

52609_00_fm_pi-pxxvi.indd ii52609_00_fm_pi-pxxvi.indd ii 2/1/10 11:37:43 PM2/1/10 11:37:43 PM

This an electronic version of the print textbook. Due to electronic rights

restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppres ed content does not materially

 affect the overall learning experience. The publisher reserves the
right to remove content from this title at any time if subsequent
rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit
www.cengage.com/highered to search by ISBN#, author, title, or keyword
 for materials in your areas of interest.

s

is

www.cengage.com/highered

Understanding Operating
Systems

Sixth Edition

Ann McIver McHoes

Ida M. Flynn

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

C7047_00_FM.qxd 1/15/10 11:22 AM Page i

© 2011 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2010920344

ISBN-13: 978-1-4390-7920-1

ISBN-10: 1-4390-7920-x

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or
registered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons, or companies or URLs used
throughout this book is intended for instructional purposes only. At the
time this book was printed, any such data was fictional and not belonging
to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred
online store www.CengageBrain.com

Understanding Operating Systems,

Sixth Edition

Ann McIver McHoes and Ida M. Flynn

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Editorial Assistant: Zina Kresin

Content Project Manager: Jennifer Feltri

Art Director: Faith Brosnan

Print Buyer: Julio Esperas

Cover Designer: Night & Day Design

Cover Photos: iStockphoto

Proofreader: Suzanne Huizenga

Indexer: Ann McIver McHoes

Compositor: Integra

Printed in the United States of America
1 2 3 4 5 6 7 16 15 14 13 12 11 10

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be e-mailed to

permissionrequest@cengage.com

C7047_00_FM.qxd 1/15/10 11:22 AM Page ii

www.cengage.com/permissions
www.cengage.com/global
www.cengage.com/coursetechnology
www.CengageBrain.com

Dedicated to an award-winning teacher and a wonderful
friend, Ida Moretti Flynn; her love for teaching lives on.

AMM

C7047_00_FM.qxd 1/15/10 11:22 AM Page iii

iv

Contents

Part One Operating Systems Concepts 1

Chapter 1 Introducing Operating Systems 3

Introduction 4

What Is an Operating System? 4

Operating System Software 4
Main Memory Management 6
Processor Management 6
Device Management 7
File Management 7
Network Management 7
User Interface 7
Cooperation Issues 8

A Brief History of Machine Hardware 9

Types of Operating Systems 12

Brief History of Operating System Development 14
1940s 14
1950s 16
1960s 18
1970s 19
1980s 20
1990s 21
2000s 22
Threads 24
Object-Oriented Design 25

Conclusion 26

Key Terms 27

Interesting Searches 29

Exercises 29

Chapter 2 Memory Management: Early Systems 31

Single-User Contiguous Scheme 32
Fixed Partitions 34

C7047_00_FM.qxd 1/15/10 11:22 AM Page iv

Dynamic Partitions 36

Best-Fit Versus First-Fit Allocation 38

Deallocation 44
Case 1: Joining Two Free Blocks 45
Case 2: Joining Three Free Blocks 46
Case 3: Deallocating an Isolated Block 47

Relocatable Dynamic Partitions 48

Conclusion 54

Key Terms 54

Interesting Searches 56

Exercises 56

Chapter 3 Memory Management: Virtual Memory 63

Paged Memory Allocation 64

Demand Paging 71

Page Replacement Policies and Concepts 76
First-In First-Out 77
Least Recently Used 79
The Mechanics of Paging 82
The Working Set 84

Segmented Memory Allocation 86

Segmented/Demand Paged Memory Allocation 89

Virtual Memory 92

Cache Memory 94

Conclusion 98

Key Terms 100

Interesting Searches 102

Exercises 102

Chapter 4 Processor Management 107

Overview 108

About Multi-Core Technologies 110

Job Scheduling Versus Process Scheduling 110

Process Scheduler 111
Job and Process Status 113
Process Control Blocks 114
PCBs and Queueing 115

Process Scheduling Policies 116

Process Scheduling Algorithms 118

v

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page v

First-Come, First-Served 118
Shortest Job Next 120
Priority Scheduling 121
Shortest Remaining Time 122
Round Robin 124
Multiple-Level Queues 127
Case 1: No Movement Between Queues 128
Case 2: Movement Between Queues 128
Case 3: Variable Time Quantum Per Queue 128
Case 4: Aging 129

A Word About Interrupts 129

Conclusion 130

Key Terms 131

Interesting Searches 134

Exercises 134

Chapter 5 Process Management 139

Deadlock 141

Seven Cases of Deadlock 142
Case 1: Deadlocks on File Requests 142
Case 2: Deadlocks in Databases 143
Case 3: Deadlocks in Dedicated Device Allocation 145
Case 4: Deadlocks in Multiple Device Allocation 145
Case 5: Deadlocks in Spooling 146
Case 6: Deadlocks in a Network 147
Case 7: Deadlocks in Disk Sharing 148

Conditions for Deadlock 149

Modeling Deadlocks 150

Strategies for Handling Deadlocks 153

Starvation 161

Conclusion 163

Key Terms 164

Interesting Searches 165

Exercises 165

Chapter 6 Concurrent Processes 171

What Is Parallel Processing? 172

Evolution of Multiprocessors 174

Introduction to Multi-Core Processors 174

vi

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page vi

Typical Multiprocessing Configurations 175
Master/Slave Configuration 175
Loosely Coupled Configuration 176
Symmetric Configuration 177

Process Synchronization Software 178
Test-and-Set 179
WAIT and SIGNAL 180
Semaphores 180

Process Cooperation 183
Producers and Consumers 183
Readers and Writers 185

Concurrent Programming 187
Applications of Concurrent Programming 187

Threads and Concurrent Programming 190
Thread States 191
Thread Control Block 193
Concurrent Programming Languages 193
Java 194

Conclusion 196

Key Terms 197

Interesting Searches 198

Exercises 198

Chapter 7 Device Management 203

Types of Devices 204

Sequential Access Storage Media 205

Direct Access Storage Devices 208
Fixed-Head Magnetic Disk Storage 208
Movable-Head Magnetic Disk Storage 209
Optical Disc Storage 211
CD and DVD Technology 213
Blu-ray Disc Technology 215
Flash Memory Storage 215

Magnetic Disk Drive Access Times 216
Fixed-Head Drives 216
Movable-Head Devices 218

Components of the I/O Subsystem 219

Communication Among Devices 222

Management of I/O Requests 225
Device Handler Seek Strategies 226
Search Strategies: Rotational Ordering 230

vii

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page vii

RAID 232
Level Zero 234
Level One 234
Level Two 236
Level Three 236
Level Four 236
Level Five 237
Level Six 238
Nested RAID Levels 238

Conclusion 239

Key Terms 240

Interesting Searches 243

Exercises 243

Chapter 8 File Management 249

The File Manager 250
Responsibilities of the File Manager 250
Definitions 251

Interacting with the File Manager 252
Typical Volume Configuration 253
Introducing Subdirectories 255
File-Naming Conventions 256

File Organization 258
Record Format 259
Physical File Organization 259

Physical Storage Allocation 263
Contiguous Storage 263
Noncontiguous Storage 264
Indexed Storage 265

Access Methods 267
Sequential Access 268
Direct Access 268

Levels in a File Management System 269

Access Control Verification Module 272
Access Control Matrix 273
Access Control Lists 274
Capability Lists 274

Data Compression 275
Text Compression 275
Other Compression Schemes 276

Conclusion 277

viii

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page viii

Key Terms 277

Interesting Searches 279

Exercises 280

Chapter 9 Network Organization Concepts 283

Basic Terminology 284

Network Topologies 286
Star 287
Ring 287
Bus 289
Tree 290
Hybrid 291

Network Types 292
Local Area Network 292
Metropolitan Area Network 293
Wide Area Network 293
Wireless Local Area Network 293

Software Design Issues 295
Addressing Conventions 295
Routing Strategies 296
Connection Models 298
Conflict Resolution 301

Transport Protocol Standards 305
OSI Reference Model 305
TCP/IP Model 309

Conclusion 311

Key Terms 311

Interesting Searches 313

Exercises 314

Chapter 10 Management of Network Functions 317

History of Networks 318
Comparison of Network and Distributed

Operating Systems 318

DO/S Development 321
Memory Management 321
Process Management 323
Device Management 328
File Management 330
Network Management 334

ix

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page ix

NOS Development 336
Important NOS Features 337
Major NOS Functions 338

Conclusion 339

Key Terms 339

Interesting Searches 340

Exercises 340

Chapter 11 Security and Ethics 343

Role of the Operating System in Security 344
System Survivability 344
Levels of Protection 345
Backup and Recovery 346

Security Breaches 347
Unintentional Intrusions 347
Intentional Attacks 348

System Protection 354
Antivirus Software 355
Firewalls 356
Authentication 357
Encryption 359

Password Management 361
Password Construction 361
Password Alternatives 363
Social Engineering 365

Ethics 366

Conclusion 367

Key Terms 367

Interesting Searches 370

Exercises 370

Chapter 12 System Management 373

Evaluating an Operating System 374

Cooperation Among Components 374
Role of Memory Management 375
Role of Processor Management 375
Role of Device Management 376
Role of File Management 378
Role of Network Management 379

x

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page x

Measuring System Performance 380
Measurement Tools 380
Feedback Loops 383

Patch Management 385
Patching Fundamentals 386
Software Options 388
Timing the Patch Cycle 388

System Monitoring 388

Accounting 391

Conclusion 392

Key Terms 393

Interesting Searches 394

Exercises 394

Part Two Operating Systems in Practice 397

Chapter 13 UNIX Operating System 401

Overview 402

History 402
The Evolution of UNIX 404

Design Goals 405

Memory Management 406

Process Management 408
Process Table Versus User Table 409
Synchronization 411

Device Management 414
Device Classifications 414
Device Drivers 416

File Management 417
File Naming Conventions 418
Directory Listings 419
Data Structures 422

User Command Interface 423
Script Files 425
Redirection 426
Pipes 427
Filters 428
Additional Commands 429

xi

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page xi

Conclusion 431

Key Terms 432

Interesting Searches 433

Exercises 433

Chapter 14 MS-DOS Operating System 435

History 436

Design Goals 438

Memory Management 440
Main Memory Allocation 442
Memory Block Allocation 443

Processor Management 444
Process Management 444
Interrupt Handlers 445

Device Management 446

File Management 447
Filename Conventions 447
Managing Files 448

User Interface 452
Batch Files 453
Redirection 454
Filters 455
Pipes 455
Additional Commands 456

Conclusion 458

Key Terms 458

Interesting Searches 459

Exercises 460

Chapter 15 Windows Operating Systems 463

Windows Development 464
Early Windows Products 464
Operating Systems for Home and Professional Users 465
Operating Systems for Networks 466

Design Goals 467
Extensibility 467
Portability 468
Reliability 468
Compatibility 469
Performance 470

xii

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page xii

Memory Management 470
User-Mode Features 471
Virtual Memory Implementation 472

Processor Management 474

Device Management 476

File Management 480

Network Management 483
Directory Services 484

Security Management 485
Security Basics 486
Security Terminology 486

User Interface 488

Conclusion 493

Key Terms 494

Interesting Searches 495

Exercises 495

Chapter 16 Linux Operating System 499

Overview 500

History 500

Design Goals 502

Memory Management 503

Processor Management 506
Organization of Table of Processes 506
Process Synchronization 507

Process Management 507

Device Management 508
Device Classifications 509
Device Drivers 509
Device Classes 510

File Management 511
Data Structures 511
Filename Conventions 512
Directory Listings 513

User Interface 515
Command-Driven Interfaces 516
Graphical User Interfaces 516
System Monitor 517
Service Settings 517
System Logs 518
Keyboard Shortcuts 518

xiii

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page xiii

System Management 519

Conclusion 520

Key Terms 520

Interesting Searches 521

Exercises 522

Appendix

Appendix A ACM Code of Ethics and 525
Professional Conduct

Glossary 529

Bibliography 559

Index 563

xiv

C
o
n
te

n
ts

C7047_00_FM.qxd 1/15/10 11:22 AM Page xiv

This book explains a very technical subject in a not-so-technical manner, putting the
concepts of operating systems into a format that students can quickly grasp.

For those new to the subject, this text demonstrates what operating systems are, what
they do, how they do it, how their performance can be evaluated, and how they com-
pare with each other. Throughout the text we describe the overall function and tell
readers where to find more detailed information, if they so desire.

For those with more technical backgrounds, this text introduces the subject concisely,
describing the complexities of operating systems without going into intricate detail.
One might say this book leaves off where other operating system textbooks begin.

To do so, we’ve made some assumptions about our audiences. First, we assume the
readers have some familiarity with computing systems. Second, we assume they
have a working knowledge of an operating system and how it interacts with them.
We recommend (although we don’t require) that readers be familiar with at least
one operating system. In a few places, we found it necessary to include examples
using Java or pseudocode to illustrate the inner workings of the operating systems;
but, for readers who are unfamiliar with computer languages, we’ve added a prose
description to each example that explains the events in more familiar terms.

Organization and Features

This book is structured to explain the functions of an operating system regardless of the
hardware that houses it. The organization addresses a recurring problem with textbooks
about technologies that continue to change—that is, the constant advances in evolving
subject matter can make textbooks immediately outdated. To address this problem,
we’ve divided the material into two parts: first, the concepts—which do not change
quickly—and second, the specifics of operating systems—which change dramatically
over the course of years and even months. Our goal is to give readers the ability to apply
the topics intelligently, realizing that, although a command, or series of commands, used
by one operating system may be different from another, their goals are the same and the
functions of the operating systems are also the same.

Although it is more difficult to understand how operating systems work than to memo-
rize the details of a single operating system, understanding general operating system

xv

Preface

C7047_00_FM.qxd 1/15/10 11:22 AM Page xv

concepts is a longer-lasting achievement. Such understanding also pays off in the long run
because it allows one to adapt as technology changes—as, inevitably, it does. Therefore,
the purpose of this book is to give computer users a solid background in the basics of
operating systems, their functions and goals, and how they interact and interrelate.

Part One, the first 12 chapters, describes the theory of operating systems. It concentrates
on each of the “managers” in turn and shows how they work together. Then it intro-
duces network organization concepts, security, ethics, and management of network
functions. Part Two examines actual operating systems, how they apply the theories pre-
sented in Part One, and how they compare with each other.

Chapter 1 gives a brief introduction to the subject. The meat of the text begins in
Chapters 2 and 3 with memory management because it is the simplest component of the
operating system to explain and has historically been tied to the advances from one
operating system to the next. We explain the role of the Processor Manager in Chapters
4, 5, and 6, first discussing simple systems and then expanding the discussion to include
multiprocessing systems. By the time we reach device management in Chapter 7 and file
management in Chapter 8, readers will have been introduced to the four main managers
found in every operating system. Chapters 9 and 10 introduce basic concepts related to
networking, and Chapters 11 and 12 discuss security, ethics, and some of the tradeoffs
that designers consider when attempting to satisfy the needs of their user population.

Each chapter includes learning objectives, key terms, and research topics. For techni-
cally oriented readers, the exercises at the end of each chapter include problems for
advanced students. Please note that some advanced exercises assume knowledge of
matters not presented in the book, but they’re good for those who enjoy a challenge.
We expect some readers from a more general background will cheerfully pass them by.

In an attempt to bring the concepts closer to home, throughout the book we’ve added
real-life examples to illustrate abstract concepts. However, let no one confuse our con-
versational style with our considerable respect for the subject matter. The subject of
operating systems is a complex one and it cannot be covered completely in these few
pages. Therefore, this textbook does not attempt to give an in-depth treatise of operat-
ing systems theory and applications. This is the overall view.

Part Two introduces four operating systems in the order of their first release: UNIX,
MS-DOS, Windows, and Linux. Here, each chapter discusses how one operating sys-
tem applies the concepts discussed in Part One and how it compares with the others.
Again, we must stress that this is a general discussion—an in-depth examination of an
operating system would require details based on its current standard version, which
can’t be done here. We strongly suggest that readers use our discussion as a guide, a
base to work from, when comparing the pros and cons of a specific operating system
and supplement our work with research that’s as current as possible.

The text concludes with several reference aids. Terms that are important within a
chapter are listed at its conclusion as key terms. The extensive end-of-book Glossary

xvi

P
re

fa
ce

C7047_00_FM.qxd 1/15/10 11:22 AM Page xvi

includes brief definitions for hundreds of terms used in these pages. The Bibliography
can guide the reader to basic research on the subject. Finally, the Appendix features
the ACM Code of Ethics.

Not included in this text is a discussion of databases and data structures, except as
examples of process synchronization problems, because they only tangentially relate
to operating systems and are frequently the subject of other courses. We suggest that
readers begin by learning the basics as presented in the following pages before pursu-
ing these complex subjects.

Changes to the Sixth Edition

This edition has been thoroughly updated and features many improvements over the
fifth edition:

• New references to Macintosh OS X, which is based on UNIX

• Numerous new homework exercises in every chapter

• Updated references to the expanding influence of wireless technology

• More networking information throughout the text

• Continuing emphasis on system security and patch management

• More discussion describing the management of multiple processors

• Updated detail in the chapters that discuss UNIX, Windows, and Linux

• New research topics and student exercises for the chapters on UNIX,
MS-DOS, Windows, and Linux

Other changes throughout the text are editorial clarifications, expanded captions, and
improved illustrations.

A Note for Instructors

The following supplements are available when this text is used in a classroom setting:

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this text-
book includes additional instructional material to assist in class preparation, including
Sample Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes,
Teaching Tips, and Discussion Topics.

Distance Learning. Course Technology is proud to present online test banks in WebCT
and Blackboard to provide the most complete and dynamic learning experience possible.
Instructors are encouraged to make the most of the course, both online and offline. For
more information on how to access the online test bank, contact your local Course
Technology sales representative.

xvii

P
re

fa
ce

C7047_00_FM.qxd 1/15/10 11:22 AM Page xvii

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each
chapter. These are included as a teaching aid for classroom presentations, either to
make available to students on the network for chapter review, or to be printed for
classroom distribution. Instructors can add their own slides for additional topics that
they introduce to the class.

Solutions. Selected solutions to Review Questions and Exercises are provided on the
Instructor Resources CD-ROM and may also be found on the Cengage Course
Technology Web site at www.cengage.com/coursetechnology. The solutions are pass-
word protected.

Order of Presentation. We have built this text with a modular construction to accom-
modate several presentation options, depending on the instructor’s preference. For
example, the syllabus can follow the chapters as listed in Chapter 1 through Chapter
12 to present the core concepts that all operating systems have in common. Using this
path, students will learn about the management of memory, processors, devices, files,
and networks, in that order. An alternative path might begin with Chapter 1, move next
to processor management in Chapters 4 through 6, then to memory management in
Chapters 2 and 3, touch on systems security and management in Chapters 11 and 12,
and finally move to device and file management in Chapters 7 and 8. Because network-
ing is often the subject of another course, instructors may choose to bypass Chapters 9
and 10, or include them for a more thorough treatment of operating systems.

We hope you find our discussion of ethics helpful in Chapter 11, which is included in
response to requests by university adopters of the text who want to discuss this sub-
ject in their lectures.

In Part Two, we examine details about four specific operating systems in an attempt to
show how the concepts in the first 12 chapters are applied by a specific operating system.
In each case, the chapter is structured in a similar manner as the chapters in Part One.
That is, they discuss the management of memory, processors, files, devices, networks, and
systems. In addition, each includes an introduction to one or more user interfaces for that
operating system. With this edition, we added exercises and research topics to each of
these chapters to help students explore issues discussed in the preceding pages.

For the first time, we included references to the Macintosh OS X operating system in
the UNIX chapter.

We continue to include MS-DOS in spite of its age because faculty reviewers and
adopters have specifically requested it, presumably so students can learn the basics of
this command-driven interface using a Windows emulator.

If you have suggestions for inclusion in this text, please send them along. Although we
are squeezed for space, we are pleased to consider all possibilities.

xviii

P
re

fa
ce

C7047_00_FM.qxd 1/15/10 11:22 AM Page xviii

www.cengage.com/coursetechnology

Acknowledgments

Our gratitude goes to all of our friends and colleagues, who were so generous with their
encouragement, advice, and support. Special thanks go to Robert Kleinmann, Eleanor
Irwin, Charles R. Woratschek, Terri Lennox, and Roger Flynn for their assistance.

Special thanks also to those at Course Technology, Brooks/Cole, and PWS Publishing
who made significant contributions to all six editions of this text, especially Alyssa Pratt,
Kallie Swanson, Mike Sugarman, and Mary Thomas Stone. In addition, the following
individuals made key contributions to this edition: Jennifer Feltri, Content Project
Manager, and Sreejith Govindan, Integra.

We deeply appreciate the comments of the reviewers who helped us refine this edition:

Proposal Reviewers:
Nisheeth Agrawal: Calhoun Community College
Brian Arthur: Mary Baldwin College
Margaret Moore: University of Phoenix

Chapter Reviewers:
Kent Einspahr: Concordia University
Gary Heisler: Lansing Community College
Paul Hemler: Hampden-Sydney College

And to the many students and instructors who have sent helpful comments and sug-
gestions since publication of the first edition in 1991, we thank you. Please keep
them coming.

Ann McIver McHoes, mchoesa@duq.edu

Ida M. Flynn

xix

P
re

fa
ce

C7047_00_FM.qxd 1/15/10 11:22 AM Page xix

This page intentionally left blank

“So work the honey-bees,

Creatures that by a rule in nature teach

The act of order to a peopled kingdom.”
—William Shakespeare (1564–1616; in Henry V)

All operating systems have certain core items in common: each must manage memory,
processing capability, devices and peripherals, files, and networks. In Part One of this
text we present an overview of these operating systems essentials.

• Chapter 1 introduces the subject.

• Chapters 2–3 discuss main memory management.

• Chapters 4–6 cover processor management.

• Chapter 7 concentrates on device management.

• Chapter 8 is devoted to file management.

• Chapters 9–10 briefly review networks.

• Chapter 11 discusses system security issues.

• Chapter 12 explores system management and the interaction of the operating
system’s components.

Then, in Part Two of the text (Chapters 13–16), we look at specific operating systems
and how they apply the theory presented here in Part One.

1

Part One

Operating Systems
Concepts

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 1

2

P
a
rt
 O

n
e
 |

O
p
e
ra

ti
n
g
 S

ys
te

m
s

C
o
n
ce

p
ts

Throughout our discussion of this very technical subject, we try to include definitions
of terms that might be unfamiliar to you. However, it isn’t always possible to describe
a function and define the technical terms while keeping the explanation clear.
Therefore, we’ve put the key terms with definitions at the end of each chapter, and at
the end of the text is an extensive glossary for your reference. Items listed in the Key
Terms are shown in boldface the first time they appear.

Throughout the book we keep our descriptions and examples as simple as possible to
introduce you to the system’s complexities without getting bogged down in technical
detail. Therefore, be aware that for almost every topic explained in the following
pages, there’s much more information that can be studied. Our goal is to introduce
you to the subject, and to encourage you to pursue your interest using other texts or
primary sources if you need more detail.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 2

“I think there is a world market for maybe five computers.”
—Thomas J. Watson (1874–1956; chairman of IBM 1949–1956)

Learning Objectives

After completing this chapter, you should be able to describe:

• Innovations in operating system development

• The basic role of an operating system

• The major operating system software subsystem managers and their functions

• The types of machine hardware on which operating systems run

• The differences among batch, interactive, real-time, hybrid, and embedded
operating systems

• Multiprocessing and its impact on the evolution of operating system software

• Virtualization and core architecture trends in new operating systems

3

Software Components
Developed

Hardware Components
Developed

Operating Systems
Developed

Chapter 1 Introducing Operating
Systems

OPERATING SYSTEMS

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 3

Introduction

To understand an operating system is to understand the workings of an entire computer
system, because the operating system manages each and every piece of hardware and
software. This text explores what operating systems are, how they work, what they do,
and why.

This chapter briefly describes how simple operating systems work and how, in general,
they’ve evolved. The following chapters explore each component in more depth and show
how its function relates to the other parts of the operating system. In other words, you
see how the pieces work harmoniously to keep the computer system working smoothly.

What Is an Operating System?

A computer system consists of software (programs) and hardware (the physical
machine and its electronic components). The operating system software is the chief
piece of software, the portion of the computing system that manages all of the hard-
ware and all of the other software. To be specific, it controls every file, every device,
every section of main memory, and every nanosecond of processing time. It controls
who can use the system and how. In short, it’s the boss.

Therefore, each time the user sends a command, the operating system must make sure
that the command is executed; or, if it’s not executed, it must arrange for the user to
get a message explaining the error. Remember: This doesn’t necessarily mean that the
operating system executes the command or sends the error message—but it does
control the parts of the system that do.

Operating System Software

The pyramid shown in Figure 1.1 is an abstract representation of an operating system
and demonstrates how its major components work together.

At the base of the pyramid are the four essential managers of every operating system:
the Memory Manager, the Processor Manager, the Device Manager, and the File
Manager. In fact, these managers are the basis of all operating systems and each is
discussed in detail throughout the first part of this book. Each manager works closely
with the other managers and performs its unique role regardless of which specific
operating system is being discussed. At the top of the pyramid is the User Interface,
from which users issue commands to the operating system. This is the component
that’s unique to each operating system—sometimes even between different versions of
the same operating system.

4

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

✔
Unless we mention
networking or the
Internet, our
discussions apply
to the most basic
elements of
operating systems.
Chapters 9 and 10
are dedicated to
networking.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 4

A network was not always an integral part of operating systems; early systems were
self-contained with all network capability added on top of existing operating systems.
Now most operating systems routinely incorporate a Network Manager. The base of
a pyramid for a networked operating system is shown in Figure 1.2.

Regardless of the size or configuration of the system, each of the subsystem managers,
shown in Figure 1.3, must perform the following tasks:

• Monitor its resources continuously

• Enforce the policies that determine who gets what, when, and how much

• Allocate the resource when appropriate

• Deallocate the resource when appropriate

5

O
p
e
ra

tin
g
 S

yste
m

 S
o
ftw

a
re

User Interface

Device Manager

File Manager

Memory Manager

Processor Manager

(figure 1.1)

This model of a

non-networked operating

system shows four

subsystem managers

supporting the User

Interface.

(figure 1.2)

Networked systems have

a Network Manager that

assumes responsibility for

networking tasks while

working harmoniously

with every other manager.

Device Manager
(keyboard, printer,
disk drives, modem,

monitor, etc.)
File Manager

(program files, data files,
compilers, etc.)

Memory Manager
(main memory)

Network Manager
(network communications,

protocols, etc.)

Processor Manager
(CPU)

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 5

Main Memory Management

The Memory Manager (the subject of Chapters 2–3) is in charge of main memory, also
known as RAM, short for Random Access Memory. The Memory Manager checks the
validity of each request for memory space and, if it is a legal request, it allocates a portion
of memory that isn’t already in use. In a multiuser environment, the Memory Manager
sets up a table to keep track of who is using which section of memory. Finally, when the
time comes to reclaim the memory, the Memory Manager deallocates memory.

A primary responsibility of the Memory Manager is to protect the space in main memory
occupied by the operating system itself—it can’t allow any part of it to be accidentally or
intentionally altered.

Processor Management

The Processor Manager (the subject of Chapters 4–6) decides how to allocate the cen-
tral processing unit (CPU). An important function of the Processor Manager is to keep
track of the status of each process. A process is defined here as an instance of execu-
tion of a program.

The Processor Manager monitors whether the CPU is executing a process or waiting
for a READ or WRITE command to finish execution. Because it handles the processes’
transitions from one state of execution to another, it can be compared to a traffic con-
troller. Once the Processor Manager allocates the processor, it sets up the necessary
registers and tables and, when the job is finished or the maximum amount of time has
expired, it reclaims the processor.

Think of it this way: The Processor Manager has two levels of responsibility. One is to
handle jobs as they enter the system and the other is to manage each process within
those jobs. The first part is handled by the Job Scheduler, the high-level portion of the
Processor Manager, which accepts or rejects the incoming jobs. The second part is

6

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(figure 1.3)

Each subsystem manager

at the base of the pyramid

takes responsibility for its

own tasks while working

harmoniously with every

other manager.

Device Manager
(keyboard, printer,
disk drives, modem,

monitor, etc.)
File Manager

(program files, data files,
compilers, etc.)

Memory Manager
(main memory, also called

random access memory, RAM)

Processor Manager
(CPU)

✔
RAM is the
computer’s main
memory and was
called “primary
storage” in early
systems.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 6

handled by the Process Scheduler, the low-level portion of the Processor Manager,
which is responsible for deciding which process gets the CPU and for how long.

Device Management

The Device Manager (the subject of Chapter 7) monitors every device, channel, and
control unit. Its job is to choose the most efficient way to allocate all of the system’s
devices, printers, ports, disk drives, and so forth, based on a scheduling policy chosen
by the system’s designers.

The Device Manager does this by allocating each resource, starting its operation, and,
finally, deallocating the device, making it available to the next process or job.

File Management

The File Manager (the subject of Chapter 8) keeps track of every file in the system,
including data files, program files, compilers, and applications. By using predeter-
mined access policies, it enforces restrictions on who has access to which files. The
File Manager also controls what users are allowed to do with files once they access
them. For example, a user might have read-only access, read-and-write access, or the
authority to create and delete files. Managing access control is a key part of file
management. Finally, the File Manager allocates the necessary resources and later
deallocates them.

Network Management

Operating systems with Internet or networking capability have a fifth essential man-
ager called the Network Manager (the subject of Chapters 9–10) that provides a con-
venient way for users to share resources while controlling users’ access to them. These
resources include hardware (such as CPUs, memory areas, printers, tape drives,
modems, and disk drives) and software (such as compilers, application programs, and
data files).

User Interface

The user interface is the portion of the operating system that users interact with
directly. In the old days, the user interface consisted of commands typed on a keyboard
and displayed on a monitor, as shown in Figure 1.4. Now most systems allow users to
choose a menu option from a list. The user interface, desktops, and formats vary
widely from one operating system to another, as shown in Chapters 13–16 in Part Two
of this text.

7

O
p
e
ra

tin
g
 S

yste
m

 S
o
ftw

a
re

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 7

Cooperation Issues

However, it is not enough for each manager to perform its individual tasks. It must
also be able to work harmoniously with every other manager. Here is a simplified
example. Let’s say someone chooses an option from a menu to execute a program. The
following major steps must occur in sequence:

1. The Device Manager must receive the electrical impulses from the mouse or
keyboard, form the command, and send the command to the User Interface,
where the Processor Manager validates the command.

2. The Processor Manager then sends an acknowledgment message to be dis-
played on the monitor so the user realizes the command has been sent.

3. When the Processor Manager receives the command, it determines whether the
program must be retrieved from storage or is already in memory, and then
notifies the appropriate manager.

4. If the program is in storage, the File Manager must calculate its exact location
on the disk and pass this information to the Device Manager, which retrieves
the program and sends it to the Memory Manager.

5. The Memory Manager then finds space for it and records its exact location in
memory. Once the program is in memory, the Memory Manager must track its
location in memory (even if it’s moved) as well as its progress as it’s executed
by the Processor Manager.

6. When the program has finished executing, it must send a finished message to
the Processor Manager so that the processor can be assigned to the next pro-
gram waiting in line.

7. Finally, the Processor Manager must forward the finished message to the
Device Manager, so that it can notify the user and refresh the screen.

Although this is a vastly oversimplified demonstration of a complex operation, it illus-
trates some of the incredible precision required for the operating system to work smoothly.
So although we’ll be discussing each manager in isolation for much of this text, no single
manager could perform its tasks without the active cooperation of every other part.

8

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(figure 1.4)

Two user interfaces from Linux: a command-driven interface (left) and a menu-driven interface (right).

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 8

A Brief History of Machine Hardware

To appreciate the role of the operating system (which is software), we need to discuss
the essential aspects of the computer system’s hardware, the physical machine and its
electronic components, including memory chips, input/output devices, storage devices,
and the central processing unit (CPU).

• Main memory (random access memory, RAM) is where the data and instructions
must reside to be processed.

• I/O devices, short for input/output devices, include every peripheral unit in the system
such as printers, disk drives, CD/DVD drives, flash memory, keyboards, and so on.

• The central processing unit (CPU) is the brains with the circuitry (sometimes called
the chip) to control the interpretation and execution of instructions. In essence, it
controls the operation of the entire computer system, as illustrated in Figure 1.5.
All storage references, data manipulations, and I/O operations are initiated or
performed by the CPU.

Until the mid-1970s, computers were classified by capacity and price. A mainframe was
a large machine—in size and in internal memory capacity. The IBM 360, introduced in

9

A
B
rie

f H
isto

ry o
f M

a
ch

in
e
 H

a
rd

w
a
re

(figure 1.5)

A logical view of a typical

computer system

hardware configuration.

The tower holds the

central processing unit,

the arithmetic and logic

unit, registers, cache, and

main memory, as well as

controllers and interfaces

shown within the

dotted lines.

Monitor

Inside Tower

Tower

Video Interface

Keyboard, Mouse
Interface

Keyboard Mouse

Disk Controller

Serial Interface

Parallel Interface

USB Interface

USB Interface

Camera

Scanner

Laser Printer

Modem

Optical Drive

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 9

1964, is a classic example of an early mainframe. The IBM 360 model 30 required an
air-conditioned room about 18 feet square to house the CPU, the operator’s console, a
printer, a card reader, and a keypunch machine. The CPU was 5 feet high and 6 feet
wide, had an internal memory of 64K (considered large at that time), and a price tag of
$200,000 in 1964 dollars. Because of its size and price at the time, its applications were
generally limited to large computer centers belonging to the federal government,
universities, and very large businesses.

The minicomputer was developed to meet the needs of smaller institutions, those with
only a few dozen users. One of the early minicomputers was marketed by Digital
Equipment Corporation to satisfy the needs of large schools and small colleges that
began offering computer science courses in the early 1970s. (The price of its PDP-8
was less than $18,000.) Minicomputers are smaller in size and memory capacity and
cheaper than mainframes. Today, computers that fall between microcomputers and
mainframes in capacity are often called midrange computers.

The supercomputer was developed primarily for government applications needing
massive and fast number-crunching ability to carry out military operations and
weather forecasting. Business and industry became interested in the technology when
the massive computers became faster and less expensive. A Cray supercomputer is a
typical example with six to thousands of processors performing up to 2.4 trillion float-
ing point operations per second (2.4 teraflops). Supercomputers are used for a wide
range of tasks from scientific research to customer support and product development.
They’re often used to perform the intricate calculations required to create animated
motion pictures. And they help oil companies in their search for oil by analyzing
massive amounts of data (Stair, 1999).

The microcomputer was developed to offer inexpensive computation capability to
individual users in the late 1970s. Early models featured a revolutionary amount of
memory: 64K. Their physical size was smaller than the minicomputers of that time,
though larger than the microcomputers of today. Eventually, microcomputers grew to
accommodate software with larger capacity and greater speed. The distinguishing
characteristic of the first microcomputer was its single-user status.

Powerful microcomputers developed for use by commercial, educational, and govern-
ment enterprises are called workstations. Typically, workstations are networked
together and are used to support engineering and technical users who perform massive
mathematical computations or computer-aided design (CAD), or use other applica-
tions requiring very powerful CPUs, large amounts of main memory, and extremely
high-resolution graphic displays to meet their needs.

Servers are powerful computers that provide specialized services to other computers
on client/server networks. Examples can include print servers, Internet servers, e-mail
servers, etc. Each performs critical network tasks. For instance, a file server, usually a

10

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

✔
HP-UX, Sun Solaris,
and Macintosh OS
X are only three of
many operating
systems based on
UNIX.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 10

powerful computer with substantial file storage capacity (such as a large collection of
hard drives), manages file storage and retrieval for other computers, called clients, on
the network.

Platform Operating System

Microcomputers Linux, UNIX (includes Mac), Windows

Mainframe computers IBM z/390, Linux, UNIX

Supercomputers IRIX, Linux, UNICOS

Workstations, servers Linux, UNIX, Windows

Networks Linux, NetWare, UNIX, Windows

Personal digital assistants BlackBerry, Linux, Palm OS, Windows Mobile

Some typical operating systems for a wide variety of platforms are shown in Table 1.1.
Since the mid-1970s, rapid advances in computer technology have blurred the distin-
guishing characteristics of early machines: physical size, cost, and memory capacity.
The most powerful mainframes today have multiple processors coordinated by the
Processor Manager. Simple mainframes still have a large main memory, but now
they’re available in desk-sized cabinets.

Networking is an integral part of modern computer systems because it can connect
workstations, servers, and peripheral devices into integrated computing systems.
Networking capability has become a standard feature in many computing devices:
personal organizers, personal digital assistants (PDAs), cell phones, and handheld Web
browsers.

At one time, computers were classified by memory capacity; now they’re distin-
guished by processor capacity. We must emphasize that these are relative categories
and what is large today will become medium-sized and then small sometime in the
near future.

In 1965, Intel executive Gordon Moore observed that each new processor chip con-
tained roughly twice as much capacity as its predecessor, and each chip was released
within 18–24 months of the previous chip. He predicted that the trend would cause
computing power to rise exponentially over relatively brief periods of time. Now
known as Moore’s Law, shown in Figure 1.6, the trend has continued and is still
remarkably accurate. The Intel 4004 chip in 1971 had 2,300 transistors while the
Pentium II chip 20 years later had 7.5 million, and the Pentium 4 Extreme Edition
processor introduced in 2004 had 178 million transistors. Moore’s Law is often used
by industry observers to make their chip capacity forecasts.

11

A
B
rie

f H
isto

ry o
f M

a
ch

in
e
 H

a
rd

w
a
re

(table 1.1)

A brief list of platforms and

sample operating systems

listed in alphabetical

order.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 11

Types of Operating Systems

Operating systems for computers large and small fall into five categories distinguished
by response time and how data is entered into the system: batch, interactive, real-time,
hybrid, and embedded systems.

Batch systems date from the earliest computers, when they relied on stacks of punched
cards or reels of magnetic tape for input. Jobs were entered by assembling the cards
into a deck and running the entire deck of cards through a card reader as a group—a
batch. The efficiency of a batch system is measured in throughput—the number of jobs
completed in a given amount of time (for example, 550 jobs per hour).

Interactive systems give a faster turnaround than batch systems but are slower than
the real-time systems we talk about next. They were introduced to satisfy the demands
of users who needed fast turnaround when debugging their programs. The operating
system required the development of time-sharing software, which would allow each
user to interact directly with the computer system via commands entered from a type-
writer-like terminal. The operating system provides immediate feedback to the user
and response time can be measured in fractions of a second.

Real-time systems are used in time-critical environments where reliability is key and
data must be processed within a strict time limit. The time limit need not be ultra-fast

12

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(figure 1.6)

Demonstration of Moore’s

Law. Gordon Moore’s 1965

prediction has held up for

more than three decades.

Copyright © 2005 Intel

Corporation

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 12

(though it often is), but system response time must meet the deadline or risk signifi-
cant consequences. These systems also need to provide contingencies to fail grace-
fully—that is, preserve as much of the system’s capabilities and data as possible to
facilitate recovery. For example, real-time systems are used for space flights (as shown
in Figure 1.7), airport traffic control, fly-by-wire aircraft, critical industrial processes,
certain medical equipment, and telephone switching, to name a few.

There are two types of real-time systems depending on the consequences of missing the
deadline:

• Hard real-time systems risk total system failure if the predicted time deadline is
missed.

• Soft real-time systems suffer performance degradation, but not total system failure,
as a consequence of a missed deadline.

Although it’s theoretically possible to convert a general-purpose operating system
into a real-time system by merely establishing a deadline, the unpredictability of
these systems can’t provide the guaranteed response times that real-time perfor-
mance requires (Dougherty, 1995). Therefore, most embedded systems and real-
time environments require operating systems that are specially designed to meet
real-time needs.

Hybrid systems are a combination of batch and interactive. They appear to be
interactive because individual users can access the system and get fast responses, but
such a system actually accepts and runs batch programs in the background when the
interactive load is light. A hybrid system takes advantage of the free time between
high-demand usage of the system and low-demand times. Many large computer sys-
tems are hybrids.

13

Typ
e
s o

f O
p
e
ra

tin
g
 S

yste
m

s

(figure 1.7)

The state-of-the-art

computer interface box

for the Apollo spacecraft

in 1968. The guidance

computer had few

moving parts and no

vacuum tubes, making it

both rugged and

compact.

Courtesy of NASA

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 13

Embedded systems are computers placed inside other products to add features and
capabilities. For example, you find embedded computers in household appliances,
automobiles, digital music players, elevators, and pacemakers. In the case of automo-
biles, embedded computers can help with engine performance, braking, and naviga-
tion. For example, several projects are under way to implement “smart roads,” which
would alert drivers in cars equipped with embedded computers to choose alternate
routes when traffic becomes congested.

Operating systems for embedded computers are very different from those for general
computer systems. Each one is designed to perform a set of specific programs, which
are not interchangeable among systems. This permits the designers to make the oper-
ating system more efficient and take advantage of the computer’s limited resources,
such as memory, to their maximum.

Before a general-purpose operating system, such as Linux, UNIX, or Windows, can
be used in an embedded system, the system designers must select which components,
from the entire operating system, are needed in that particular environment. The
final version of this operating system will include only the necessary elements; any
unneeded features or functions will be dropped. Therefore, operating systems with a
small kernel (the core portion of the software) and other functions that can be mixed
and matched to meet the embedded system requirements will have potential in this
market.

Brief History of Operating System Development

The evolution of operating system software parallels the evolution of the computer
hardware it was designed to control. Here’s a very brief overview of this evolution.

1940s

The first generation of computers (1940–1955) was a time of vacuum tube technology
and computers the size of classrooms. Each computer was unique in structure and
purpose. There was little need for standard operating system software because each
computer’s use was restricted to a few professionals working on mathematical, scien-
tific, or military applications, all of whom were familiar with the idiosyncrasies of
their hardware.

A typical program would include every instruction needed by the computer to perform
the tasks requested. It would give explicit directions to the card reader (when to begin,
how to interpret the data on the cards, when to end), the CPU (how and where to store
the instructions in memory, what to calculate, where to find the data, where to send

14

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

✔
One example of a
software product to
help developers
build an embedded
system is Windows
Automotive.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 14

the output), and the output device (when to begin, how to print out the finished prod-
uct, how to format the page, and when to end).

The machines were operated by the programmers from the main console—it was a
hands-on process. In fact, to debug a program, the programmer would stop the
processor, read the contents of each register, make the corrections in memory
locations, and then resume operation. The first bug was a moth trapped in a Harvard
computer that caused it to fail, as shown in Figure 1.8.

To run programs, the programmers would have to reserve the machine for the length
of time they estimated it would take the computer to execute the program. As a result,
the machine was poorly utilized. The CPU processed data and made calculations for
only a fraction of the available time and, in fact, the entire system sat idle between
reservations.

In time, computer hardware and software became more standard and the execution of
a program required fewer steps and less knowledge of the internal workings of the
computer. Compilers and assemblers were developed to translate into binary code the
English-like commands of the evolving high-level languages.

Rudimentary operating systems started to take shape with the creation of macros,
library programs, standard subroutines, and utility programs. And they included
device driver subroutines—prewritten programs that standardized the way input and
output devices were used.

These early programs were at a significant disadvantage because they were designed
to use their resources conservatively at the expense of understandability. That meant

15

B
rie

f H
isto

ry o
f O

p
e
ra

tin
g
 S

yste
m

 D
e
v
e
lo

p
m

e
n
t

(figure 1.8)

Dr. Grace Hopper’s

research journal from her

work on Harvard’s Mark I

computer in 1945 included

the remains of the first

computer “bug,” a moth

that had become trapped

in the computer’s relays

causing the system to

crash. Today’s use of the

term “bug” stems from

that first moth.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 15

that many programs used convoluted logic that only the original programmer could
understand, so it was nearly impossible for anyone else to debug or change the
program later on.

1950s

Second-generation computers (1955–1965) were developed to meet the needs of new
markets—government and business researchers. The business environment placed
much more importance on the cost effectiveness of the system. Computers were still
very expensive, especially when compared to other office equipment (the IBM 7094
was priced at $200,000). Therefore, throughput had to be maximized to make such
an investment worthwhile for business use, which meant dramatically increasing the
usage of the system.

Two improvements were widely adopted: Computer operators were hired to facilitate
each machine’s operation, and job scheduling was instituted. Job scheduling is a produc-
tivity improvement scheme that groups together programs with similar requirements.
For example, several FORTRAN programs would be run together while the FORTRAN
compiler was still resident in memory. Or all of the jobs using the card reader for input
might be run together, and those using the tape drive would be run later. Some operators
found that a mix of I/O device requirements was the most efficient combination. That is,
by mixing tape-input programs with card-input programs, the tapes could be mounted
or rewound while the card reader was busy. A typical punch card is shown in Figure 1.9.

Job scheduling introduced the need for control cards, which defined the exact nature
of each program and its requirements, illustrated in Figure 1.10. This was one of the
first uses of a job control language, which helped the operating system coordinate and
manage the system resources by identifying the users and their jobs and specifying the
resources required to execute each job.

16

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(figure 1.9)

Each letter or number

printed along the top of the

punch card is represented

by a unique combination of

holes beneath it.

From ibm.com

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 16

But even with batching techniques, the faster second-generation computers allowed
expensive time lags between the CPU and the I/O devices. For example, a job with
1600 cards could take 79 seconds to be read by the card reader and only 5 seconds of
CPU time to assemble or compile. That meant the CPU was idle 94 percent of the time
and busy only 6 percent of the time it was dedicated to that job—an inefficiency that
resulted in poor overall system use.

Eventually, several factors helped improve the performance of the CPU:

• First, the speeds of I/O devices such as drums, tape drives, and disks gradually
increased.

• Second, to use more of the available storage area in these devices, records were
grouped into blocks before they were retrieved or stored. (This is called blocking,
meaning that several logical records are grouped within one physical record, and is
discussed in detail in Chapter 7.)

• Third, to reduce the discrepancy in speed between the I/O and the CPU, an interface
called the control unit was placed between them to act as a buffer. A buffer is an
interim storage area that works as a temporary holding place. As the slow input
device reads one record, the control unit places each character of the record into the
buffer. When the buffer is full, the entire record is quickly transmitted to the CPU.
The process is just the opposite for output devices: The CPU places the entire record
into the buffer, which is then passed on by the control unit at the slower rate
required by the output device.

The buffers of this generation were conceptually similar to those now used routinely by
Internet browsers to make video and audio playback smoother, as shown in Figure 1.11.

If a control unit had more than one buffer, the I/O process could be made even faster.
For example, if the control unit had two buffers, the second buffer could be loaded
while the first buffer was transmitting its contents to or from the CPU. Ideally, by

17

B
rie

f H
isto

ry o
f O

p
e
ra

tin
g
 S

yste
m

 D
e
v
e
lo

p
m

e
n
t

(figure 1.10)

The Job Control Language

(called JCL) program

structure and the order of

punch cards for the DEC-10

computer.

Announces the end of this job. $EOJ

$DATA

$LANGUAGE [request compiler here]
$PASSWORD [insert your password here]

$JOB [insert your user # here]

These cards hold the data.

These cards hold the
source file, the application.

This card announces
the start of a new job.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 17

• Fourth, in addition to buffering, an early form of spooling was developed by mov-
ing offline the operations of card reading, printing, and “punching.” For example,
incoming jobs would be transferred from card decks to reels of magnetic tape
offline. Then they could be read into the CPU from the tape at a speed much faster
than that of the card reader. The spooler worked the same way as a buffer but, in
this example, it was a separate offline device while a buffer was part of the main
computer hardware.

Also during the second generation, techniques were developed to manage program
libraries, create and maintain each data direct access address, and create and check file
labels. Timer interrupts were developed to allow job sharing and to prevent infinite
loops on programs that were mistakenly instructed to execute a single series of com-
mands forever. Because a fixed amount of execution time was allocated to each pro-
gram when it entered the system, and was monitored by the operating system,
programs that were still running when the time expired were terminated.

During the second generation, programs were still assigned to the processor one at a
time. The next step toward better use of the system’s resources was the move to shared
processing.

1960s

Third-generation computers date from the mid-1960s. They were designed with faster
CPUs, but their speed still caused problems when they interacted with printers and
other I/O devices that ran at slower speeds. The solution was multiprogramming,
which introduced the concept of loading many programs at one time and sharing the
attention of a single CPU.

The first multiprogramming systems allowed each program to be serviced in turn, one
after another. The most common mechanism for implementing multiprogramming was
the introduction of the concept of the interrupt, whereby the CPU was notified of
events needing operating system services. For example, when a program issued a print
command (called an input/output command or an I/O command), it generated an
interrupt requesting the services of the I/O processor and the CPU was released to
begin execution of the next job. This was called passive multiprogramming because

18

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(figure 1.11)

Three typical browser

buffering progress

indicators.

the time the first was transmitted, the second was ready to go, and so on. In this way,
input or output time was cut in half.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 18

the operating system didn’t control the interrupts but waited for each job to end an
execution sequence. It was less than ideal because if a job was CPU-bound (meaning
that it performed a great deal of nonstop CPU processing before issuing an interrupt),
it could tie up the CPU for a long time while all other jobs had to wait.

To counteract this effect, the operating system was soon given a more active role with
the advent of active multiprogramming, which allowed each program to use only a
preset slice of CPU time, which is discussed in Chapter 4. When time expired, the job
was interrupted and another job was allowed to begin execution. The interrupted job
had to wait until it was allowed to resume execution later. The idea of time slicing
soon became common in many time-sharing systems.

Program scheduling, which was begun with second-generation systems, continued at this
time but was complicated by the fact that main memory was occupied by many jobs. To
solve this problem, the jobs were sorted into groups and then loaded into memory
according to a preset rotation formula. The sorting was often determined by priority or
memory requirements—whichever was found to be the most efficient use of the avail-
able resources. In addition to scheduling jobs, handling interrupts, and allocating
memory, the operating systems also had to resolve conflicts whenever two jobs requested
the same device at the same time, something we will explore in Chapter 5.

Even though there was progress in processor management, few major advances were
made in data management.

1970s

After the third generation, during the late 1970s, computers had faster CPUs, creating
an even greater disparity between their rapid processing speed and slower I/O access
time. The first Cray supercomputer was released in 1976. Multiprogramming schemes
to increase CPU use were limited by the physical capacity of the main memory, which
was a limited resource and very expensive.

A solution to this physical limitation was the development of virtual memory, which
took advantage of the fact that the CPU could process only one instruction at a time.
With virtual memory, the entire program didn’t need to reside in memory before exe-
cution could begin. A system with virtual memory would divide the programs into
parts and keep them in secondary storage, bringing each part into memory only as it
was needed. (Programmers of second-generation computers had used this concept
with the roll in/roll out programming method, also called overlay, to execute programs
that exceeded the physical memory of those computers.)

At this time there was also growing attention to the need for data resource conserva-
tion. Database management software became a popular tool because it organized
data in an integrated manner, minimized redundancy, and simplified updating and

19

B
rie

f H
isto

ry o
f O

p
e
ra

tin
g
 S

yste
m

 D
e
v
e
lo

p
m

e
n
t

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 19

access of data. A number of query systems were introduced that allowed even the
novice user to retrieve specific pieces of the database. These queries were usually
made via a terminal, which in turn mandated a growth in terminal support and data
communication software.

Programmers soon became more removed from the intricacies of the computer, and
application programs started using English-like words, modular structures, and stan-
dard operations. This trend toward the use of standards improved program manage-
ment because program maintenance became faster and easier.

1980s

Development in the 1980s dramatically improved the cost/performance ratio of com-
puter components. Hardware was more flexible, with logical functions built on easily
replaceable circuit boards. And because it was less costly to create these circuit boards,
more operating system functions were made part of the hardware itself, giving rise to
a new concept—firmware, a word used to indicate that a program is permanently held
in read-only memory (ROM), as opposed to being held in secondary storage. The job
of the programmer, as it had been defined in previous years, changed dramatically
because many programming functions were being carried out by the system’s software,
hence making the programmer’s task simpler and less hardware dependent.

Eventually the industry moved to multiprocessing (having more than one processor),
and more complex languages were designed to coordinate the activities of the multiple
processors servicing a single job. As a result, it became possible to execute programs
in parallel, and eventually operating systems for computers of every size were
routinely expected to accommodate multiprocessing.

The evolution of personal computers and high-speed communications sparked the
move to networked systems and distributed processing, enabling users in remote loca-
tions to share hardware and software resources. These systems required a new kind of
operating system—one capable of managing multiple sets of subsystem managers, as
well as hardware that might reside half a world away.

With network operating systems, users generally became aware of the existence of
many networked resources, could log in to remote locations, and could manipulate
files on networked computers distributed over a wide geographical area. Network
operating systems were similar to single-processor operating systems in that each
machine ran its own local operating system and had its own users. The difference was
in the addition of a network interface controller with low-level software to drive the
local operating system, as well as programs to allow remote login and remote file
access. Still, even with these additions, the basic structure of the network operating
system was quite close to that of a standalone system.

20

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 20

On the other hand, with distributed operating systems, users could think they were
working with a typical uniprocessor system when in fact they were connected to a
cluster of many processors working closely together. With these systems, users didn’t
need to know which processor was running their applications or which devices were
storing their files. These details were all handled transparently by the operating
system—something that required more than just adding a few lines of code to a
uniprocessor operating system. The disadvantage of such a complex operating system
was the requirement for more complex processor-scheduling algorithms. In addition,
communications delays within the network sometimes meant that scheduling algo-
rithms had to operate with incomplete or outdated information.

1990s

The overwhelming demand for Internet capability in the mid-1990s sparked the pro-
liferation of networking capability. The World Wide Web, conceived in a paper, shown
in Figure 1.12, by Tim Berners-Lee made the Internet accessible by computer users

21

B
rie

f H
isto

ry o
f O

p
e
ra

tin
g
 S

yste
m

 D
e
v
e
lo

p
m

e
n
t

(figure 1.12)

Illustration from the first

page of the 1989 proposal

by Tim Berners-Lee

describing his revolutionary

“linked information

system.” Based on this

research, he designed the

first World Wide Web server

and browser, making it

available to the general

public in 1991.

Comms
ACM

Hypermedia

“Hypertext”

Hyper
Card UUCO

News

IBM
GroupTalk

VAX/
NOTES

CERNDOC

C.E.R.N.

DD division

MIS OC group

RA section

Tim
Berners-Lee

Hierarchical
systems

ENQUIRE

Linked
information

A
Proposal

X

This
document

Computer
conferencing

for example

for example

includes includes

includes
refers

todescribes

describes

wrote

describes

describes

for example

unifies

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 21

worldwide, not just the researchers who had come to depend on it for global commu-
nications. Web accessibility and e-mail became standard features of almost every oper-
ating system. However, increased networking also sparked increased demand for
tighter security to protect hardware and software.

The decade also introduced a proliferation of multimedia applications demanding
additional power, flexibility, and device compatibility for most operating systems. A
typical multimedia computer houses devices to perform audio, video, and graphic
creation and editing. Those functions can require many specialized devices such as a
microphone, digital piano, Musical Instrument Digital Interface (MIDI), digital
camera, digital video disc (DVD) drive, optical disc (CD) drives, speakers, additional
monitors, projection devices, color printers, and high-speed Internet connections.
These computers also require specialized hardware (such as controllers, cards, busses)
and software to make them work together properly.

Multimedia applications need large amounts of storage capability that must be man-
aged gracefully by the operating system. For example, each second of a 30-frame-per-
minute full-screen video requires 27MB of storage unless the data is compressed in
some way. To meet the demand for compressed video, special-purpose chips and video
boards have been developed by hardware companies.

What’s the effect of these technological advances on the operating system? Each
advance requires a parallel advance in the software’s management capabilities.

2000s

The new century emphasized the need for operating systems to offer improved
flexibility, reliability, and speed. To meet the need for computers that could accommo-
date multiple operating systems running at the same time and sharing resources, the
concept of virtual machines, shown in Figure 1.13, was developed and became
commercially viable.

Virtualization is the creation of partitions on a single server, with each partition
supporting a different operating system. In other words, it turns a single physical
server into multiple virtual servers, often with multiple operating systems.
Virtualization requires the operating system to have an intermediate manager to over-
see each operating system’s access to the server’s physical resources. For example, with
virtualization, a single processor can run 64 independent operating systems on work-
stations using a processor capable of allowing 64 separate threads (instruction
sequences) to run at the same time.

22

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 22

Processing speed has enjoyed a similar advancement with the development of multi-
core processors, shown in Figure 1.14. Until recent years, the silicon wafer that forms
the base of the computer chip circuitry held only a single CPU. However, with the
introduction of dual-core processors, a single chip can hold multiple processor cores.
Thus, a dual-core chip allows two sets of calculations to run at the same time, which
sometimes leads to faster completion of the job. It’s as if the user has two separate
computers, and two processors, cooperating on a single task. As of this writing,
designers have created chips that can hold 80 simple cores.

Does this hardware innovation affect the operating system software? Absolutely,
because it must now manage the work of these multiple processors and be able to
schedule and manage the processing of their multiple tasks. We’ll explore some of the
complexities of this in Chapter 6.

23

B
rie

f H
isto

ry o
f O

p
e
ra

tin
g
 S

yste
m

 D
e
v
e
lo

p
m

e
n
t

(figure 1.13)

With virtualization,

different operating

systems can run on a

single computer.

Courtesy of Parallels, Inc.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 23

Threads

Multi-core technology helps the operating system handle threads, multiple actions that
can be executed at the same time. First, an explanation: The Processor Manager is
responsible for processing each job submitted by a user. Jobs are made up of processes
(sometimes called tasks in other textbooks), and processes consist of multiple threads.

A process has two characteristics:

• It requires space in main memory where it resides during its execution; although,
from time to time, it requires other resources such as data files or I/O devices.

• It passes through several states (such as running, waiting, ready) from its initial
arrival into the computer system to its completion.

Multiprogramming and virtual memory dictate that processes be swapped between
main memory and secondary storage during their execution. With conventional
processes (also known as heavyweight processes), this swapping results in a lot of

24

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(Figure 1.14)

A single piece of silicon

can hold 80 cores, which

(to put it in simplest

terms) can perform 80

calculations at one time.

Courtesy of Intel

Corporation

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 24

overhead. That’s because each time a swap takes place, all process information must
be saved to preserve the process’s integrity.

A thread (or lightweight process) can be defined as a unit smaller than a process,
which can be scheduled and executed. Using this technique, the heavyweight process,
which owns the resources, becomes a more passive element, while a thread becomes
the element that uses the CPU and is scheduled for execution. Manipulating threads is
less time consuming than manipulating processes, which are more complex. Some
operating systems support multiple processes with a single thread, while others
support multiple processes with multiple threads.

Multithreading allows applications to manage a separate process with several threads
of control. Web browsers use multithreading routinely. For instance, one thread can
retrieve images while another sends and retrieves e-mail. Multithreading is also used
to increase responsiveness in a time-sharing system to increase resource sharing and
decrease overhead.

Object-Oriented Design

An important area of research that resulted in substantial efficiencies was that of the
system architecture of operating systems—the way their components are programmed
and organized, specifically the use of object-oriented design and the reorganization of
the operating system’s nucleus, the kernel. The kernel is the part of the operating
system that resides in memory at all times, performs the most essential operating
system tasks, and is protected by hardware from user tampering.

The first operating systems were designed as a comprehensive single unit, as shown
in Figure 1.15 (a). They stored all required elements of the operating system in
memory such as memory allocation, process scheduling, device allocation, and file
management. This type of architecture made it cumbersome and time consuming
for programmers to add new components to the operating system, or to modify
existing ones.

Most recently, the part of the operating system that resides in memory has been lim-
ited to a few essential functions, such as process scheduling and memory allocation,
while all other functions, such as device allocation, are provided by special modules,
which are treated as regular applications, as shown in Figure 1.15 (b). This approach
makes it easier to add new components or modify existing ones.

Object-oriented design was the driving force behind this new organization. Objects are
self-contained modules (units of software) that provide models of the real world and
can be reused in different applications. By working on objects, programmers can mod-
ify and customize pieces of an operating system without disrupting the integrity of the
remainder of the system. In addition, using a modular, object-oriented approach can

25

B
rie

f H
isto

ry o
f O

p
e
ra

tin
g
 S

yste
m

 D
e
v
e
lo

p
m

e
n
t

✔
Web browsers
routinely use
multithreading to
allow users to
explore multiple
areas of interest
on the Internet at
the same time.

C7047_01_Ch01.qxd 1/12/10 4:04 PM Page 25

make software development groups more productive than was possible with proce-
dural structured programming.

Conclusion

In this chapter, we looked at the overall function of operating systems and how they
have evolved to run increasingly complex computers and computer systems; but
like any complex subject, there’s much more detail to explore. As we’ll see in the
remainder of this text, there are many ways to perform every task and it’s up to the
designer of the operating system to choose the policies that best match the system’s
environment.

In the following chapters, we’ll explore in detail how each portion of the operating
system works, as well as its features, functions, benefits, and costs. We’ll begin with
the part of the operating system that’s the heart of every computer: the module that
manages main memory.

26

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

Entire
Operating System
in Main Memory

Main Memory
(a)

Available Memory
for Applications

Operating System
Kernel

in Main Memory

Main Memory
(b)

Available Memory
for Applications

Memory Allocation Module
in Main Memory (if needed)

File Management
Module (available)

Early OS Object-Oriented OS

Device Management
Module (available)

Networking Module
(available)

(figure 1.15)

Early operating systems

(a) loaded in their entirety

into main memory.

Object-oriented operating

systems (b) load only the

critical elements into

main memory and call

other objects as needed.

C7047_01_Ch01.qxd 1/12/10 4:05 PM Page 26

Key Terms

batch system: a type of system developed for the earliest computers that used punched
cards or tape for input, which were entered in a batch.

central processing unit (CPU): the component with the circuitry, the “chips,” to
control the interpretation and execution of instructions.

core: the processing part of a CPU chip made up of the control unit and the arithmetic
logic unit (ALU).

Device Manager: the section of the operating system responsible for controlling the
use of devices. It monitors every device, channel, and control unit and chooses
the most efficient way to allocate all of the system’s devices.

embedded system: a dedicated computer system, often small and fast, that resides in a
larger physical system such as jet aircraft or ships.

File Manager: the section of the operating system responsible for controlling the use of
files.

firmware: software instructions or data that are stored in a fixed or “firm” way,
usually implemented on read-only memory (ROM).

hardware: the physical machine and its components, including main memory, I/O
devices, I/O channels, direct access storage devices, and the central processing unit.

hybrid system: a computer system that supports both batch and interactive processes.

interactive system: a system that allows each user to interact directly with the operating
system via commands entered from a keyboard.

kernel: the primary part of the operating system that remains in random access memory
(RAM) and is charged with performing the system’s most essential tasks, such as
managing main memory and disk access.

main memory: the memory unit that works directly with the CPU and in which the
data and instructions must reside in order to be processed. Also called primary storage
or internal memory.

mainframe: the historical name given to a large computer system characterized by its
large size, high cost, and high performance.

Memory Manager: the section of the operating system responsible for controlling the
use of memory. It checks the validity of each request for memory space and, if it’s a
legal request, allocates the amount needed to execute the job.

microcomputer: a small computer equipped with all the hardware and software
necessary to perform one or more tasks.

27

K
e
y Te

rm
s

C7047_01_Ch01.qxd 1/12/10 4:05 PM Page 27

minicomputer: a small to medium-sized computer system, also called a midrange
computer.

multiprocessing: when two or more CPUs share the same main memory, most I/O
devices, and the same control program routines. They service the same job stream and
execute distinct processing programs concurrently.

multiprogramming: a technique that allows a single processor to process several
programs residing simultaneously in main memory and interleaving their execution by
overlapping I/O requests with CPU requests.

network: a system of interconnected computer systems and peripheral devices that
exchange information with one another.

Network Manager: the section of the operating system responsible for controlling
access to and the use of networked resources.

object-oriented: a programming philosophy whereby programs consist of self-
contained, reusable modules called objects, each of which supports a specific function,
but which are categorized into classes of objects that share the same function.

operating system: the software that manages all the resources of a computer system.

Processor Manager: a composite of two submanagers, the Job Scheduler and the
Process Scheduler, which decides how to allocate the CPU.

real-time system: a computing system used in time-critical environments that require
guaranteed response times, such as navigation systems, rapid transit systems, and
industrial control systems.

server: a node that provides to clients various network services, such as file retrieval,
printing, or database access services.

software: a collection of programs used to perform certain tasks. Software falls into
three main categories: operating system programs, compilers and assemblers, and
application programs.

storage: a place where data is stored in the computer system. Primary storage is main
memory and secondary storage is nonvolatile media.

supercomputer: the fastest, most sophisticated computers made, used for complex
calculations.

thread: a portion of a program that can run independently of other portions.
Multithreaded application programs can have several threads running at one time with
the same or different priorities.

throughput: a composite measure of a system’s efficiency that counts the number of
jobs served in a given unit of time.

28

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

C7047_01_Ch01.qxd 1/12/10 4:05 PM Page 28

	Cover
	Title Page
	Copyright
	Dedication Page
	Contents
	Preface
	Part One: Operating Systems Concepts
	Chapter 1 Introducing Operating Systems
	Introduction
	What Is an Operating System?
	Operating System Software
	A Brief History of Machine Hardware
	Types of Operating Systems
	Brief History of Operating System Development
	Conclusion
	Key Terms

