 (0.3048 m) 5 0.0254 m  

   or 
 1 in. 5 25.4 mm     (1.10)

 Units of Force.   Recalling that the U.S. customary unit of force 
(pound) is defined as the weight of the standard pound (of mass 
0.4536 kg) at sea level and at a latitude of 458 (where  g  5 9.807 m/s 2 ) 
and using Eq. (1.4), we write 
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11   W 5 mg   
   1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg ? m/s2  

   or, recalling Eq. (1.5), 

   1 lb 5 4.448 N (1.11)    

 Units of Mass.  The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write 

  
1 slug 5 1 lb ? s2/ft 5

1 lb
1 ft/s2 5

4.448 N
0.3048 m/s2 5 14.59 N ? s2/m

  

   and, recalling Eq. (1.5), 

   1 slug 5 1 lb ? s2/ft 5 14.59 kg (1.12)  

   Although it cannot be used as a consistent unit of mass, we recall that 
the mass of the standard pound is, by definition, 

   1 pound mass 5 0.4536 kg (1.13)  

   This constant may be used to determine the  mass  in SI units (kilo-
grams) of a body which has been characterized by its  weight  in U.S. 
customary units (pounds). 
    To convert a derived U.S. customary unit into SI units, one sim-
ply multiplies or divides by the appropriate conversion factors. For 
example, to convert the moment of a force which was found to be  
M  5 47 lb ? in. into SI units, we use formulas (1.10) and (1.11) and 
write 

   M 5 47 lb ? in. 5 47(4.448 N)(25.4 mm)   
   5 5310 N ? mm 5 5.31 N ? m  

    The conversion factors given in this section may also be used to 
convert a numerical result obtained in SI units into U.S. customary 
units. For example, if the moment of a force was found to be  M  5 
40 N ? m, we write, following the procedure used in the last paragraph 
of Sec. 1.3, 

  
M 5 40 N ? m 5 (40 N ? m) a 1 lb

4.448 N
b a 1 ft

0.3048 m
b

  

   Carrying out the numerical computations and canceling out units 
which appear in both the numerator and the denominator, we obtain 

  M 5 29.5 lb ? ft  

    The U.S. customary units most frequently used in mechanics are 
listed in  Table 1.3  with their SI equivalents.  

       1.5  METHOD OF PROBLEM SOLUTION  
 You should approach a problem in mechanics as you would approach 
an actual engineering situation. By drawing on your own experience 
and intuition, you will find it easier to understand and formulate the 
problem. Once the problem has been clearly stated, however, there is 

1.5  Method of Problem Solution
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12 Introduction

no place in its solution for your particular fancy.  The solution must be 
based on the six fundamental principles stated in Sec. 1.2 or on theo-
rems derived from them.  Every step taken must be justified on that 
basis. Strict rules must be followed, which lead to the solution in an 
almost automatic fashion, leaving no room for your intuition or “feel-
ing.” After an answer has been obtained, it should be checked. Here 
again, you may call upon your common sense and personal experience. 
If not completely satisfied with the result obtained, you should carefully 
check your formulation of the problem, the validity of the methods 
used for its solution, and the accuracy of your computations. 
    The  statement  of a problem should be clear and precise. It should 
contain the given data and indicate what information is required. A 
neat drawing showing all quantities involved should be included. Sepa-
rate diagrams should be drawn for all bodies involved, indicating 
clearly the forces acting on each body. These diagrams are known as 
 free-body diagrams  and are described in detail in Secs. 2.11 and 4.2. 

 TABLE 1.3  U.S. Customary Units and Their SI Equivalents 

          Quantity U.S. Customary Unit   SI Equivalent 

    Acceleration  ft/s 2    0.3048 m/s2  
     in./s2  0.0254 m/s2  
  Area  ft2   0.0929 m2 
     in 2  645.2 mm2 
  Energy ft ? lb   1.356 J  
 Force   kip  4.448 kN  
   lb   4.448 N 
    oz   0.2780 N 
 Impulse  lb ? s   4.448 N ? s  
 Length   ft  0.3048 m 
   in.   25.40 mm  
   mi   1.609 km 
 Mass   oz mass   28.35 g  
    lb mass 0.4536 kg  
  slug   14.59 kg  
   ton   907.2 kg  
 Moment of a force   lb ? ft   1.356 N ? m  
    lb ? in.  0.1130 N ? m 
 Moment of inertia      
   Of an area in 4    0.4162 3 106 mm 4   
   Of a mass  lb ? ft ? s 2    1.356 kg ? m2  
  Momentum lb ? s   4.448 kg ? m/s 
  Power   ft ? lb/s   1.356 W  
    hp   745.7 W 
  Pressure or stress   lb/ft 2    47.88 Pa 
   lb/in 2 (psi)   6.895 kPa  
 Velocity  ft/s   0.3048 m/s 
    in./s  0.0254 m/s 
    mi/h (mph)  0.4470 m/s 
    mi/h (mph)  1.609 km/h 
 Volume   ft 3   0.02832 m 3 
     in 3  16.39 cm3 
   Liquids  gal  3.785 L 
    qt   0.9464 L 
 Work   ft ? lb  1.356 J  
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13    The  fundamental principles  of mechanics listed in Sec. 1.2  will 
be used to write equations  expressing the conditions of rest or motion 
of the bodies considered. Each equation should be clearly related to 
one of the free-body diagrams. You will then proceed to solve the 
problem, observing strictly the usual rules of algebra and recording 
neatly the various steps taken. 
    After the answer has been obtained, it should be  carefully checked.  
Mistakes in  reasoning  can often be detected by checking the units. For 
example, to determine the moment of a force of 50 N about a point 
0.60 m from its line of action, we would have written (Sec. 3.12) 

  M 5 Fd 5 (50 N)(0.60 m) 5 30 N ? m 

   The unit N ? m obtained by multiplying newtons by meters is the cor-
rect unit for the moment of a force; if another unit had been obtained, 
we would have known that some mistake had been made. 
    Errors in computation  will usually be found by substituting the 
numerical values obtained into an equation which has not yet been 
used and verifying that the equation is satisfied. The importance of 
correct computations in engineering cannot be overemphasized.    

 1.6   NUMERICAL ACCURACY  
 The accuracy of the solution of a problem depends upon two items: 
(1) the accuracy of the given data and (2) the accuracy of the computa-
tions performed. 
    The solution cannot be more accurate than the less accurate of 
these two items. For example, if the loading of a bridge is known to be 
75,000 lb with a possible error of 100 lb either way, the relative error 
which measures the degree of accuracy of the data is 

  
100 lb

75,000 lb
5 0.0013 5 0.13 percent

  

   In computing the reaction at one of the bridge supports, it would then 
be meaningless to record it as 14,322 lb. The accuracy of the solution 
cannot be greater than 0.13 percent, no matter how accurate the com-
putations are, and the possible error in the answer may be as large as 
(0.13/100)(14,322 lb) < 20 lb. The answer should be properly recorded 
as 14,320 6 20 lb. 
    In engineering problems, the data are seldom known with an 
accuracy greater than 0.2 percent. It is therefore seldom justified to 
write the answers to such problems with an accuracy greater than 0.2 
percent. A practical rule is to use 4 figures to record numbers begin-
ning with a “1” and 3 figures in all other cases. Unless otherwise indi-
cated, the data given in a problem should be assumed known with a 
comparable degree of accuracy. A force of 40 lb, for example, should 
be read 40.0 lb, and a force of 15 lb should be read 15.00 lb. 
    Pocket electronic calculators are widely used by practicing engi-
neers and engineering students. The speed and accuracy of these cal-
culators facilitate the numerical computations in the solution of many 
problems. However, students should not record more significant fig-
ures than can be justified merely because they are easily obtained. As 
noted above, an accuracy greater than 0.2 percent is seldom necessary 
or meaningful in the solution of practical engineering problems.                 

1.6   Numerical Accuracy
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14

 Many engineering problems can be 

solved by considering the equilibrium of 

a “particle.” In the case of this 

excavator, which is being loaded onto 

a ship, a relation between the tensions 

in the various cables involved can be 

obtained by considering the equilibrium 

of the hook to which the cables are 

attached. 
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2   C H A P T E R 
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 Statics of Particles  
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16

        2.1   INTRODUCTION  
 In this chapter you will study the effect of forces acting on particles. 
First you will learn how to replace two or more forces acting on a 
given particle by a single force having the same effect as the original 
forces. This single equivalent force is the  resultant  of the original 
forces acting on the particle. Later the relations which exist among 
the various forces acting on a particle in a state of  equilibrium  will 
be derived and used to determine some of the forces acting on the 
particle. 
    The use of the word “particle” does not imply that our study 
will be limited to that of small corpuscles. What it means is that the 
size and shape of the bodies under consideration will not significantly 
affect the solution of the problems treated in this chapter and that 
all the forces acting on a given body will be assumed to be applied 
at the same point. Since such an assumption is verified in many 
practical applications, you will be able to solve a number of engineer-
ing problems in this chapter. 
    The first part of the chapter is devoted to the study of forces 
contained in a single plane, and the second part to the analysis of 
forces in three-dimensional space.    

 FORCES IN A PLANE       

 2.2    FORCE ON A PARTICLE. RESULTANT 
OF TWO FORCES  

 A force represents the action of one body on another and is generally 
characterized by its  point of application , its  magnitude , and its  direc-
tion.  Forces acting on a given particle, however, have the same point 
of application. Each force considered in this chapter will thus be 
completely defined by its magnitude and direction. 
    The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a force are the newton (N) and 
its multiple the kilonewton (kN), equal to 1000 N, while the U.S. 
customary units used for the same purpose are the pound (lb) and 
its multiple the kilopound (kip), equal to 1000 lb. The direction 
of a force is defined by the  line of action  and the  sense  of the 
force. The line of action is the infinite straight line along which 
the force acts; it is characterized by the angle it forms with some 
fixed axis ( Fig. 2.1 ).     The force itself is represented by a segment of 

  Fig. 2.1    (a)

A 30°
10 lb

(b)

A 30°
10 lb
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17that line; through the use of an appropriate scale, the length of this 
segment may be chosen to represent the magnitude of the force. 
Finally, the sense of the force should be indicated by an arrowhead. 
It is important in defining a force to indicate its sense. Two forces 
having the same magnitude and the same line of action but different 
sense, such as the forces shown in  Fig. 2.1  a  and  b , will have directly 
opposite effects on a particle. 
    Experimental evidence shows that two forces  P  and  Q  acting 
on a particle  A  ( Fig. 2.2  a ) can be replaced by a single force  R  which 
has the same effect on the particle ( Fig. 2.2  c ). This force is called 
the  resultant  of the forces  P  and  Q  and can be obtained, as shown 
in  Fig. 2.2  b , by constructing a parallelogram, using  P  and  Q  as two 
adjacent sides of the parallelogram.  The diagonal that passes through 
A represents the resultant.  This method for finding the resultant is 
known as the  parallelogram law  for the addition of two forces. This 
law is based on experimental evidence; it cannot be proved or derived 
mathematically.    

 2.3   VECTORS  
 It appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two 
forces  acting at a right angle to each other, one of 4 lb and the other 
of 3 lb, add up to a force of 5 lb,  not  to a force of 7 lb. Forces are 
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later,  displacements, velocities, accelerations , and 
 momenta  are other examples of physical quantities possessing mag-
nitude and direction that are added according to the parallelogram 
law. All these quantities can be represented mathematically by  vec-
tors , while those physical quantities which have magnitude but not 
direction, such as  volume, mass , or  energy , are represented by plain 
numbers or  scalars.  
    Vectors are defined as  mathematical expressions possessing 
 magnitude and direction, which add according to the parallelo-
gram law.  Vectors are represented by arrows in the illustrations 
and will be distinguished from scalar quantities in this text through 
the use of boldface type ( P ). In longhand writing, a vector may be 
denoted by drawing a short arrow above the letter used to repre-
sent it (    P

S
) or by underlining the letter (P ). The last method may 

be preferred since underlining can also be used on a typewriter 
or computer. The magnitude of a vector defines the length of the 
arrow used to represent the vector. In this text, italic type will be 
used to denote the magnitude of a vector. Thus, the magnitude of 
the vector  P  will be denoted by  P.  
    A vector used to represent a force acting on a given particle 
has a well-defined point of application, namely, the particle itself. 
Such a vector is said to be a  fixed , or  bound , vector and cannot be 
moved without modifying the conditions of the problem. Other 
physical quantities, however, such as couples (see Chap. 3), are 
represented by vectors which may be freely moved in space; these 

A

P

Q

(a)

A

P
R

Q

(b)

A

R

(c)

  Fig. 2.2    

2.3   Vectors
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18 Statics of Particles vectors are called  free  vectors. Still other physical quantities, such 
as forces acting on a rigid body (see Chap. 3), are represented by 
vectors which can be moved, or slid, along their lines of action; 
they are known as  sliding  vectors. †    
    Two vectors which have the same magnitude and the same 
direction are said to be  equal , whether or not they also have the same 
point of application ( Fig. 2.4 ); equal vectors may be denoted by the 
same letter. 
    The  negative vector  of a given vector  P  is defined as a vector 
 having the same magnitude as  P  and a direction opposite to that of 
 P  ( Fig. 2.5 ); the negative of the vector  P  is denoted by  2P . The 
vectors  P  and  2P  are commonly referred to as  equal and opposite  
vectors. Clearly, we have

  P 1 (2P) 5 0   

    2.4   ADDITION OF VECTORS  
 We saw in the preceding section that, by definition, vectors add 
according to the parallelogram law. Thus, the sum of two vectors  P  
and  Q  is obtained by attaching the two vectors to the same point  A  
and constructing a parallelogram, using  P  and  Q  as two sides of the 
parallelogram ( Fig. 2.6 ). The diagonal that passes through  A  repre-
sents the sum of the vectors  P  and  Q , and this sum is denoted by 
 P  1  Q . The fact that the sign 1 is used to denote both vector and 
scalar addition should not cause any confusion if vector and scalar 
quantities are always carefully distinguished. Thus, we should note 
that the magnitude of the vector  P  1  Q  is  not , in general, equal to 
the sum  P 1 Q  of the magnitudes of the vectors  P  and  Q . 
    Since the parallelogram constructed on the vectors  P  and  Q  does 
not depend upon the order in which  P  and  Q  are selected, we con-
clude that the addition of two vectors is  commutative , and we write

   P 1 Q 5 Q 1 P    (2.1)

 †Some expressions have magnitude and direction, but do not add according to the 
 parallelogram law. While these expressions may be represented by arrows, they  cannot  
be considered as vectors. 
  A group of such expressions is the finite rotations of a rigid body. Place a closed 
book on a table in front of you, so that it lies in the usual fashion, with its front cover 
up and its binding to the left. Now rotate it through 180° about an axis parallel to the 
binding ( Fig. 2.3  a ); this rotation may be represented by an arrow of length equal to 
180 units and oriented as shown. Picking up the book as it lies in its new position, rotate 

  Fig. 2.3   Finite rotations of a rigid body    

= =

(a) (b)
180°

180°

  Fig. 2.4    

P

P

  Fig. 2.5    

P

–P

A

P
P + Q

Q

  Fig. 2.6    
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19    From the parallelogram law, we can derive an alternative 
method for determining the sum of two vectors. This method, known 
as the  triangle rule , is derived as follows. Consider  Fig. 2.6 , where 
the sum of the vectors  P  and  Q  has been determined by the paral-
lelogram law. Since the side of the parallelogram opposite  Q  is equal 
to  Q  in magnitude and direction, we could draw only half of the 
parallelogram ( Fig. 2.7  a ). The sum of the two vectors can thus be 
found by  arranging   P   and   Q   in tip-to-tail fashion and then connect-
ing the tail of   P   with the tip of   Q . In  Fig. 2.7  b , the other half of the 
parallelogram is considered, and the same result is obtained. This 
confirms the fact that vector addition is commutative. 
    The  subtraction  of a vector is defined as the addition of the 
corresponding negative vector. Thus, the vector  P 2 Q  representing 
the difference between the vectors  P  and  Q  is obtained by adding 
to  P  the negative vector  2Q  ( Fig. 2.8 ). We write

   P 2 Q 5 P 1 (2Q)    (2.2)

         Here again we should observe that, while the same sign is used to 
denote both vector and scalar subtraction, confusion will be avoided 
if care is taken to distinguish between vector and scalar quantities. 
    We will now consider the  sum of three or more vectors.  The 
sum of three vectors  P, Q , and  S  will,  by definition , be obtained by 
first adding the vectors  P  and  Q  and then adding the vector  S  to the 
vector  P 1 Q . We thus write

   P 1 Q 1 S 5 (P 1 Q) 1 S   (2.3)

Similarly, the sum of four vectors will be obtained by adding the 
fourth vector to the sum of the first three. It follows that the sum 
of any number of vectors can be obtained by applying repeatedly the 
parallelogram law to successive pairs of vectors until all the given 
vectors are replaced by a single vector. 

=
=

y

x

z

y

x

z

(c) (d)

180° 180°

180°

180°

it now through 180° about a horizontal axis perpendicular to the binding ( Fig. 2.3  b ); this 
second rotation may be represented by an arrow 180 units long and oriented as shown. 
But the book could have been placed in this final position through a single 180° rotation 
about a vertical axis ( Fig. 2.3  c ). We conclude that the sum of the two 180° rotations repre-
sented by arrows directed respectively along the  z  and  x  axes is a 180° rotation represented 
by an arrow directed along the  y  axis ( Fig. 2.3  d ). Clearly, the finite rotations of a rigid 
body  do not  obey the parallelogram law of addition; therefore, they  cannot  be represented 
by vectors. 

A

A

P

P

Q

Q

P + Q

P + Q

(a)

(b)

  Fig. 2.7    

P 
– 

Q

P
P

Q

–Q

(a) (b)

Fig. 2.8

2.4 Addition of Vectors
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20 Statics of Particles     If the given vectors are  coplanar , i.e., if they are contained in 
the same plane, their sum can be easily obtained graphically. For this 
case, the repeated application of the triangle rule is preferred to the 
application of the parallelogram law. In  Fig. 2.9  the sum of three 
vectors  P, Q , and  S  was obtained in that manner. The triangle rule 
was first applied to obtain the sum  P 1 Q  of the vectors  P  and  Q ; 
it was applied again to obtain the sum of the vectors  P 1 Q  and  S . 
The determination of the vector  P 1 Q , however, could have been 
omitted and the sum of the three vectors could have been obtained 
directly, as shown in  Fig. 2.10 ,  by arranging the given vectors in tip-
to-tail fashion and connecting the tail of the first vector with the tip 
of the last one.  This is known as the  polygon rule  for the addition of 
vectors. 
    We observe that the result obtained would have been unchanged 
if, as shown in  Fig. 2.11 , the vectors  Q  and  S  had been replaced by 
their sum  Q 1 S . We may thus write

   P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S)    (2.4)

   which expresses the fact that vector addition is  associative.  Recalling 
that vector addition has also been shown, in the case of two vectors, 
to be commutative, we write

    P 1 Q 1 S 5 (P 1 Q) 1 S 5 S 1 (P 1 Q)   
(2.5)    5 S 1 (Q 1 P) 5 S 1 Q 1 P   

This expression, as well as others which may be obtained in the same 
way, shows that the order in which several vectors are added together 
is immaterial ( Fig. 2.12 ).  

 Product of a Scalar and a Vector.   Since it is convenient to 
denote the sum  P 1 P  by  2P , the sum  P 1 P 1 P  by  3P , and, 
in  general, the sum of  n  equal vectors  P  by the product  n  P , we 
will define the product  n  P  of a positive integer  n  and a vector  P  
as a vector having the same direction as  P  and the magnitude  nP . 
Extending this definition to include all scalars, and recalling the 
definition of a negative vector given in Sec. 2.3, we define the 
product  k  P  of a scalar  k  and a vector  P  as a vector having the same 
direction as  P  (if  k  is positive), or a direction opposite to that of 
 P  (if  k  is negative), and a magnitude equal to the product of  P  and 
of the absolute value of  k  ( Fig. 2.13 ).     

 2.5   RESULTANT OF SEVERAL CONCURRENT FORCES  
 Consider a particle  A  acted upon by several coplanar forces, i.e., by 
several forces contained in the same plane ( Fig. 2.14  a ). Since the 
forces considered here all pass through  A , they are also said to be 
 concurrent.  The vectors representing the forces acting on  A  may be 
added by the polygon rule ( Fig. 2.14  b ). Since the use of the polygon 
rule is equivalent to the repeated application of the parallelogram 
law, the vector  R  thus obtained represents the resultant of the given 
concurrent forces, i.e., the single force which has the same effect on 

  Fig. 2.13    
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  Fig. 2.12    
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  Fig. 2.11    
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21

the particle  A  as the given forces. As indicated above, the order in 
which the vectors  P, Q , and  S  representing the given forces are 
added together is immaterial.    

 2.6   RESOLUTION OF A FORCE INTO COMPONENTS  
 We have seen that two or more forces acting on a particle may be 
replaced by a single force which has the same effect on the particle. 
Conversely, a single force  F  acting on a particle may be replaced by 
two or more forces which, together, have the same effect on the 
particle. These forces are called the  components  of the original force 
 F , and the process of substituting them for  F  is called  resolving the 
force   F   into components.  
    Clearly, for each force  F  there exist an infinite number of pos-
sible sets of components. Sets of  two components   P   and   Q  are the 
most important as far as practical applications are concerned. But, 
even then, the number of ways in which a given force  F  may be 
resolved into two components is unlimited ( Fig. 2.15 ). Two cases are 
of particular interest:  

   1.    One of the Two Components,   P  , Is Known.  The second com-
ponent,  Q , is obtained by applying the triangle rule and join-
ing the tip of  P  to the tip of F ( Fig. 2.16 ); the magnitude and 
direction of  Q  are determined graphically or by trigonometry. 
Once  Q  has been determined, both components  P  and  Q  
should be applied at  A .  

   2.    The Line of Action of Each Component Is Known.  The magni-
tude and sense of the components are obtained by applying the 
parallelogram law and drawing lines, through the tip of  F , par-
allel to the given lines of action ( Fig. 2.17 ). This process leads 
to two well-defined components,  P  and  Q , which can be deter-
mined graphically or computed trigonometrically by applying 
the law of sines.   

    Many other cases can be encountered; for example, the direc-
tion of one component may be known, while the magnitude of the 
other component is to be as small as possible (see Sample Prob. 2.2). 
In all cases the appropriate triangle or parallelogram which satisfies 
the given conditions is drawn.  
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P

Q
F

  Fig. 2.17  

  Fig. 2.16    
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A
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R
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  Fig. 2.14    
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(c)

  Fig. 2.15    

2.6 Resolution of a Force into Components
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 SAMPLE PROBLEM 2.1 

 The two forces  P  and  Q  act on a bolt  A . Determine their resultant.     
25°

20°
A

Q = 60 N

P = 40 N

  SOLUTION  

 Graphical Solution.   A parallelogram with sides equal to  P  and  Q  is drawn 
to scale. The magnitude and direction of the resultant are measured and 
found to be

  R 5 98 N  a 5 35°  R 5 98 N a35° ◀   

      The triangle rule may also be used. Forces  P  and  Q  are drawn in tip-to-
tail fashion. Again the magnitude and direction of the resultant are measured.

  R 5 98 N  a 5 35°  R 5 98 N a35° ◀  

    Trigonometric Solution.   The triangle rule is again used; two sides and the 
included angle are known. We apply the law of cosines.

   R2 5 P2 1 Q2 2 2PQ cos B  
   R2 5 (40 N)2 1 (60 N)2 2 2(40 N)(60 N) cos 155°  
   R 5 97.73 N   

     Now, applying the law of sines, we write

   
 sin A

Q
5

 sin B
R

     sin A
60 N

5
 sin 155°
97.73 N    

(1)

Solving Eq. (1) for sin  A , we have

  
 sin A 5

(60 N) sin 155°
97.73 N   

 Using a calculator, we first compute the quotient, then its arc sine, 
and obtain

  A 5 15.04°  a 5 20° 1 A 5 35.04°   

     We use 3 significant figures to record the answer (cf. Sec. 1.6):

  R 5 97.7 N a35.0° ◀  

    Alternative Trigonometric Solution.   We construct the right triangle  BCD  
and compute

  CD 5 (60 N) sin 25° 5 25.36 N  
  BD 5 (60 N) cos 25° 5 54.38 N   

     Then, using triangle  ACD , we obtain

  
  tan  A 5

25.36 N
94.38 N

     A 5 15.04°
  

  
 R 5

25.36
 sin A

 R 5 97.73 N
  

Again,   a 5 20° 1A 5 35.04° R 5 97.7 N a35.0° ◀         

A
P

Q

R

a

A
P

Q

R

�

155º 25°

20°

R

B

C

P = 40 N

Q = 60 N

aA

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

a
A
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 SAMPLE PROBLEM 2.2 

     A barge is pulled by two tugboats. If the resultant of the forces exerted by 
the tugboats is a 5000-lb force directed along the axis of the barge, determine 
( a ) the tension in each of the ropes knowing that a 5 45°, ( b ) the value of a 
for which the tension in rope 2 is minimum. 

30°
1

2
a

A

C

B

  SOLUTION  

 a.   Tension for a 5 45°.  Graphical Solution.    The parallelogram law is 
used; the diagonal (resultant) is known to be equal to 5000 lb and to be 
directed to the right. The sides are drawn parallel to the ropes. If the draw-
ing is done to scale, we measure

  T1 5 3700 lb  T2 5 2600 lb ◀   

  Trigonometric Solution.   The triangle rule can be used. We note that the 
triangle shown represents half of the parallelogram shown above. Using the 
law of sines, we write

  
T1

 sin 45°
5

T2

 sin 30°
5

5000 lb
 sin 105°  

 With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 45° and sin 30°, we obtain

  T1 5 3660 lb  T2 5 2590 lb ◀  

     b.   Value of a for Minimum  T  2 .   To determine the value of a for which the 
tension in rope 2 is minimum, the triangle rule is again used. In the sketch 
shown, line  1-1 9 is the known direction of  T  1 . Several possible directions of  T  2  
are shown by the lines 2-29. We note that the minimum value of  T  2  occurs 
when  T  1  and  T  2  are perpendicular. The minimum value of  T  2  is

  T2 5 (5000 lb) sin 30° 5 2500 lb  

Corresponding values of  T  1  and a are

  T1 5 (5000 lb) cos 30° 5 4330 lb  
   a 5 90° 2 30° a 5 60° ◀         

30° 45°

30°45°

5000 lb

T1

T2

B

45° 30°

5000 lb

105°
T1

T2

B

1

2
2

2

5000 lb
1'

2'

2'

2'

30°

5000 lb

T1
T2 90°

a
B
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 SOLVING PROBLEMS 
ON YOUR OWN  

 The preceding sections were devoted to the  parallelogram law  for the addition 
of vectors and to its applications. 

   Two sample problems were presented. In Sample Prob. 2.1, the parallelogram law 
was used to determine the resultant of two forces of known magnitude and direc-
tion. In Sample Prob. 2.2, it was used to resolve a given force into two components 
of known direction. 

   You will now be asked to solve problems on your own. Some may resemble one 
of the sample problems; others may not. What all problems and sample problems 
in this section have in common is that they can be solved by the direct application 
of the parallelogram law. 

   Your solution of a given problem should consist of the following steps:

   1.    Identify which of the forces are the applied forces and which is the resul-
tant.  It is often helpful to write the vector equation which shows how the forces 
are related. For example, in Sample Prob. 2.1 we would have

  R 5 P 1 Q  

You may want to keep that relation in mind as you formulate the next part of your 
solution.  

  2.    Draw a parallelogram with the applied forces as two adjacent sides and 
the resultant as the included diagonal  ( Fig. 2.2 ). Alternatively, you can  use the 
triangle rule , with the applied forces drawn in tip-to-tail fashion and the resultant 
extending from the tail of the first vector to the tip of the second ( Fig. 2.7 ).  

  3.    Indicate all dimensions.  Using one of the triangles of the parallelogram, or 
the triangle constructed according to the triangle rule, indicate all dimensions—
whether sides or angles—and determine the unknown dimensions either graphi-
cally or by trigonometry. If you use trigonometry, remember that the law of cosines 
should be applied first if two sides and the included angle are known [Sample 
Prob. 2.1], and the law of sines should be applied first if one side and all angles 
are known [Sample Prob. 2.2]. 

   If you have had prior exposure to mechanics, you might be tempted to ignore the 
solution techniques of this lesson in favor of resolving the forces into rectangular 
components. While this latter method is important and will be considered in the 
next section, use of the parallelogram law simplifies the solution of many problems 
and should be mastered at this time.      

24
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