

David Beazley and Brian K. Jones

THIRD EDITION

Python Cookbook

Python Cookbook, Third Edition
by David Beazley and Brian K. Jones

Copyright © 2013 David Beazley and Brian Jones. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Rachel Roumeliotis
Production Editor: Kristen Borg
Copyeditor: Jasmine Kwityn
Proofreader: BIM Proofreading Services

Indexer: WordCo Indexing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

May 2013: Third Edition

Revision History for the Third Edition:

2013-05-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449340377 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Python Cookbook, the image of a springhaas, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34037-7

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449340377

Table of Contents

Preface. xi

1. Data Structures and Algorithms. 1
1.1. Unpacking a Sequence into Separate Variables 1
1.2. Unpacking Elements from Iterables of Arbitrary Length 3
1.3. Keeping the Last N Items 5
1.4. Finding the Largest or Smallest N Items 7
1.5. Implementing a Priority Queue 8
1.6. Mapping Keys to Multiple Values in a Dictionary 11
1.7. Keeping Dictionaries in Order 12
1.8. Calculating with Dictionaries 13
1.9. Finding Commonalities in Two Dictionaries 15
1.10. Removing Duplicates from a Sequence while Maintaining Order 17
1.11. Naming a Slice 18
1.12. Determining the Most Frequently Occurring Items in a Sequence 20
1.13. Sorting a List of Dictionaries by a Common Key 21
1.14. Sorting Objects Without Native Comparison Support 23
1.15. Grouping Records Together Based on a Field 24
1.16. Filtering Sequence Elements 26
1.17. Extracting a Subset of a Dictionary 28
1.18. Mapping Names to Sequence Elements 29
1.19. Transforming and Reducing Data at the Same Time 32
1.20. Combining Multiple Mappings into a Single Mapping 33

2. Strings and Text. 37
2.1. Splitting Strings on Any of Multiple Delimiters 37
2.2. Matching Text at the Start or End of a String 38
2.3. Matching Strings Using Shell Wildcard Patterns 40
2.4. Matching and Searching for Text Patterns 42

iii

2.5. Searching and Replacing Text 45
2.6. Searching and Replacing Case-Insensitive Text 46
2.7. Specifying a Regular Expression for the Shortest Match 47
2.8. Writing a Regular Expression for Multiline Patterns 48
2.9. Normalizing Unicode Text to a Standard Representation 50
2.10. Working with Unicode Characters in Regular Expressions 52
2.11. Stripping Unwanted Characters from Strings 53
2.12. Sanitizing and Cleaning Up Text 54
2.13. Aligning Text Strings 57
2.14. Combining and Concatenating Strings 58
2.15. Interpolating Variables in Strings 61
2.16. Reformatting Text to a Fixed Number of Columns 64
2.17. Handling HTML and XML Entities in Text 65
2.18. Tokenizing Text 66
2.19. Writing a Simple Recursive Descent Parser 69
2.20. Performing Text Operations on Byte Strings 78

3. Numbers, Dates, and Times. 83
3.1. Rounding Numerical Values 83
3.2. Performing Accurate Decimal Calculations 84
3.3. Formatting Numbers for Output 87
3.4. Working with Binary, Octal, and Hexadecimal Integers 89
3.5. Packing and Unpacking Large Integers from Bytes 90
3.6. Performing Complex-Valued Math 92
3.7. Working with Infinity and NaNs 94
3.8. Calculating with Fractions 96
3.9. Calculating with Large Numerical Arrays 97
3.10. Performing Matrix and Linear Algebra Calculations 100
3.11. Picking Things at Random 102
3.12. Converting Days to Seconds, and Other Basic Time Conversions 104
3.13. Determining Last Friday’s Date 106
3.14. Finding the Date Range for the Current Month 107
3.15. Converting Strings into Datetimes 109
3.16. Manipulating Dates Involving Time Zones 110

4. Iterators and Generators. 113
4.1. Manually Consuming an Iterator 113
4.2. Delegating Iteration 114
4.3. Creating New Iteration Patterns with Generators 115
4.4. Implementing the Iterator Protocol 117
4.5. Iterating in Reverse 119
4.6. Defining Generator Functions with Extra State 120

iv | Table of Contents

4.7. Taking a Slice of an Iterator 122
4.8. Skipping the First Part of an Iterable 123
4.9. Iterating Over All Possible Combinations or Permutations 125
4.10. Iterating Over the Index-Value Pairs of a Sequence 127
4.11. Iterating Over Multiple Sequences Simultaneously 129
4.12. Iterating on Items in Separate Containers 131
4.13. Creating Data Processing Pipelines 132
4.14. Flattening a Nested Sequence 135
4.15. Iterating in Sorted Order Over Merged Sorted Iterables 136
4.16. Replacing Infinite while Loops with an Iterator 138

5. Files and I/O. 141
5.1. Reading and Writing Text Data 141
5.2. Printing to a File 144
5.3. Printing with a Different Separator or Line Ending 144
5.4. Reading and Writing Binary Data 145
5.5. Writing to a File That Doesn’t Already Exist 147
5.6. Performing I/O Operations on a String 148
5.7. Reading and Writing Compressed Datafiles 149
5.8. Iterating Over Fixed-Sized Records 151
5.9. Reading Binary Data into a Mutable Buffer 152
5.10. Memory Mapping Binary Files 153
5.11. Manipulating Pathnames 156
5.12. Testing for the Existence of a File 157
5.13. Getting a Directory Listing 158
5.14. Bypassing Filename Encoding 160
5.15. Printing Bad Filenames 161
5.16. Adding or Changing the Encoding of an Already Open File 163
5.17. Writing Bytes to a Text File 165
5.18. Wrapping an Existing File Descriptor As a File Object 166
5.19. Making Temporary Files and Directories 167
5.20. Communicating with Serial Ports 170
5.21. Serializing Python Objects 171

6. Data Encoding and Processing. 175
6.1. Reading and Writing CSV Data 175
6.2. Reading and Writing JSON Data 179
6.3. Parsing Simple XML Data 183
6.4. Parsing Huge XML Files Incrementally 186
6.5. Turning a Dictionary into XML 189
6.6. Parsing, Modifying, and Rewriting XML 191
6.7. Parsing XML Documents with Namespaces 193

Table of Contents | v

6.8. Interacting with a Relational Database 195
6.9. Decoding and Encoding Hexadecimal Digits 197
6.10. Decoding and Encoding Base64 199
6.11. Reading and Writing Binary Arrays of Structures 199
6.12. Reading Nested and Variable-Sized Binary Structures 203
6.13. Summarizing Data and Performing Statistics 214

7. Functions. 217
7.1. Writing Functions That Accept Any Number of Arguments 217
7.2. Writing Functions That Only Accept Keyword Arguments 219
7.3. Attaching Informational Metadata to Function Arguments 220
7.4. Returning Multiple Values from a Function 221
7.5. Defining Functions with Default Arguments 222
7.6. Defining Anonymous or Inline Functions 224
7.7. Capturing Variables in Anonymous Functions 225
7.8. Making an N-Argument Callable Work As a Callable with Fewer
Arguments 227
7.9. Replacing Single Method Classes with Functions 231
7.10. Carrying Extra State with Callback Functions 232
7.11. Inlining Callback Functions 235
7.12. Accessing Variables Defined Inside a Closure 238

8. Classes and Objects. 243
8.1. Changing the String Representation of Instances 243
8.2. Customizing String Formatting 245
8.3. Making Objects Support the Context-Management Protocol 246
8.4. Saving Memory When Creating a Large Number of Instances 248
8.5. Encapsulating Names in a Class 250
8.6. Creating Managed Attributes 251
8.7. Calling a Method on a Parent Class 256
8.8. Extending a Property in a Subclass 260
8.9. Creating a New Kind of Class or Instance Attribute 264
8.10. Using Lazily Computed Properties 267
8.11. Simplifying the Initialization of Data Structures 270
8.12. Defining an Interface or Abstract Base Class 274
8.13. Implementing a Data Model or Type System 277
8.14. Implementing Custom Containers 283
8.15. Delegating Attribute Access 287
8.16. Defining More Than One Constructor in a Class 291
8.17. Creating an Instance Without Invoking init 293
8.18. Extending Classes with Mixins 294
8.19. Implementing Stateful Objects or State Machines 299

vi | Table of Contents

8.20. Calling a Method on an Object Given the Name As a String 305
8.21. Implementing the Visitor Pattern 306
8.22. Implementing the Visitor Pattern Without Recursion 311
8.23. Managing Memory in Cyclic Data Structures 317
8.24. Making Classes Support Comparison Operations 321
8.25. Creating Cached Instances 323

9. Metaprogramming. 329
9.1. Putting a Wrapper Around a Function 329
9.2. Preserving Function Metadata When Writing Decorators 331
9.3. Unwrapping a Decorator 333
9.4. Defining a Decorator That Takes Arguments 334
9.5. Defining a Decorator with User Adjustable Attributes 336
9.6. Defining a Decorator That Takes an Optional Argument 339
9.7. Enforcing Type Checking on a Function Using a Decorator 341
9.8. Defining Decorators As Part of a Class 345
9.9. Defining Decorators As Classes 347
9.10. Applying Decorators to Class and Static Methods 350
9.11. Writing Decorators That Add Arguments to Wrapped Functions 352
9.12. Using Decorators to Patch Class Definitions 355
9.13. Using a Metaclass to Control Instance Creation 356
9.14. Capturing Class Attribute Definition Order 359
9.15. Defining a Metaclass That Takes Optional Arguments 362
9.16. Enforcing an Argument Signature on *args and **kwargs 364
9.17. Enforcing Coding Conventions in Classes 367
9.18. Defining Classes Programmatically 370
9.19. Initializing Class Members at Definition Time 374
9.20. Implementing Multiple Dispatch with Function Annotations 376
9.21. Avoiding Repetitive Property Methods 382
9.22. Defining Context Managers the Easy Way 384
9.23. Executing Code with Local Side Effects 386
9.24. Parsing and Analyzing Python Source 388
9.25. Disassembling Python Byte Code 392

10. Modules and Packages. 397
10.1. Making a Hierarchical Package of Modules 397
10.2. Controlling the Import of Everything 398
10.3. Importing Package Submodules Using Relative Names 399
10.4. Splitting a Module into Multiple Files 401
10.5. Making Separate Directories of Code Import Under a Common
Namespace 404
10.6. Reloading Modules 406

Table of Contents | vii

10.7. Making a Directory or Zip File Runnable As a Main Script 407
10.8. Reading Datafiles Within a Package 408
10.9. Adding Directories to sys.path 409
10.10. Importing Modules Using a Name Given in a String 411
10.11. Loading Modules from a Remote Machine Using Import Hooks 412
10.12. Patching Modules on Import 428
10.13. Installing Packages Just for Yourself 431
10.14. Creating a New Python Environment 432
10.15. Distributing Packages 433

11. Network and Web Programming. 437
11.1. Interacting with HTTP Services As a Client 437
11.2. Creating a TCP Server 441
11.3. Creating a UDP Server 445
11.4. Generating a Range of IP Addresses from a CIDR Address 447
11.5. Creating a Simple REST-Based Interface 449
11.6. Implementing a Simple Remote Procedure Call with XML-RPC 454
11.7. Communicating Simply Between Interpreters 456
11.8. Implementing Remote Procedure Calls 458
11.9. Authenticating Clients Simply 461
11.10. Adding SSL to Network Services 464
11.11. Passing a Socket File Descriptor Between Processes 470
11.12. Understanding Event-Driven I/O 475
11.13. Sending and Receiving Large Arrays 481

12. Concurrency. 485
12.1. Starting and Stopping Threads 485
12.2. Determining If a Thread Has Started 488
12.3. Communicating Between Threads 491
12.4. Locking Critical Sections 497
12.5. Locking with Deadlock Avoidance 500
12.6. Storing Thread-Specific State 504
12.7. Creating a Thread Pool 505
12.8. Performing Simple Parallel Programming 509
12.9. Dealing with the GIL (and How to Stop Worrying About It) 513
12.10. Defining an Actor Task 516
12.11. Implementing Publish/Subscribe Messaging 520
12.12. Using Generators As an Alternative to Threads 524
12.13. Polling Multiple Thread Queues 531
12.14. Launching a Daemon Process on Unix 534

13. Utility Scripting and System Administration. 539

viii | Table of Contents

13.1. Accepting Script Input via Redirection, Pipes, or Input Files 539
13.2. Terminating a Program with an Error Message 540
13.3. Parsing Command-Line Options 541
13.4. Prompting for a Password at Runtime 544
13.5. Getting the Terminal Size 545
13.6. Executing an External Command and Getting Its Output 545
13.7. Copying or Moving Files and Directories 547
13.8. Creating and Unpacking Archives 549
13.9. Finding Files by Name 550
13.10. Reading Configuration Files 552
13.11. Adding Logging to Simple Scripts 555
13.12. Adding Logging to Libraries 558
13.13. Making a Stopwatch Timer 559
13.14. Putting Limits on Memory and CPU Usage 561
13.15. Launching a Web Browser 563

14. Testing, Debugging, and Exceptions. 565
14.1. Testing Output Sent to stdout 565
14.2. Patching Objects in Unit Tests 567
14.3. Testing for Exceptional Conditions in Unit Tests 570
14.4. Logging Test Output to a File 572
14.5. Skipping or Anticipating Test Failures 573
14.6. Handling Multiple Exceptions 574
14.7. Catching All Exceptions 576
14.8. Creating Custom Exceptions 578
14.9. Raising an Exception in Response to Another Exception 580
14.10. Reraising the Last Exception 582
14.11. Issuing Warning Messages 583
14.12. Debugging Basic Program Crashes 585
14.13. Profiling and Timing Your Program 587
14.14. Making Your Programs Run Faster 590

15. C Extensions. 597
15.1. Accessing C Code Using ctypes 599
15.2. Writing a Simple C Extension Module 605
15.3. Writing an Extension Function That Operates on Arrays 609
15.4. Managing Opaque Pointers in C Extension Modules 612
15.5. Defining and Exporting C APIs from Extension Modules 614
15.6. Calling Python from C 619
15.7. Releasing the GIL in C Extensions 625
15.8. Mixing Threads from C and Python 625
15.9. Wrapping C Code with Swig 627

Table of Contents | ix

15.10. Wrapping Existing C Code with Cython 632
15.11. Using Cython to Write High-Performance Array Operations 638
15.12. Turning a Function Pointer into a Callable 643
15.13. Passing NULL-Terminated Strings to C Libraries 644
15.14. Passing Unicode Strings to C Libraries 648
15.15. Converting C Strings to Python 653
15.16. Working with C Strings of Dubious Encoding 654
15.17. Passing Filenames to C Extensions 657
15.18. Passing Open Files to C Extensions 658
15.19. Reading File-Like Objects from C 659
15.20. Consuming an Iterable from C 662
15.21. Diagnosing Segmentation Faults 663

A. Further Reading. 665

Index. 667

x | Table of Contents

Preface

Since 2008, the Python world has been watching the slow evolution of Python 3. It was
always known that the adoption of Python 3 would likely take a long time. In fact, even
at the time of this writing (2013), most working Python programmers continue to use
Python 2 in production. A lot has been made about the fact that Python 3 is not backward
compatible with past versions. To be sure, backward compatibility is an issue for anyone
with an existing code base. However, if you shift your view toward the future, you’ll find
that Python 3 offers much more than meets the eye.

Just as Python 3 is about the future, this edition of the Python Cookbook represents a
major change over past editions. First and foremost, this is meant to be a very forward
looking book. All of the recipes have been written and tested with Python 3.3 without
regard to past Python versions or the “old way” of doing things. In fact, many of the
recipes will only work with Python 3.3 and above. Doing so may be a calculated risk,
but the ultimate goal is to write a book of recipes based on the most modern tools and
idioms possible. It is hoped that the recipes can serve as a guide for people writing new
code in Python 3 or those who hope to modernize existing code.

Needless to say, writing a book of recipes in this style presents a certain editorial chal‐
lenge. An online search for Python recipes returns literally thousands of useful recipes
on sites such as ActiveState’s Python recipes or Stack Overflow. However, most of these
recipes are steeped in history and the past. Besides being written almost exclusively for
Python 2, they often contain workarounds and hacks related to differences between old
versions of Python (e.g., version 2.3 versus 2.4). Moreover, they often use outdated
techniques that have simply become a built-in feature of Python 3.3. Finding recipes
exclusively focused on Python 3 can be a bit more difficult.

Rather than attempting to seek out Python 3-specific recipes, the topics of this book are
merely inspired by existing code and techniques. Using these ideas as a springboard,
the writing is an original work that has been deliberately written with the most modern
Python programming techniques possible. Thus, it can serve as a reference for anyone
who wants to write their code in a modern style.

xi

http://code.activestate.com/recipes/langs/python
http://stackoverflow.com/questions/tagged/python

In choosing which recipes to include, there is a certain realization that it is simply
impossible to write a book that covers every possible thing that someone might do with
Python. Thus, a priority has been given to topics that focus on the core Python language
as well as tasks that are common to a wide variety of application domains. In addition,
many of the recipes aim to illustrate features that are new to Python 3 and more likely
to be unknown to even experienced programmers using older versions. There is also a
certain preference to recipes that illustrate a generally applicable programming tech‐
nique (i.e., programming patterns) as opposed to those that narrowly try to address a
very specific practical problem. Although certain third-party packages get coverage, a
majority of the recipes focus on the core language and standard library.

Who This Book Is For
This book is aimed at more experienced Python programmers who are looking to
deepen their understanding of the language and modern programming idioms. Much
of the material focuses on some of the more advanced techniques used by libraries,
frameworks, and applications. Throughout the book, the recipes generally assume that
the reader already has the necessary background to understand the topic at hand (e.g.,
general knowledge of computer science, data structures, complexity, systems program‐
ming, concurrency, C programming, etc.). Moreover, the recipes are often just skeletons
that aim to provide essential information for getting started, but which require the
reader to do more research to fill in the details. As such, it is assumed that the reader
knows how to use search engines and Python’s excellent online documentation.

Many of the more advanced recipes will reward the reader’s patience with a much greater
insight into how Python actually works under the covers. You will learn new tricks and
techniques that can be applied to your own code.

Who This Book Is Not For
This is not a book designed for beginners trying to learn Python for the first time. In
fact, it already assumes that you know the basics that might be taught in a Python tutorial
or more introductory book. This book is also not designed to serve as a quick reference
manual (e.g., quickly looking up the functions in a specific module). Instead, the book
aims to focus on specific programming topics, show possible solutions, and serve as a
springboard for jumping into more advanced material you might find online or in a
reference.

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Online Code Examples
Almost all of the code examples in this book are available online at http://github.com/
dabeaz/python-cookbook. The authors welcome bug fixes, improvements, and com‐
ments.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount

Preface | xiii

http://github.com/dabeaz/python-cookbook
http://github.com/dabeaz/python-cookbook

of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Python Cookbook, 3rd edition, by David
Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian Jones,
978-1-449-34037-7.

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/python_cookbook_3e.

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/python_cookbook_3e

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to acknowledge the technical reviewers, Jake Vanderplas, Robert Kern,
and Andrea Crotti, for their very helpful comments, as well as the general Python com‐
munity for their support and encouragement. We would also like to thank the editors
of the prior edition, Alex Martelli, Anna Ravenscroft, and David Ascher. Although this
edition is newly written, the previous edition provided an initial framework for selecting
the topics and recipes of interest. Last, but not least, we would like to thank readers of
the early release editions for their comments and suggestions for improvement.

David Beazley’s Acknowledgments
Writing a book is no small task. As such, I would like to thank my wife Paula and my
two boys for their patience and support during this project. Much of the material in this
book was derived from content I developed teaching Python-related training classes
over the last six years. Thus, I’d like to thank all of the students who have taken my
courses and ultimately made this book possible. I’d also like to thank Ned Batchelder,
Travis Oliphant, Peter Wang, Brian Van de Ven, Hugo Shi, Raymond Hettinger, Michael
Foord, and Daniel Klein for traveling to the four corners of the world to teach these
courses while I stayed home in Chicago to work on this project. Meghan Blanchette and
Rachel Roumeliotis of O’Reilly were also instrumental in seeing this project through to
completion despite the drama of several false starts and unforeseen delays. Last, but not
least, I’d like to thank the Python community for their continued support and putting
up with my flights of diabolical fancy.

David M. Beazley

http://www.dabeaz.com

https://twitter.com/dabeaz

Preface | xv

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.dabeaz.com
https://twitter.com/dabeaz

Brian Jones’ Acknowledgments
I would like to thank both my coauthor, David Beazley, as well as Meghan Blanchette
and Rachel Roumeliotis of O’Reilly, for working with me on this project. I would also
like to thank my amazing wife, Natasha, for her patience and encouragement in this
project, and her support in all of my ambitions. Most of all, I’d like to thank the Python
community at large. Though I have contributed to the support of various open source
projects, languages, clubs, and the like, no work has been so gratifying and rewarding
as that which has been in the service of the Python community.

Brian K. Jones

http://www.protocolostomy.com

https://twitter.com/bkjones

xvi | Preface

http://www.protocolostomy.com
https://twitter.com/bkjones

CHAPTER 1

Data Structures and Algorithms

Python provides a variety of useful built-in data structures, such as lists, sets, and dic‐
tionaries. For the most part, the use of these structures is straightforward. However,
common questions concerning searching, sorting, ordering, and filtering often arise.
Thus, the goal of this chapter is to discuss common data structures and algorithms
involving data. In addition, treatment is given to the various data structures contained
in the collections module.

1.1. Unpacking a Sequence into Separate Variables
Problem
You have an N-element tuple or sequence that you would like to unpack into a collection
of N variables.

Solution
Any sequence (or iterable) can be unpacked into variables using a simple assignment
operation. The only requirement is that the number of variables and structure match
the sequence. For example:

>>> p = (4, 5)
>>> x, y = p
>>> x
4
>>> y
5
>>>

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> name, shares, price, date = data
>>> name

1

'ACME'
>>> date
(2012, 12, 21)

>>> name, shares, price, (year, mon, day) = data
>>> name
'ACME'
>>> year
2012
>>> mon
12
>>> day
21
>>>

If there is a mismatch in the number of elements, you’ll get an error. For example:

>>> p = (4, 5)
>>> x, y, z = p
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack
>>>

Discussion
Unpacking actually works with any object that happens to be iterable, not just tuples or
lists. This includes strings, files, iterators, and generators. For example:

>>> s = 'Hello'
>>> a, b, c, d, e = s
>>> a
'H'
>>> b
'e'
>>> e
'o'
>>>

When unpacking, you may sometimes want to discard certain values. Python has no
special syntax for this, but you can often just pick a throwaway variable name for it. For
example:

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> _, shares, price, _ = data
>>> shares
50
>>> price
91.1
>>>

However, make sure that the variable name you pick isn’t being used for something else
already.

2 | Chapter 1: Data Structures and Algorithms

1.2. Unpacking Elements from Iterables of Arbitrary
Length
Problem
You need to unpack N elements from an iterable, but the iterable may be longer than N
elements, causing a “too many values to unpack” exception.

Solution
Python “star expressions” can be used to address this problem. For example, suppose
you run a course and decide at the end of the semester that you’re going to drop the first
and last homework grades, and only average the rest of them. If there are only four
assignments, maybe you simply unpack all four, but what if there are 24? A star expres‐
sion makes it easy:

def drop_first_last(grades):
 first, *middle, last = grades
 return avg(middle)

As another use case, suppose you have user records that consist of a name and email
address, followed by an arbitrary number of phone numbers. You could unpack the
records like this:

>>> record = ('Dave', 'dave@example.com', '773-555-1212', '847-555-1212')
>>> name, email, *phone_numbers = user_record
>>> name
'Dave'
>>> email
'dave@example.com'
>>> phone_numbers
['773-555-1212', '847-555-1212']
>>>

It’s worth noting that the phone_numbers variable will always be a list, regardless of how
many phone numbers are unpacked (including none). Thus, any code that uses
phone_numbers won’t have to account for the possibility that it might not be a list or
perform any kind of additional type checking.

The starred variable can also be the first one in the list. For example, say you have a
sequence of values representing your company’s sales figures for the last eight quarters.
If you want to see how the most recent quarter stacks up to the average of the first seven,
you could do something like this:

*trailing_qtrs, current_qtr = sales_record
trailing_avg = sum(trailing_qtrs) / len(trailing_qtrs)
return avg_comparison(trailing_avg, current_qtr)

Here’s a view of the operation from the Python interpreter:

1.2. Unpacking Elements from Iterables of Arbitrary Length | 3

>>> *trailing, current = [10, 8, 7, 1, 9, 5, 10, 3]
>>> trailing
[10, 8, 7, 1, 9, 5, 10]
>>> current
3

Discussion
Extended iterable unpacking is tailor-made for unpacking iterables of unknown or ar‐
bitrary length. Oftentimes, these iterables have some known component or pattern in
their construction (e.g. “everything after element 1 is a phone number”), and star un‐
packing lets the developer leverage those patterns easily instead of performing acro‐
batics to get at the relevant elements in the iterable.

It is worth noting that the star syntax can be especially useful when iterating over a
sequence of tuples of varying length. For example, perhaps a sequence of tagged tuples:

records = [
 ('foo', 1, 2),
 ('bar', 'hello'),
 ('foo', 3, 4),
]

def do_foo(x, y):
 print('foo', x, y)

def do_bar(s):
 print('bar', s)

for tag, *args in records:
 if tag == 'foo':
 do_foo(*args)
 elif tag == 'bar':
 do_bar(*args)

Star unpacking can also be useful when combined with certain kinds of string processing
operations, such as splitting. For example:

>>> line = 'nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false'
>>> uname, *fields, homedir, sh = line.split(':')
>>> uname
'nobody'
>>> homedir
'/var/empty'
>>> sh
'/usr/bin/false'
>>>

Sometimes you might want to unpack values and throw them away. You can’t just specify
a bare * when unpacking, but you could use a common throwaway variable name, such
as _ or ign (ignored). For example:

4 | Chapter 1: Data Structures and Algorithms

>>> record = ('ACME', 50, 123.45, (12, 18, 2012))
>>> name, *_, (*_, year) = record
>>> name
'ACME'
>>> year
2012
>>>

There is a certain similarity between star unpacking and list-processing features of var‐
ious functional languages. For example, if you have a list, you can easily split it into head
and tail components like this:

>>> items = [1, 10, 7, 4, 5, 9]
>>> head, *tail = items
>>> head
1
>>> tail
[10, 7, 4, 5, 9]
>>>

One could imagine writing functions that perform such splitting in order to carry out
some kind of clever recursive algorithm. For example:

>>> def sum(items):
... head, *tail = items
... return head + sum(tail) if tail else head
...
>>> sum(items)
36
>>>

However, be aware that recursion really isn’t a strong Python feature due to the inherent
recursion limit. Thus, this last example might be nothing more than an academic cu‐
riosity in practice.

1.3. Keeping the Last N Items
Problem
You want to keep a limited history of the last few items seen during iteration or during
some other kind of processing.

Solution
Keeping a limited history is a perfect use for a collections.deque. For example, the
following code performs a simple text match on a sequence of lines and yields the
matching line along with the previous N lines of context when found:

1.3. Keeping the Last N Items | 5

from collections import deque

def search(lines, pattern, history=5):
 previous_lines = deque(maxlen=history)
 for line in lines:
 if pattern in line:
 yield line, previous_lines
 previous_lines.append(line)

Example use on a file
if __name__ == '__main__':
 with open('somefile.txt') as f:
 for line, prevlines in search(f, 'python', 5):
 for pline in prevlines:
 print(pline, end='')
 print(line, end='')
 print('-'*20)

Discussion
When writing code to search for items, it is common to use a generator function in‐
volving yield, as shown in this recipe’s solution. This decouples the process of searching
from the code that uses the results. If you’re new to generators, see Recipe 4.3.

Using deque(maxlen=N) creates a fixed-sized queue. When new items are added and
the queue is full, the oldest item is automatically removed. For example:

>>> q = deque(maxlen=3)
>>> q.append(1)
>>> q.append(2)
>>> q.append(3)
>>> q
deque([1, 2, 3], maxlen=3)
>>> q.append(4)
>>> q
deque([2, 3, 4], maxlen=3)
>>> q.append(5)
>>> q
deque([3, 4, 5], maxlen=3)

Although you could manually perform such operations on a list (e.g., appending, de‐
leting, etc.), the queue solution is far more elegant and runs a lot faster.

More generally, a deque can be used whenever you need a simple queue structure. If
you don’t give it a maximum size, you get an unbounded queue that lets you append
and pop items on either end. For example:

>>> q = deque()
>>> q.append(1)
>>> q.append(2)
>>> q.append(3)
>>> q

6 | Chapter 1: Data Structures and Algorithms

deque([1, 2, 3])
>>> q.appendleft(4)
>>> q
deque([4, 1, 2, 3])
>>> q.pop()
3
>>> q
deque([4, 1, 2])
>>> q.popleft()
4

Adding or popping items from either end of a queue has O(1) complexity. This is unlike
a list where inserting or removing items from the front of the list is O(N).

1.4. Finding the Largest or Smallest N Items
Problem
You want to make a list of the largest or smallest N items in a collection.

Solution
The heapq module has two functions—nlargest() and nsmallest()—that do exactly
what you want. For example:

import heapq

nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]

Both functions also accept a key parameter that allows them to be used with more
complicated data structures. For example:

portfolio = [
 {'name': 'IBM', 'shares': 100, 'price': 91.1},
 {'name': 'AAPL', 'shares': 50, 'price': 543.22},
 {'name': 'FB', 'shares': 200, 'price': 21.09},
 {'name': 'HPQ', 'shares': 35, 'price': 31.75},
 {'name': 'YHOO', 'shares': 45, 'price': 16.35},
 {'name': 'ACME', 'shares': 75, 'price': 115.65}
]

cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])

Discussion
If you are looking for the N smallest or largest items and N is small compared to the
overall size of the collection, these functions provide superior performance. Underneath

1.4. Finding the Largest or Smallest N Items | 7

the covers, they work by first converting the data into a list where items are ordered as
a heap. For example:

>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> import heapq
>>> heap = list(nums)
>>> heapq.heapify(heap)
>>> heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]
>>>

The most important feature of a heap is that heap[0] is always the smallest item. More‐
over, subsequent items can be easily found using the heapq.heappop() method, which
pops off the first item and replaces it with the next smallest item (an operation that
requires O(log N) operations where N is the size of the heap). For example, to find the
three smallest items, you would do this:

>>> heapq.heappop(heap)
-4
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
2

The nlargest() and nsmallest() functions are most appropriate if you are trying to
find a relatively small number of items. If you are simply trying to find the single smallest
or largest item (N=1), it is faster to use min() and max(). Similarly, if N is about the
same size as the collection itself, it is usually faster to sort it first and take a slice (i.e.,
use sorted(items)[:N] or sorted(items)[-N:]). It should be noted that the actual
implementation of nlargest() and nsmallest() is adaptive in how it operates and will
carry out some of these optimizations on your behalf (e.g., using sorting if N is close to
the same size as the input).

Although it’s not necessary to use this recipe, the implementation of a heap is an inter‐
esting and worthwhile subject of study. This can usually be found in any decent book
on algorithms and data structures. The documentation for the heapq module also dis‐
cusses the underlying implementation details.

1.5. Implementing a Priority Queue
Problem
You want to implement a queue that sorts items by a given priority and always returns
the item with the highest priority on each pop operation.

8 | Chapter 1: Data Structures and Algorithms

Solution
The following class uses the heapq module to implement a simple priority queue:

import heapq

class PriorityQueue:
 def __init__(self):
 self._queue = []
 self._index = 0

 def push(self, item, priority):
 heapq.heappush(self._queue, (-priority, self._index, item))
 self._index += 1

 def pop(self):
 return heapq.heappop(self._queue)[-1]

Here is an example of how it might be used:

>>> class Item:
... def __init__(self, name):
... self.name = name
... def __repr__(self):
... return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>

Observe how the first pop() operation returned the item with the highest priority. Also
observe how the two items with the same priority (foo and grok) were returned in the
same order in which they were inserted into the queue.

Discussion
The core of this recipe concerns the use of the heapq module. The functions heapq.heap
push() and heapq.heappop() insert and remove items from a list _queue in a way such
that the first item in the list has the smallest priority (as discussed in Recipe 1.4). The
heappop() method always returns the “smallest” item, so that is the key to making the

1.5. Implementing a Priority Queue | 9

queue pop the correct items. Moreover, since the push and pop operations have O(log
N) complexity where N is the number of items in the heap, they are fairly efficient even
for fairly large values of N.

In this recipe, the queue consists of tuples of the form (-priority, index, item). The
priority value is negated to get the queue to sort items from highest priority to lowest
priority. This is opposite of the normal heap ordering, which sorts from lowest to highest
value.

The role of the index variable is to properly order items with the same priority level.
By keeping a constantly increasing index, the items will be sorted according to the order
in which they were inserted. However, the index also serves an important role in making
the comparison operations work for items that have the same priority level.

To elaborate on that, instances of Item in the example can’t be ordered. For example:

>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

If you make (priority, item) tuples, they can be compared as long as the priorities
are different. However, if two tuples with equal priorities are compared, the comparison
fails as before. For example:

>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

By introducing the extra index and making (priority, index, item) tuples, you avoid
this problem entirely since no two tuples will ever have the same value for index (and
Python never bothers to compare the remaining tuple values once the result of com‐
parison can be determined):

>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c

10 | Chapter 1: Data Structures and Algorithms

True
>>>

If you want to use this queue for communication between threads, you need to add
appropriate locking and signaling. See Recipe 12.3 for an example of how to do this.

The documentation for the heapq module has further examples and discussion con‐
cerning the theory and implementation of heaps.

1.6. Mapping Keys to Multiple Values in a Dictionary
Problem
You want to make a dictionary that maps keys to more than one value (a so-called
“multidict”).

Solution
A dictionary is a mapping where each key is mapped to a single value. If you want to
map keys to multiple values, you need to store the multiple values in another container
such as a list or set. For example, you might make dictionaries like this:

d = {
 'a' : [1, 2, 3],
 'b' : [4, 5]
}

e = {
 'a' : {1, 2, 3},
 'b' : {4, 5}
}

The choice of whether or not to use lists or sets depends on intended use. Use a list if
you want to preserve the insertion order of the items. Use a set if you want to eliminate
duplicates (and don’t care about the order).

To easily construct such dictionaries, you can use defaultdict in the collections
module. A feature of defaultdict is that it automatically initializes the first value so
you can simply focus on adding items. For example:

from collections import defaultdict

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['b'].append(4)
...

d = defaultdict(set)

1.6. Mapping Keys to Multiple Values in a Dictionary | 11

d['a'].add(1)
d['a'].add(2)
d['b'].add(4)
...

One caution with defaultdict is that it will automatically create dictionary entries for
keys accessed later on (even if they aren’t currently found in the dictionary). If you don’t
want this behavior, you might use setdefault() on an ordinary dictionary instead. For
example:

d = {} # A regular dictionary
d.setdefault('a', []).append(1)
d.setdefault('a', []).append(2)
d.setdefault('b', []).append(4)
...

However, many programmers find setdefault() to be a little unnatural—not to men‐
tion the fact that it always creates a new instance of the initial value on each invocation
(the empty list [] in the example).

Discussion
In principle, constructing a multivalued dictionary is simple. However, initialization of
the first value can be messy if you try to do it yourself. For example, you might have
code that looks like this:

d = {}
for key, value in pairs:
 if key not in d:
 d[key] = []
 d[key].append(value)

Using a defaultdict simply leads to much cleaner code:

d = defaultdict(list)
for key, value in pairs:
 d[key].append(value)

This recipe is strongly related to the problem of grouping records together in data pro‐
cessing problems. See Recipe 1.15 for an example.

1.7. Keeping Dictionaries in Order
Problem
You want to create a dictionary, and you also want to control the order of items when
iterating or serializing.

12 | Chapter 1: Data Structures and Algorithms

Solution
To control the order of items in a dictionary, you can use an OrderedDict from the
collections module. It exactly preserves the original insertion order of data when
iterating. For example:

from collections import OrderedDict

d = OrderedDict()
d['foo'] = 1
d['bar'] = 2
d['spam'] = 3
d['grok'] = 4

Outputs "foo 1", "bar 2", "spam 3", "grok 4"
for key in d:
 print(key, d[key])

An OrderedDict can be particularly useful when you want to build a mapping that you
may want to later serialize or encode into a different format. For example, if you want
to precisely control the order of fields appearing in a JSON encoding, first building the
data in an OrderedDict will do the trick:

>>> import json
>>> json.dumps(d)
'{"foo": 1, "bar": 2, "spam": 3, "grok": 4}'
>>>

Discussion
An OrderedDict internally maintains a doubly linked list that orders the keys according
to insertion order. When a new item is first inserted, it is placed at the end of this list.
Subsequent reassignment of an existing key doesn’t change the order.

Be aware that the size of an OrderedDict is more than twice as large as a normal dic‐
tionary due to the extra linked list that’s created. Thus, if you are going to build a data
structure involving a large number of OrderedDict instances (e.g., reading 100,000 lines
of a CSV file into a list of OrderedDict instances), you would need to study the re‐
quirements of your application to determine if the benefits of using an OrderedDict
outweighed the extra memory overhead.

1.8. Calculating with Dictionaries
Problem
You want to perform various calculations (e.g., minimum value, maximum value, sort‐
ing, etc.) on a dictionary of data.

1.8. Calculating with Dictionaries | 13

Solution
Consider a dictionary that maps stock names to prices:

prices = {
 'ACME': 45.23,
 'AAPL': 612.78,
 'IBM': 205.55,
 'HPQ': 37.20,
 'FB': 10.75
}

In order to perform useful calculations on the dictionary contents, it is often useful to
invert the keys and values of the dictionary using zip(). For example, here is how to
find the minimum and maximum price and stock name:

min_price = min(zip(prices.values(), prices.keys()))
min_price is (10.75, 'FB')

max_price = max(zip(prices.values(), prices.keys()))
max_price is (612.78, 'AAPL')

Similarly, to rank the data, use zip() with sorted(), as in the following:

prices_sorted = sorted(zip(prices.values(), prices.keys()))
prices_sorted is [(10.75, 'FB'), (37.2, 'HPQ'),
(45.23, 'ACME'), (205.55, 'IBM'),
(612.78, 'AAPL')]

When doing these calculations, be aware that zip() creates an iterator that can only be
consumed once. For example, the following code is an error:

prices_and_names = zip(prices.values(), prices.keys())
print(min(prices_and_names)) # OK
print(max(prices_and_names)) # ValueError: max() arg is an empty sequence

Discussion
If you try to perform common data reductions on a dictionary, you’ll find that they only
process the keys, not the values. For example:

min(prices) # Returns 'AAPL'
max(prices) # Returns 'IBM'

This is probably not what you want because you’re actually trying to perform a calcu‐
lation involving the dictionary values. You might try to fix this using the values()
method of a dictionary:

min(prices.values()) # Returns 10.75
max(prices.values()) # Returns 612.78

14 | Chapter 1: Data Structures and Algorithms

Unfortunately, this is often not exactly what you want either. For example, you may want
to know information about the corresponding keys (e.g., which stock has the lowest
price?).

You can get the key corresponding to the min or max value if you supply a key function
to min() and max(). For example:

min(prices, key=lambda k: prices[k]) # Returns 'FB'
max(prices, key=lambda k: prices[k]) # Returns 'AAPL'

However, to get the minimum value, you’ll need to perform an extra lookup step. For
example:

min_value = prices[min(prices, key=lambda k: prices[k])]

The solution involving zip() solves the problem by “inverting” the dictionary into a
sequence of (value, key) pairs. When performing comparisons on such tuples, the
value element is compared first, followed by the key. This gives you exactly the behavior
that you want and allows reductions and sorting to be easily performed on the dictionary
contents using a single statement.

It should be noted that in calculations involving (value, key) pairs, the key will be
used to determine the result in instances where multiple entries happen to have the same
value. For instance, in calculations such as min() and max(), the entry with the smallest
or largest key will be returned if there happen to be duplicate values. For example:

>>> prices = { 'AAA' : 45.23, 'ZZZ': 45.23 }
>>> min(zip(prices.values(), prices.keys()))
(45.23, 'AAA')
>>> max(zip(prices.values(), prices.keys()))
(45.23, 'ZZZ')
>>>

1.9. Finding Commonalities in Two Dictionaries
Problem
You have two dictionaries and want to find out what they might have in common (same
keys, same values, etc.).

Solution
Consider two dictionaries:

a = {
 'x' : 1,
 'y' : 2,
 'z' : 3
}

1.9. Finding Commonalities in Two Dictionaries | 15

b = {
 'w' : 10,
 'x' : 11,
 'y' : 2
}

To find out what the two dictionaries have in common, simply perform common set
operations using the keys() or items() methods. For example:

Find keys in common
a.keys() & b.keys() # { 'x', 'y' }

Find keys in a that are not in b
a.keys() - b.keys() # { 'z' }

Find (key,value) pairs in common
a.items() & b.items() # { ('y', 2) }

These kinds of operations can also be used to alter or filter dictionary contents. For
example, suppose you want to make a new dictionary with selected keys removed. Here
is some sample code using a dictionary comprehension:

Make a new dictionary with certain keys removed
c = {key:a[key] for key in a.keys() - {'z', 'w'}}
c is {'x': 1, 'y': 2}

Discussion
A dictionary is a mapping between a set of keys and values. The keys() method of a
dictionary returns a keys-view object that exposes the keys. A little-known feature of
keys views is that they also support common set operations such as unions, intersections,
and differences. Thus, if you need to perform common set operations with dictionary
keys, you can often just use the keys-view objects directly without first converting them
into a set.

The items() method of a dictionary returns an items-view object consisting of (key,
value) pairs. This object supports similar set operations and can be used to perform
operations such as finding out which key-value pairs two dictionaries have in common.

Although similar, the values() method of a dictionary does not support the set oper‐
ations described in this recipe. In part, this is due to the fact that unlike keys, the items
contained in a values view aren’t guaranteed to be unique. This alone makes certain set
operations of questionable utility. However, if you must perform such calculations, they
can be accomplished by simply converting the values to a set first.

16 | Chapter 1: Data Structures and Algorithms

1.10. Removing Duplicates from a Sequence while
Maintaining Order
Problem
You want to eliminate the duplicate values in a sequence, but preserve the order of the
remaining items.

Solution
If the values in the sequence are hashable, the problem can be easily solved using a set
and a generator. For example:

def dedupe(items):
 seen = set()
 for item in items:
 if item not in seen:
 yield item
 seen.add(item)

Here is an example of how to use your function:

>>> a = [1, 5, 2, 1, 9, 1, 5, 10]
>>> list(dedupe(a))
[1, 5, 2, 9, 10]
>>>

This only works if the items in the sequence are hashable. If you are trying to eliminate
duplicates in a sequence of unhashable types (such as dicts), you can make a slight
change to this recipe, as follows:

def dedupe(items, key=None):
 seen = set()
 for item in items:
 val = item if key is None else key(item)
 if val not in seen:
 yield item
 seen.add(val)

Here, the purpose of the key argument is to specify a function that converts sequence
items into a hashable type for the purposes of duplicate detection. Here’s how it works:

>>> a = [{'x':1, 'y':2}, {'x':1, 'y':3}, {'x':1, 'y':2}, {'x':2, 'y':4}]
>>> list(dedupe(a, key=lambda d: (d['x'],d['y'])))
[{'x': 1, 'y': 2}, {'x': 1, 'y': 3}, {'x': 2, 'y': 4}]
>>> list(dedupe(a, key=lambda d: d['x']))
[{'x': 1, 'y': 2}, {'x': 2, 'y': 4}]
>>>

This latter solution also works nicely if you want to eliminate duplicates based on the
value of a single field or attribute or a larger data structure.

1.10. Removing Duplicates from a Sequence while Maintaining Order | 17

Discussion
If all you want to do is eliminate duplicates, it is often easy enough to make a set. For
example:

>>> a
[1, 5, 2, 1, 9, 1, 5, 10]
>>> set(a)
{1, 2, 10, 5, 9}
>>>

However, this approach doesn’t preserve any kind of ordering. So, the resulting data will
be scrambled afterward. The solution shown avoids this.

The use of a generator function in this recipe reflects the fact that you might want the
function to be extremely general purpose—not necessarily tied directly to list process‐
ing. For example, if you want to read a file, eliminating duplicate lines, you could simply
do this:

with open(somefile,'r') as f:
 for line in dedupe(f):
 ...

The specification of a key function mimics similar functionality in built-in functions
such as sorted(), min(), and max(). For instance, see Recipes 1.8 and 1.13.

1.11. Naming a Slice
Problem
Your program has become an unreadable mess of hardcoded slice indices and you want
to clean it up.

Solution
Suppose you have some code that is pulling specific data fields out of a record string
with fixed fields (e.g., from a flat file or similar format):

0123456789012345678901234567890123456789012345678901234567890'
record = '....................100 513.25 '
cost = int(record[20:32]) * float(record[40:48])

Instead of doing that, why not name the slices like this?

SHARES = slice(20,32)
PRICE = slice(40,48)

cost = int(record[SHARES]) * float(record[PRICE])

18 | Chapter 1: Data Structures and Algorithms

In the latter version, you avoid having a lot of mysterious hardcoded indices, and what
you’re doing becomes much clearer.

Discussion
As a general rule, writing code with a lot of hardcoded index values leads to a readability
and maintenance mess. For example, if you come back to the code a year later, you’ll
look at it and wonder what you were thinking when you wrote it. The solution shown
is simply a way of more clearly stating what your code is actually doing.

In general, the built-in slice() creates a slice object that can be used anywhere a slice
is allowed. For example:

>>> items = [0, 1, 2, 3, 4, 5, 6]
>>> a = slice(2, 4)
>>> items[2:4]
[2, 3]
>>> items[a]
[2, 3]
>>> items[a] = [10,11]
>>> items
[0, 1, 10, 11, 4, 5, 6]
>>> del items[a]
>>> items
[0, 1, 4, 5, 6]

If you have a slice instance s, you can get more information about it by looking at its
s.start, s.stop, and s.step attributes, respectively. For example:

>>> a = slice(10, 50, 2)
>>> a.start
10
>>> a.stop
50
>>> a.step
2
>>>

In addition, you can map a slice onto a sequence of a specific size by using its indi
ces(size) method. This returns a tuple (start, stop, step) where all values have
been suitably limited to fit within bounds (as to avoid IndexError exceptions when
indexing). For example:

>>> s = 'HelloWorld'
>>> a.indices(len(s))
(5, 10, 2)
>>> for i in range(*a.indices(len(s))):
... print(s[i])
...
W
r

1.11. Naming a Slice | 19

d
>>>

1.12. Determining the Most Frequently Occurring Items in
a Sequence
Problem
You have a sequence of items, and you’d like to determine the most frequently occurring
items in the sequence.

Solution
The collections.Counter class is designed for just such a problem. It even comes with
a handy most_common() method that will give you the answer.

To illustrate, let’s say you have a list of words and you want to find out which words
occur most often. Here’s how you would do it:

words = [
 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
 'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
 'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
 'my', 'eyes', "you're", 'under'
]

from collections import Counter
word_counts = Counter(words)
top_three = word_counts.most_common(3)
print(top_three)
Outputs [('eyes', 8), ('the', 5), ('look', 4)]

Discussion
As input, Counter objects can be fed any sequence of hashable input items. Under the
covers, a Counter is a dictionary that maps the items to the number of occurrences. For
example:

>>> word_counts['not']
1
>>> word_counts['eyes']
8
>>>

If you want to increment the count manually, simply use addition:

>>> morewords = ['why','are','you','not','looking','in','my','eyes']
>>> for word in morewords:
... word_counts[word] += 1

20 | Chapter 1: Data Structures and Algorithms

...
>>> word_counts['eyes']
9
>>>

Or, alternatively, you could use the update() method:

>>> word_counts.update(morewords)
>>>

A little-known feature of Counter instances is that they can be easily combined using
various mathematical operations. For example:

>>> a = Counter(words)
>>> b = Counter(morewords)
>>> a
Counter({'eyes': 8, 'the': 5, 'look': 4, 'into': 3, 'my': 3, 'around': 2,
 "you're": 1, "don't": 1, 'under': 1, 'not': 1})
>>> b
Counter({'eyes': 1, 'looking': 1, 'are': 1, 'in': 1, 'not': 1, 'you': 1,
 'my': 1, 'why': 1})

>>> # Combine counts
>>> c = a + b
>>> c
Counter({'eyes': 9, 'the': 5, 'look': 4, 'my': 4, 'into': 3, 'not': 2,
 'around': 2, "you're": 1, "don't": 1, 'in': 1, 'why': 1,
 'looking': 1, 'are': 1, 'under': 1, 'you': 1})

>>> # Subtract counts
>>> d = a - b
>>> d
Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2,
 "you're": 1, "don't": 1, 'under': 1})
>>>

Needless to say, Counter objects are a tremendously useful tool for almost any kind of
problem where you need to tabulate and count data. You should prefer this over man‐
ually written solutions involving dictionaries.

1.13. Sorting a List of Dictionaries by a Common Key
Problem
You have a list of dictionaries and you would like to sort the entries according to one
or more of the dictionary values.

1.13. Sorting a List of Dictionaries by a Common Key | 21

Solution
Sorting this type of structure is easy using the operator module’s itemgetter function.
Let’s say you’ve queried a database table to get a listing of the members on your website,
and you receive the following data structure in return:

rows = [
 {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003},
 {'fname': 'David', 'lname': 'Beazley', 'uid': 1002},
 {'fname': 'John', 'lname': 'Cleese', 'uid': 1001},
 {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
]

It’s fairly easy to output these rows ordered by any of the fields common to all of the
dictionaries. For example:

from operator import itemgetter

rows_by_fname = sorted(rows, key=itemgetter('fname'))
rows_by_uid = sorted(rows, key=itemgetter('uid'))

print(rows_by_fname)
print(rows_by_uid)

The preceding code would output the following:

[{'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},
 {'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
 {'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
 {'fname': 'John', 'uid': 1001, 'lname': 'Cleese'}]

[{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},
 {'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
 {'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
 {'fname': 'Big', 'uid': 1004, 'lname': 'Jones'}]

The itemgetter() function can also accept multiple keys. For example, this code

rows_by_lfname = sorted(rows, key=itemgetter('lname','fname'))
print(rows_by_lfname)

Produces output like this:

[{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
 {'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},
 {'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},
 {'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'}]

Discussion
In this example, rows is passed to the built-in sorted() function, which accepts a key‐
word argument key. This argument is expected to be a callable that accepts a single item

22 | Chapter 1: Data Structures and Algorithms

from rows as input and returns a value that will be used as the basis for sorting. The
itemgetter() function creates just such a callable.

The operator.itemgetter() function takes as arguments the lookup indices used to
extract the desired values from the records in rows. It can be a dictionary key name, a
numeric list element, or any value that can be fed to an object’s __getitem__() method.
If you give multiple indices to itemgetter(), the callable it produces will return a tuple
with all of the elements in it, and sorted() will order the output according to the sorted
order of the tuples. This can be useful if you want to simultaneously sort on multiple
fields (such as last and first name, as shown in the example).

The functionality of itemgetter() is sometimes replaced by lambda expressions. For
example:

rows_by_fname = sorted(rows, key=lambda r: r['fname'])
rows_by_lfname = sorted(rows, key=lambda r: (r['lname'],r['fname']))

This solution often works just fine. However, the solution involving itemgetter()
typically runs a bit faster. Thus, you might prefer it if performance is a concern.

Last, but not least, don’t forget that the technique shown in this recipe can be applied
to functions such as min() and max(). For example:

>>> min(rows, key=itemgetter('uid'))
{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}
>>> max(rows, key=itemgetter('uid'))
{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
>>>

1.14. Sorting Objects Without Native Comparison Support
Problem
You want to sort objects of the same class, but they don’t natively support comparison
operations.

Solution
The built-in sorted() function takes a key argument that can be passed a callable that
will return some value in the object that sorted will use to compare the objects. For
example, if you have a sequence of User instances in your application, and you want to
sort them by their user_id attribute, you would supply a callable that takes a User
instance as input and returns the user_id. For example:

>>> class User:
... def __init__(self, user_id):
... self.user_id = user_id

1.14. Sorting Objects Without Native Comparison Support | 23

... def __repr__(self):

... return 'User({})'.format(self.user_id)

...
>>> users = [User(23), User(3), User(99)]
>>> users
[User(23), User(3), User(99)]
>>> sorted(users, key=lambda u: u.user_id)
[User(3), User(23), User(99)]
>>>

Instead of using lambda, an alternative approach is to use operator.attrgetter():

>>> from operator import attrgetter
>>> sorted(users, key=attrgetter('user_id'))
[User(3), User(23), User(99)]
>>>

Discussion
The choice of whether or not to use lambda or attrgetter() may be one of personal
preference. However, attrgetter() is often a tad bit faster and also has the added
feature of allowing multiple fields to be extracted simultaneously. This is analogous to
the use of operator.itemgetter() for dictionaries (see Recipe 1.13). For example, if
User instances also had a first_name and last_name attribute, you could perform a
sort like this:

by_name = sorted(users, key=attrgetter('last_name', 'first_name'))

It is also worth noting that the technique used in this recipe can be applied to functions
such as min() and max(). For example:

>>> min(users, key=attrgetter('user_id')
User(3)
>>> max(users, key=attrgetter('user_id')
User(99)
>>>

1.15. Grouping Records Together Based on a Field
Problem
You have a sequence of dictionaries or instances and you want to iterate over the data
in groups based on the value of a particular field, such as date.

Solution
The itertools.groupby() function is particularly useful for grouping data together
like this. To illustrate, suppose you have the following list of dictionaries:

24 | Chapter 1: Data Structures and Algorithms

rows = [
 {'address': '5412 N CLARK', 'date': '07/01/2012'},
 {'address': '5148 N CLARK', 'date': '07/04/2012'},
 {'address': '5800 E 58TH', 'date': '07/02/2012'},
 {'address': '2122 N CLARK', 'date': '07/03/2012'},
 {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'},
 {'address': '1060 W ADDISON', 'date': '07/02/2012'},
 {'address': '4801 N BROADWAY', 'date': '07/01/2012'},
 {'address': '1039 W GRANVILLE', 'date': '07/04/2012'},
]

Now suppose you want to iterate over the data in chunks grouped by date. To do it, first
sort by the desired field (in this case, date) and then use itertools.groupby():

from operator import itemgetter
from itertools import groupby

Sort by the desired field first
rows.sort(key=itemgetter('date'))

Iterate in groups
for date, items in groupby(rows, key=itemgetter('date')):
 print(date)
 for i in items:
 print(' ', i)

This produces the following output:

 07/01/2012
 {'date': '07/01/2012', 'address': '5412 N CLARK'}
 {'date': '07/01/2012', 'address': '4801 N BROADWAY'}
 07/02/2012
 {'date': '07/02/2012', 'address': '5800 E 58TH'}
 {'date': '07/02/2012', 'address': '5645 N RAVENSWOOD'}
 {'date': '07/02/2012', 'address': '1060 W ADDISON'}
 07/03/2012
 {'date': '07/03/2012', 'address': '2122 N CLARK'}
 07/04/2012
 {'date': '07/04/2012', 'address': '5148 N CLARK'}
 {'date': '07/04/2012', 'address': '1039 W GRANVILLE'}

Discussion
The groupby() function works by scanning a sequence and finding sequential “runs”
of identical values (or values returned by the given key function). On each iteration, it
returns the value along with an iterator that produces all of the items in a group with
the same value.

An important preliminary step is sorting the data according to the field of interest. Since
groupby() only examines consecutive items, failing to sort first won’t group the records
as you want.

1.15. Grouping Records Together Based on a Field | 25

If your goal is to simply group the data together by dates into a large data structure that
allows random access, you may have better luck using defaultdict() to build a
multidict, as described in Recipe 1.6. For example:

from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
 rows_by_date[row['date']].append(row)

This allows the records for each date to be accessed easily like this:

>>> for r in rows_by_date['07/01/2012']:
... print(r)
...
{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}
>>>

For this latter example, it’s not necessary to sort the records first. Thus, if memory is no
concern, it may be faster to do this than to first sort the records and iterate using
groupby().

1.16. Filtering Sequence Elements
Problem
You have data inside of a sequence, and need to extract values or reduce the sequence
using some criteria.

Solution
The easiest way to filter sequence data is often to use a list comprehension. For example:

>>> mylist = [1, 4, -5, 10, -7, 2, 3, -1]
>>> [n for n in mylist if n > 0]
[1, 4, 10, 2, 3]
>>> [n for n in mylist if n < 0]
[-5, -7, -1]
>>>

One potential downside of using a list comprehension is that it might produce a large
result if the original input is large. If this is a concern, you can use generator expressions
to produce the filtered values iteratively. For example:

>>> pos = (n for n in mylist if n > 0)
>>> pos
<generator object <genexpr> at 0x1006a0eb0>
>>> for x in pos:
... print(x)
...

26 | Chapter 1: Data Structures and Algorithms

1
4
10
2
3
>>>

Sometimes, the filtering criteria cannot be easily expressed in a list comprehension or
generator expression. For example, suppose that the filtering process involves exception
handling or some other complicated detail. For this, put the filtering code into its own
function and use the built-in filter() function. For example:

values = ['1', '2', '-3', '-', '4', 'N/A', '5']

def is_int(val):
 try:
 x = int(val)
 return True
 except ValueError:
 return False

ivals = list(filter(is_int, values))
print(ivals)
Outputs ['1', '2', '-3', '4', '5']

filter() creates an iterator, so if you want to create a list of results, make sure you also
use list() as shown.

Discussion
List comprehensions and generator expressions are often the easiest and most straight‐
forward ways to filter simple data. They also have the added power to transform the
data at the same time. For example:

>>> mylist = [1, 4, -5, 10, -7, 2, 3, -1]
>>> import math
>>> [math.sqrt(n) for n in mylist if n > 0]
[1.0, 2.0, 3.1622776601683795, 1.4142135623730951, 1.7320508075688772]
>>>

One variation on filtering involves replacing the values that don’t meet the criteria with
a new value instead of discarding them. For example, perhaps instead of just finding
positive values, you want to also clip bad values to fit within a specified range. This is
often easily accomplished by moving the filter criterion into a conditional expression
like this:

>>> clip_neg = [n if n > 0 else 0 for n in mylist]
>>> clip_neg
[1, 4, 0, 10, 0, 2, 3, 0]
>>> clip_pos = [n if n < 0 else 0 for n in mylist]
>>> clip_pos

1.16. Filtering Sequence Elements | 27

[0, 0, -5, 0, -7, 0, 0, -1]
>>>

Another notable filtering tool is itertools.compress(), which takes an iterable and
an accompanying Boolean selector sequence as input. As output, it gives you all of the
items in the iterable where the corresponding element in the selector is True. This can
be useful if you’re trying to apply the results of filtering one sequence to another related
sequence. For example, suppose you have the following two columns of data:

addresses = [
 '5412 N CLARK',
 '5148 N CLARK',
 '5800 E 58TH',
 '2122 N CLARK'
 '5645 N RAVENSWOOD',
 '1060 W ADDISON',
 '4801 N BROADWAY',
 '1039 W GRANVILLE',
]

counts = [0, 3, 10, 4, 1, 7, 6, 1]

Now suppose you want to make a list of all addresses where the corresponding count
value was greater than 5. Here’s how you could do it:

>>> from itertools import compress
>>> more5 = [n > 5 for n in counts]
>>> more5
[False, False, True, False, False, True, True, False]
>>> list(compress(addresses, more5))
['5800 E 58TH', '4801 N BROADWAY', '1039 W GRANVILLE']
>>>

The key here is to first create a sequence of Booleans that indicates which elements
satisfy the desired condition. The compress() function then picks out the items corre‐
sponding to True values.

Like filter(), compress() normally returns an iterator. Thus, you need to use list()
to turn the results into a list if desired.

1.17. Extracting a Subset of a Dictionary
Problem
You want to make a dictionary that is a subset of another dictionary.

28 | Chapter 1: Data Structures and Algorithms

Solution
This is easily accomplished using a dictionary comprehension. For example:

prices = {
 'ACME': 45.23,
 'AAPL': 612.78,
 'IBM': 205.55,
 'HPQ': 37.20,
 'FB': 10.75
}

Make a dictionary of all prices over 200
p1 = { key:value for key, value in prices.items() if value > 200 }

Make a dictionary of tech stocks
tech_names = { 'AAPL', 'IBM', 'HPQ', 'MSFT' }
p2 = { key:value for key,value in prices.items() if key in tech_names }

Discussion
Much of what can be accomplished with a dictionary comprehension might also be done
by creating a sequence of tuples and passing them to the dict() function. For example:

p1 = dict((key, value) for key, value in prices.items() if value > 200)

However, the dictionary comprehension solution is a bit clearer and actually runs quite
a bit faster (over twice as fast when tested on the prices dictionary used in the example).

Sometimes there are multiple ways of accomplishing the same thing. For instance, the
second example could be rewritten as:

Make a dictionary of tech stocks
tech_names = { 'AAPL', 'IBM', 'HPQ', 'MSFT' }
p2 = { key:prices[key] for key in prices.keys() & tech_names }

However, a timing study reveals that this solution is almost 1.6 times slower than the
first solution. If performance matters, it usually pays to spend a bit of time studying it.
See Recipe 14.13 for specific information about timing and profiling.

1.18. Mapping Names to Sequence Elements
Problem
You have code that accesses list or tuple elements by position, but this makes the code
somewhat difficult to read at times. You’d also like to be less dependent on position in
the structure, by accessing the elements by name.

1.18. Mapping Names to Sequence Elements | 29

Solution
collections.namedtuple() provides these benefits, while adding minimal overhead
over using a normal tuple object. collections.namedtuple() is actually a factory
method that returns a subclass of the standard Python tuple type. You feed it a type
name, and the fields it should have, and it returns a class that you can instantiate, passing
in values for the fields you’ve defined, and so on. For example:

>>> from collections import namedtuple
>>> Subscriber = namedtuple('Subscriber', ['addr', 'joined'])
>>> sub = Subscriber('jonesy@example.com', '2012-10-19')
>>> sub
Subscriber(addr='jonesy@example.com', joined='2012-10-19')
>>> sub.addr
'jonesy@example.com'
>>> sub.joined
'2012-10-19'
>>>

Although an instance of a namedtuple looks like a normal class instance, it is inter‐
changeable with a tuple and supports all of the usual tuple operations such as indexing
and unpacking. For example:

>>> len(sub)
2
>>> addr, joined = sub
>>> addr
'jonesy@example.com'
>>> joined
'2012-10-19'
>>>

A major use case for named tuples is decoupling your code from the position of the
elements it manipulates. So, if you get back a large list of tuples from a database call,
then manipulate them by accessing the positional elements, your code could break if,
say, you added a new column to your table. Not so if you first cast the returned tuples
to namedtuples.

To illustrate, here is some code using ordinary tuples:

def compute_cost(records):
 total = 0.0
 for rec in records:
 total += rec[1] * rec[2]
 return total

References to positional elements often make the code a bit less expressive and more
dependent on the structure of the records. Here is a version that uses a namedtuple:

from collections import namedtuple

Stock = namedtuple('Stock', ['name', 'shares', 'price'])

30 | Chapter 1: Data Structures and Algorithms

def compute_cost(records):
 total = 0.0
 for rec in records:
 s = Stock(*rec)
 total += s.shares * s.price
 return total

Naturally, you can avoid the explicit conversion to the Stock namedtuple if the records
sequence in the example already contained such instances.

Discussion
One possible use of a namedtuple is as a replacement for a dictionary, which requires
more space to store. Thus, if you are building large data structures involving dictionaries,
use of a namedtuple will be more efficient. However, be aware that unlike a dictionary,
a namedtuple is immutable. For example:

>>> s = Stock('ACME', 100, 123.45)
>>> s
Stock(name='ACME', shares=100, price=123.45)
>>> s.shares = 75
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

If you need to change any of the attributes, it can be done using the _replace() method
of a namedtuple instance, which makes an entirely new namedtuple with specified val‐
ues replaced. For example:

>>> s = s._replace(shares=75)
>>> s
Stock(name='ACME', shares=75, price=123.45)
>>>

A subtle use of the _replace() method is that it can be a convenient way to populate
named tuples that have optional or missing fields. To do this, you make a prototype
tuple containing the default values and then use _replace() to create new instances
with values replaced. For example:

from collections import namedtuple

Stock = namedtuple('Stock', ['name', 'shares', 'price', 'date', 'time'])

Create a prototype instance
stock_prototype = Stock('', 0, 0.0, None, None)

Function to convert a dictionary to a Stock
def dict_to_stock(s):
 return stock_prototype._replace(**s)

1.18. Mapping Names to Sequence Elements | 31

Here is an example of how this code would work:

>>> a = {'name': 'ACME', 'shares': 100, 'price': 123.45}
>>> dict_to_stock(a)
Stock(name='ACME', shares=100, price=123.45, date=None, time=None)
>>> b = {'name': 'ACME', 'shares': 100, 'price': 123.45, 'date': '12/17/2012'}
>>> dict_to_stock(b)
Stock(name='ACME', shares=100, price=123.45, date='12/17/2012', time=None)
>>>

Last, but not least, it should be noted that if your goal is to define an efficient data
structure where you will be changing various instance attributes, using namedtuple is
not your best choice. Instead, consider defining a class using __slots__ instead (see
Recipe 8.4).

1.19. Transforming and Reducing Data at the Same Time
Problem
You need to execute a reduction function (e.g., sum(), min(), max()), but first need to
transform or filter the data.

Solution
A very elegant way to combine a data reduction and a transformation is to use a
generator-expression argument. For example, if you want to calculate the sum of
squares, do the following:

nums = [1, 2, 3, 4, 5]
s = sum(x * x for x in nums)

Here are a few other examples:

Determine if any .py files exist in a directory
import os
files = os.listdir('dirname')
if any(name.endswith('.py') for name in files):
 print('There be python!')
else:
 print('Sorry, no python.')

Output a tuple as CSV
s = ('ACME', 50, 123.45)
print(','.join(str(x) for x in s))

Data reduction across fields of a data structure
portfolio = [
 {'name':'GOOG', 'shares': 50},
 {'name':'YHOO', 'shares': 75},
 {'name':'AOL', 'shares': 20},

32 | Chapter 1: Data Structures and Algorithms

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	Conventions Used in This Book
	Online Code Examples
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	David Beazley’s Acknowledgments
	Brian Jones’ Acknowledgments

	Chapter 1. Data Structures and Algorithms
	1.1. Unpacking a Sequence into Separate Variables
	Problem
	Solution
	Discussion

	1.2. Unpacking Elements from Iterables of Arbitrary Length
	Problem
	Solution
	Discussion

	1.3. Keeping the Last N Items
	Problem
	Solution
	Discussion

	1.4. Finding the Largest or Smallest N Items
	Problem
	Solution
	Discussion

	1.5. Implementing a Priority Queue
	Problem
	Solution
	Discussion

	1.6. Mapping Keys to Multiple Values in a Dictionary
	Problem
	Solution
	Discussion

	1.7. Keeping Dictionaries in Order
	Problem
	Solution
	Discussion

	1.8. Calculating with Dictionaries
	Problem
	Solution
	Discussion

	1.9. Finding Commonalities in Two Dictionaries
	Problem
	Solution
	Discussion

	1.10. Removing Duplicates from a Sequence while Maintaining Order
	Problem
	Solution
	Discussion

	1.11. Naming a Slice
	Problem
	Solution
	Discussion

	1.12. Determining the Most Frequently Occurring Items in a Sequence
	Problem
	Solution
	Discussion

	1.13. Sorting a List of Dictionaries by a Common Key
	Problem
	Solution
	Discussion

	1.14. Sorting Objects Without Native Comparison Support
	Problem
	Solution
	Discussion

	1.15. Grouping Records Together Based on a Field
	Problem
	Solution
	Discussion

	1.16. Filtering Sequence Elements
	Problem
	Solution
	Discussion

	1.17. Extracting a Subset of a Dictionary
	Problem
	Solution
	Discussion

	1.18. Mapping Names to Sequence Elements
	Problem
	Solution
	Discussion

	1.19. Transforming and Reducing Data at the Same Time
	Problem
	Solution

