


                  In Praise of Computer Organization and Design: The Hardware/
Software Interface, Fifth Edition  

 “Textbook selection is oft en a frustrating act of compromise—pedagogy, content 
coverage, quality of exposition, level of rigor, cost.  Computer Organization and 
Design  is the rare book that hits all the right notes across the board, without 
compromise. It is not only the premier computer organization textbook, it is a 
shining example of what all computer science textbooks could and should be.”

  —Michael Goldweber,  Xavier University    

 “I have been using  Computer Organization and Design  for years, from the very 
fi rst edition. Th e new Fift h Edition is yet another outstanding improvement on an 
already classic text. Th e evolution from desktop computing to mobile computing 
to Big Data brings new coverage of embedded processors such as the ARM, new 
material on how soft ware and hardware interact to increase performance, and 
cloud computing. All this without sacrifi cing the fundamentals.”

  —Ed Harcourt,  St. Lawrence University    

 “To Millennials:  Computer Organization and Design  is  the  computer architecture 
book you should keep on your (virtual) bookshelf. Th e book is both old and new, 
because it develops venerable principles—Moore's Law, abstraction, common case 
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates 
them with contemporary designs, e.g., ARM Cortex A8 and Intel Core i7.”

  —Mark D. Hill,  University of Wisconsin-Madison    

 “Th e new edition of  Computer Organization and Design  keeps pace with advances 
in emerging embedded and many-core (GPU) systems, where tablets and 
smartphones will are quickly becoming our new desktops. Th is text acknowledges 
these changes, but continues to provide a rich foundation of the fundamentals 
in computer organization and design which will be needed for the designers of 
hardware and soft ware that power this new class of devices and systems.”

  —Dave Kaeli,  Northeastern University    

 “Th e Fift h Edition of  Computer Organization and Design  provides more than an 
introduction to computer architecture. It prepares the reader for the changes necessary 
to meet the ever-increasing performance needs of mobile systems and big data 
processing at a time that diffi  culties in semiconductor scaling are making all systems 
power constrained. In this new era for computing, hardware and soft ware must be co-
designed and system-level architecture is as critical as component-level optimizations.”

  —Christos Kozyrakis,  Stanford University    

 “Patterson and Hennessy brilliantly address the issues in ever-changing computer 
hardware architectures, emphasizing on interactions among hardware and soft ware 
components at various abstraction levels. By interspersing I/O and parallelism concepts 
with a variety of mechanisms in hardware and soft ware throughout the book, the new 
edition achieves an excellent holistic presentation of computer architecture for the 
PostPC era. Th is book is an essential guide to hardware and soft ware professionals 
facing energy effi  ciency and parallelization challenges in Tablet PC to cloud computing.”

  —Jae C. Oh,  Syracuse University    
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Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson 
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for contributions to RISC, and he shared the IEEE Johnson Information Storage Award 
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the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of the 
American Academy of Arts and Sciences, the Computer History Museum, ACM, 
and IEEE, and he was elected to the National Academy of Engineering, the National 
Academy of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on 
the Information Technology Advisory Committee to the U.S. President, as chair of the 
CS division in the Berkeley EECS department, as chair of the Computing Research 
Association, and as President of ACM. Th is record led to Distinguished Service Awards 
from ACM and CRA. 

 At Berkeley, Patterson led the design and implementation of RISC I, likely the fi rst 
VLSI reduced instruction set computer, and the foundation of the commercial 
SPARC architecture. He was a leader of the Redundant Arrays of Inexpensive Disks 
(RAID) project, which led to dependable storage systems from many companies. 
He was also involved in the Network of Workstations (NOW) project, which led to 
cluster technology used by Internet companies and later to cloud computing. Th ese 
projects earned three dissertation awards from ACM. His current research projects 
are Algorithm-Machine-People and Algorithms and Specializers for Provably Optimal 
Implementations with Resilience and Effi  ciency. Th e AMP Lab is developing scalable 
machine learning algorithms, warehouse-scale-computer-friendly programming 
models, and crowd-sourcing tools to gain valuable insights quickly from big data in 
the cloud. Th e ASPIRE Lab uses deep hardware and soft ware co-tuning to achieve the 
highest possible performance and energy effi  ciency for mobile and rack computing 
systems. 

  John L. Hennessy  is the tenth president of Stanford University, where he has been 
a member of the faculty since 1977 in the departments of electrical engineering and 
computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the 
National Academy of Engineering, the National Academy of Science, and the American 
Philosophical Society; and a Fellow of the American Academy of Arts and Sciences. 
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to 
RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000 
John von Neumann Award, which he shared with David Patterson. He has also received 
seven honorary doctorates. 

 In 1981, he started the MIPS project at Stanford with a handful of graduate students. 
Aft er completing the project in 1984, he took a leave from the university to cofound 
MIPS Computer Systems (now MIPS Technologies), which developed one of the fi rst 
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have 
been shipped in devices ranging from video games and palmtop computers to laser printers 
and network switches. Hennessy subsequently led the DASH (Director Architecture 
for Shared Memory) project, which prototyped the fi rst scalable cache coherent 
multiprocessor; many of the key ideas have been adopted in modern multiprocessors. 
In addition to his technical activities and university responsibilities, he has continued to 
work with numerous start-ups both as an early-stage advisor and an investor. 
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                  Preface  

    Th e most beautiful thing we can experience is the mysterious. It is the 
source of all true art and science.  

   Albert Einstein, What I Believe,    1930    

  About This Book 
 We believe that learning in computer science and engineering should refl ect 
the current state of the fi eld, as well as introduce the principles that are shaping 
computing. We also feel that readers in every specialty of computing need 
to appreciate the organizational paradigms that determine the capabilities, 
performance, energy, and, ultimately, the success of computer systems. 

 Modern computer technology requires professionals of every computing 
specialty to understand both hardware and soft ware. Th e interaction between 
hardware and soft ware at a variety of levels also off ers a framework for understanding 
the fundamentals of computing. Whether your primary interest is hardware or 
soft ware, computer science or electrical engineering, the central ideas in computer 
organization and design are the same. Th us, our emphasis in this book is to show 
the relationship between hardware and soft ware and to focus on the concepts that 
are the basis for current computers. 

 Th e recent switch from uniprocessor to multicore microprocessors confi rmed 
the soundness of this perspective, given since the fi rst edition. While programmers 
could ignore the advice and rely on computer architects, compiler writers, and silicon 
engineers to make their programs run faster or be more energy-effi  cient without 
change, that era is over. For programs to run faster, they must become parallel. 
While the goal of many researchers is to make it possible for programmers to be 
unaware of the underlying parallel nature of the hardware they are programming, 
it will take many years to realize this vision. Our view is that for at least the next 
decade, most programmers are going to have to understand the hardware/soft ware 
interface if they want programs to run effi  ciently on parallel computers. 

 Th e audience for this book includes those with little experience in assembly 
language or logic design who need to understand basic computer organization as 
well as readers with backgrounds in assembly language and/or logic design who 
want to learn how to design a computer or understand how a system works and 
why it performs as it does. 
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   About the Other Book 
 Some readers may be familiar with  Computer Architecture: A Quantitative 
Approach , popularly known as Hennessy and Patterson. (Th is book in turn is 
oft en called Patterson and Hennessy.) Our motivation in writing the earlier book 
was to describe the principles of computer architecture using solid engineering 
fundamentals and quantitative cost/performance tradeoff s. We used an approach 
that combined examples and measurements, based on commercial systems, to 
create realistic design experiences. Our goal was to demonstrate that computer 
architecture could be learned using quantitative methodologies instead of a 
descriptive approach. It was intended for the serious computing professional who 
wanted a detailed understanding of computers. 

 A majority of the readers for this book do not plan to become computer 
architects. Th e performance and energy effi  ciency of future soft ware systems will 
be dramatically aff ected, however, by how well soft ware designers understand the 
basic hardware techniques at work in a system. Th us, compiler writers, operating 
system designers, database programmers, and most other soft ware engineers need 
a fi rm grounding in the principles presented in this book. Similarly, hardware 
designers must understand clearly the eff ects of their work on soft ware applications. 

 Th us, we knew that this book had to be much more than a subset of the material 
in  Computer Architecture , and the material was extensively revised to match the 
diff erent audience. We were so happy with the result that the subsequent editions of 
 Computer Architecture  were revised to remove most of the introductory material; 
hence, there is much less overlap today than with the fi rst editions of both books. 

   Changes for the Fifth Edition 
 We had six major goals for the fi ft h edition of  Computer Organization and Design:  
demonstrate the importance of understanding hardware with a running example; 
highlight major themes across the topics using margin icons that are introduced 
early; update examples to refl ect changeover from PC era to PostPC era; spread the 
material on I/O throughout the book rather than isolating it into a single chapter; 
update the technical content to refl ect changes in the industry since the publication 
of the fourth edition in 2009; and put appendices and optional sections online 
instead of including a CD to lower costs and to make this edition viable as an 
electronic book. 

 Before discussing the goals in detail, let’s look at the table on the next page. It 
shows the hardware and soft ware paths through the material. Chapters 1, 4, 5, and 
6 are found on both paths, no matter what the experience or the focus. Chapter 1 
discusses the importance of energy and how it motivates the switch from single 
core to multicore microprocessors and introduces the eight great ideas in computer 
architecture. Chapter 2 is likely to be review material for the hardware-oriented, 
but it is essential reading for the soft ware-oriented, especially for those readers 
interested in learning more about compilers and object-oriented programming 
languages. Chapter  3 is for readers interested in constructing a datapath or in 
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Chapter or Appendix Sections Software focus Hardware focus

1. Computer Abstractions
and Technology

1.1 to 1.11

      1.12 (History)

3. Arithmetic for Computers

3.1 to 3.5

      3.11 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

E. RISC Instruction-Set Architectures       E.1 to E.17

2. Instructions: Language
of the Computer

2.1 to 2.14

      2.15 (Compilers & Java)

2.16 to 2.20

      2.21 (History)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.12 (Parallel, Real Stuff)

      4.16 (History)

B. The Basics of Logic Design B.1 to B.13

D. Mapping Control to Hardware       D.1 to D.6

A. Assemblers, Linkers, and
the SPIM Simulator

 C.1 to C.13

Read carefully

Review or read

Read if have time

Read for culture

Reference

      4.13 (Verilog Pipeline Control)

5. Large and Fast: Exploiting
Memory Hierarchy

5.1 to 5.10

      5.17 (History)

4.14 to 4.15 (Fallacies)

6. Parallel Process from Client
to Cloud

6.1 to 6.8

      6.9 (Networks)

6.10 to 6.14

      6.15 (History)

3.6 to 3.8 (Subword Parallelism)

3.9 to 3.10 (Fallacies)

5.13 to 5.16

C. Graphics Processor Units

      A.1 to A.11

      5.12 (Verilog Cache Controller)

      5.11 (Redundant Arrays of
Inexpensive Disks)
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learning more about fl oating-point arithmetic. Some will skip parts of Chapter 3, 
either because they don’t need them or because they off er a review. However, we 
introduce the running example of matrix multiply in this chapter, showing how 
subword parallels off ers a fourfold improvement, so don’t skip sections 3.6 to 3.8. 
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews 
and Section 4.12 gives the next performance boost for matrix multiply for those with 
a soft ware focus. Th ose with a hardware focus, however, will fi nd that this chapter 
presents core material; they may also, depending on their background, want to read 
Appendix C on logic design fi rst. Th e last chapter on multicores, multiprocessors, 
and clusters, is   mostly new content and should be read by everyone. It was 
signifi cantly reorganized in this edition to make the fl ow of ideas more natural 
and to include much more depth on GPUs, warehouse scale computers, and the 
hardware-soft ware interface of network interface cards that are key to clusters.       

 Th e fi rst of the six goals for this fi rth edition was to demonstrate the importance 
of understanding modern hardware to get good performance and energy effi  ciency 
with a concrete example. As mentioned above, we start with subword parallelism 
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance 
in Chapter 4 by unrolling the loop to demonstrate the value of instruction level 
parallelism. Chapter 5 doubles performance again by optimizing for caches using 
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by 
using thread-level parallelism. All four optimizations in total add just 24 lines of C 
code to our initial matrix multiply example. 

 Th e second goal was to help readers separate the forest from the trees by 
identifying eight great ideas of computer architecture early and then pointing out 
all the places they occur throughout the rest of the book. We use (hopefully) easy 
to remember margin icons and highlight the corresponding word in the text to 
remind readers of these eight themes. Th ere are nearly 100 citations in the book. 
No chapter has less than seven examples of great ideas, and no idea is cited less than 
fi ve times. Performance via parallelism, pipelining, and prediction are the three 
most popular great ideas, followed closely by Moore’s Law. Th e processor chapter 
(4) is the one with the most examples, which is not a surprise since it probably 
received the most attention from computer architects. Th e one great idea found in 
every chapter is performance via parallelism, which is a pleasant observation given 
the recent emphasis in parallelism in the fi eld and in editions of this book. 

 Th e third goal was to recognize the generation change in computing from the 
PC era to the PostPC era by this edition with our examples and material. Th us, 
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6 
describes the computing infrastructure of the cloud. We also feature the ARM, 
which is the instruction set of choice in the personal mobile devices of the PostPC 
era, as well as the x86 instruction set that dominated the PC Era and (so far) 
dominates cloud computing. 

 Th e fourth goal was to spread the I/O material throughout the book rather 
than have it in its own chapter, much as we spread parallelism throughout all the 
chapters in the fourth edition. Hence, I/O material in this edition can be found in 
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Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. Th e thought is that readers (and instructors) 
are more likely to cover I/O if it’s not segregated to its own chapter. 

 Th is is a fast-moving fi eld, and, as is always the case for our new editions, an 
important goal is to update the technical content. Th e running example is the ARM 
Cortex A8 and the Intel Core i7, refl ecting our PostPC Era. Other highlights include 
an overview the new 64-bit instruction set of ARMv8, a tutorial on GPUs that 
explains their unique terminology, more depth on the warehouse scale computers 
that make up the cloud, and a deep dive into 10 Gigabyte Ethernet cards. 

 To keep the main book short and compatible with electronic books, we placed 
the optional material as online appendices instead of on a companion CD as in 
prior editions. 

 Finally, we updated all the exercises in the book. 
 While some elements changed, we have preserved useful book elements from 

prior editions. To make the book work better as a reference, we still place defi nitions 
of new terms in the margins at their fi rst occurrence. Th e book element called 
“Understanding Program Performance” sections helps readers understand the 
performance of their programs and how to improve it, just as the “Hardware/Soft ware 
Interface” book element helped readers understand the tradeoff s at this interface. 
“Th e Big Picture” section remains so that the reader sees the forest despite all the 
trees. “Check Yourself ” sections help readers to confi rm their comprehension of the 
material on the fi rst time through with answers provided at the end of each chapter. 
Th is edition still includes the green MIPS reference card, which was inspired by the 
“Green Card” of the IBM System/360. Th is card has been updated and should be a 
handy reference when writing MIPS assembly language programs. 

   Changes for the Fifth Edition 
 We have collected a great deal of material to help instructors teach courses using 
this book. Solutions to exercises, fi gures from the book, lecture slides, and other 
materials are available to adopters from the publisher. Check the publisher’s Web 
site for more information: 

   textbooks.elsevier.com/9780124077263    

   Concluding Remarks 
 If you read the following acknowledgments section, you will see that we went to 
great lengths to correct mistakes. Since a book goes through many printings, we 
have the opportunity to make even more corrections. If you uncover any remaining, 
resilient bugs, please contact the publisher by electronic mail at   cod5bugs@mkp.
com   or by low-tech mail using the address found on the copyright page. 

 Th is edition is the second break in the long-standing collaboration between 
Hennessy and Patterson, which started in 1989. Th e demands of running one of 
the world’s great universities meant that President Hennessy could no longer make 
the substantial commitment to create a new edition. Th e remaining author felt 

http://textbooks.elsevier.com/
mailto:cod5bugs@mkp.com
mailto:cod5bugs@mkp.com
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once again like a tightrope walker without a safety net. Hence, the people in the 
acknowledgments and Berkeley colleagues played an even larger role in shaping 
the contents of this book. Nevertheless, this time around there is only one author 
to blame for the new material in what you are about to read. 

   Acknowledgments for the Fifth Edition 
 With every edition of this book, we are very fortunate to receive help from many 
readers, reviewers, and contributors. Each of these people has helped to make this 
book better. 

 Chapter 6 was so extensively revised that we did a separate review for ideas and 
contents, and I made changes based on the feedback from every reviewer. I’d like to 
thank  Christos Kozyrakis  of Stanford University for suggesting using the network 
interface for clusters to demonstrate the hardware-soft ware interface of I/O and 
for suggestions on organizing the rest of the chapter;  Mario Flagsilk  of Stanford 
University for providing details, diagrams, and performance measurements of the 
NetFPGA NIC; and the following for suggestions on how to improve the chapter: 
 David Kaeli  of Northeastern University,  Partha Ranganathan  of HP Labs, 
 David Wood  of the University of Wisconsin, and my Berkeley colleagues  Siamak 
Faridani ,  Shoaib Kamil ,  Yunsup Lee ,  Zhangxi Tan , and  Andrew Waterman . 

 Special thanks goes to  Rimas Avizenis  of UC Berkeley, who developed the 
various versions of matrix multiply and supplied the performance numbers as well. 
As I worked with his father while I was a graduate student at UCLA, it was a nice 
symmetry to work with Rimas at UCB. 

 I also wish to thank my longtime collaborator  Randy Katz  of UC Berkeley, who 
helped develop the concept of great ideas in computer architecture as part of the 
extensive revision of an undergraduate class that we did together. 

 I’d like to thank  David Kirk ,  John Nickolls , and their colleagues at NVIDIA 
(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm, 
Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov) 
for writing the fi rst in-depth appendix on GPUs. I’d like to express again my 
appreciation to  Jim Larus , recently named Dean of the School of Computer and 
Communications Science at EPFL, for his willingness in contributing his expertise 
on assembly language programming, as well as for welcoming readers of this book 
with regard to using the simulator he developed and maintains. 

 I am also very grateful to  Jason Bakos  of the University of South Carolina, 
who updated and created new exercises for this edition, working from originals 
prepared for the fourth edition by  Perry Alexander  (Th e University of Kansas); 
 Javier Bruguera  (Universidade de Santiago de Compostela);  Matthew Farrens  
(University of California, Davis);  David Kaeli  (Northeastern University);  Nicole 
Kaiyan  (University of Adelaide);  John Oliver  (Cal Poly, San Luis Obispo);  Milos 
Prvulovic  (Georgia Tech); and  Jichuan Chang ,  Jacob Leverich ,  Kevin Lim , and 
 Partha Ranganathan  (all from Hewlett-Packard). 

 Additional thanks goes to  Jason Bakos  for developing the new lecture slides. 
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Lu Peng (LSU), Milos Prvulovic (Georgia Tech), Partha Ranganathan (HP 
Labs), David Wood (University of Wisconsin), Craig Zilles (University of Illinois 
at Urbana-Champaign). Surveys and Reviews: Mahmoud Abou-Nasr (Wayne State 
University), Perry Alexander (Th e University of Kansas), Hakan Aydin (George 
Mason University), Hussein Badr (State University of New York at Stony Brook), 
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University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster 
College), Jeff  Braun (Montana Tech), Tom Briggs (Shippensburg University), Scott 
Burgess (Humboldt State University), Fazli Can (Bilkent University), Warren R. 
Carithers (Rochester Institute of Technology), Bruce Carlton (Mesa Community 
College), Nicholas Carter (University of Illinois at Urbana-Champaign), Anthony 
Cocchi (Th e City University of New York), Don Cooley (Utah State University), 
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Ferguson (Northwest Missouri State University), Rhonda Kay Gaede (Th e University 
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 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the 
excitement of the world of computer systems. Th is is not a dry and dreary fi eld, 
where progress is glacial and where new ideas atrophy from neglect. No! Computers 
are the product of the incredibly vibrant information technology industry, all 
aspects of which are responsible for almost 10% of the gross national product of 
the United States, and whose economy has become dependent in part on the rapid 
improvements in information technology promised by Moore’s Law. Th is unusual 
industry embraces innovation at a breath-taking rate. In the last 30 years, there have 
been a number of new computers whose introduction appeared to revolutionize 
the computing industry; these revolutions were cut short only because someone 
else built an even better computer.

Th is race to innovate has led to unprecedented progress since the inception 
of electronic computing in the late 1940s. Had the transportation industry kept 
pace with the computer industry, for example, today we could travel from New 
York to London in a second for a penny. Take just a moment to contemplate how 
such an improvement would change society—living in Tahiti while working in San 
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can 
appreciate the implications of such a change.
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Computers have led to a third revolution for civilization, with the information 
revolution taking its place alongside the agricultural and the industrial revolutions. 
Th e resulting multiplication of humankind’s intellectual strength and reach 
naturally has aff ected our everyday lives profoundly and changed the ways in which 
the search for new knowledge is carried out. Th ere is now a new vein of scientifi c 
investigation, with computational scientists joining theoretical and experimental 
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and 
physics, among others.

Th e computer revolution continues. Each time the cost of computing improves 
by another factor of 10, the opportunities for computers multiply. Applications that 
were economically infeasible suddenly become practical. In the recent past, the 
following applications were “computer science fi ction.”

■ Computers in automobiles: Until microprocessors improved dramatically 
in price and performance in the early 1980s, computer control of cars was 
ludicrous. Today, computers reduce pollution, improve fuel effi  ciency via 
engine controls, and increase safety through blind spot warnings, lane 
departure warnings, moving object detection, and air bag infl ation to protect 
occupants in a crash.

■ Cell phones: Who would have dreamed that advances in computer 
systems would lead to more than half of the planet having mobile phones, 
allowing person-to-person communication to almost anyone anywhere in 
the world?

■ Human genome project: Th e cost of computer equipment to map and analyze 
human DNA sequences was hundreds of millions of dollars. It’s unlikely that 
anyone would have considered this project had the computer costs been 10 
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover, 
costs continue to drop; you will soon be able to acquire your own genome, 
allowing medical care to be tailored to you.

■ World Wide Web: Not in existence at the time of the fi rst edition of this book, 
the web has transformed our society. For many, the web has replaced libraries 
and newspapers.

■ Search engines: As the content of the web grew in size and in value, fi nding 
relevant information became increasingly important. Today, many people 
rely on search engines for such a large part of their lives that it would be a 
hardship to go without them.

Clearly, advances in this technology now aff ect almost every aspect of our 
society. Hardware advances have allowed programmers to create wonderfully 
useful soft ware, which explains why computers are omnipresent. Today’s science 
fi ction suggests tomorrow’s killer applications: already on their way are glasses that 
augment reality, the cashless society, and cars that can drive themselves.
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Classes of Computing Applications and Their 
Characteristics
Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used 
in computers ranging from smart home appliances to cell phones to the largest 
supercomputers, these diff erent applications have diff erent design requirements 
and employ the core hardware technologies in diff erent ways. Broadly speaking, 
computers are used in three diff erent classes of applications.

Personal computers (PCs) are possibly the best known form of computing, 
which readers of this book have likely used extensively. Personal computers 
emphasize delivery of good performance to single users at low cost and usually 
execute third-party soft ware. Th is class of computing drove the evolution of many 
computing technologies, which is only about 35 years old!

Servers are the modern form of what were once much larger computers, and 
are usually accessed only via a network. Servers are oriented to carrying large 
workloads, which may consist of either single complex applications—usually a 
scientifi c or engineering application—or handling many small jobs, such as would 
occur in building a large web server. Th ese applications are usually based on 
soft ware from another source (such as a database or simulation system), but are 
oft en modifi ed or customized for a particular function. Servers are built from the 
same basic technology as desktop computers, but provide for greater computing, 
storage, and input/output capacity. In general, servers also place a greater emphasis 
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server 
may be little more than a desktop computer without a screen or keyboard and 
cost a thousand dollars. Th ese low-end servers are typically used for fi le storage, 
small business applications, or simple web serving (see Section 6.10). At the other 
extreme are supercomputers, which at the present consist of tens of thousands of 
processors and many terabytes of memory, and cost tens to hundreds of millions 
of dollars. Supercomputers are usually used for high-end scientifi c and engineering 
calculations, such as weather forecasting, oil exploration, protein structure 
determination, and other large-scale problems. Although such supercomputers 
represent the peak of computing capability, they represent a relatively small fraction 
of the servers and a relatively small fraction of the overall computer market in 
terms of total revenue.

Embedded computers are the largest class of computers and span the widest 
range of applications and performance. Embedded computers include the 
microprocessors found in your car, the computers in a television set, and the 
networks of processors that control a modern airplane or cargo ship. Embedded 
computing systems are designed to run one application or one set of related 
applications that are normally integrated with the hardware and delivered as a 
single system; thus, despite the large number of embedded computers, most users 
never really see that they are using a computer!

personal computer 
(PC) A computer 
designed for use by 
an individual, usually 
incorporating a graphics 
display, a keyboard, and a 
mouse.

server A computer 
used for running 
larger programs for 
multiple users, oft en 
simultaneously, and 
typically accessed only via 
a network.

supercomputer A class 
of computers with the 
highest performance and 
cost; they are confi gured 
as servers and typically 
cost tens to hundreds of 
millions of dollars.

terabyte (TB) Originally 
1,099,511,627,776 
(240) bytes, although 
communications and 
secondary storage 
systems developers 
started using the term to 
mean 1,000,000,000,000 
(1012) bytes. To reduce 
confusion, we now use the 
term tebibyte (TiB) for 
240 bytes, defi ning terabyte 
(TB) to mean 1012 bytes. 
Figure 1.1 shows the full 
range of decimal and 
binary values and names.

embedded computer 
A computer inside another 
device used for running 
one predetermined 
application or collection of 
soft ware.
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Embedded applications oft en have unique application requirements that 
combine a minimum performance with stringent limitations on cost or power. For 
example, consider a music player: the processor need only be as fast as necessary 
to handle its limited function, and beyond that, minimizing cost and power are the 
most important objectives. Despite their low cost, embedded computers oft en have 
lower tolerance for failure, since the results can vary from upsetting (when your 
new television crashes) to devastating (such as might occur when the computer in a 
plane or cargo ship crashes). In consumer-oriented embedded applications, such as 
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded 
systems, techniques of redundancy from the server world are oft en employed. 
Although this book focuses on general-purpose computers, most concepts apply 
directly, or with slight modifi cations, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more 
detail on a particular subject that may be of interest. Disinterested readers may skip 
over an elaboration, since the subsequent material will never depend on the contents 
of the elaboration.

Many embedded processors are designed using processor cores, a version of a 
processor written in a hardware description language, such as Verilog or VHDL (see 
Chapter 4). The core allows a designer to integrate other application-specifi c hardware 
with the processor core for fabrication on a single chip.

Welcome to the PostPC Era
Th e continuing march of technology brings about generational changes in 
computer hardware that shake up the entire information technology industry. 
Since the last edition of the book we have undergone such a change, as signifi cant 
in the past as the switch starting 30 years ago to personal computers. Replacing the 

FIGURE 1.1 The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for 
all the common size terms. In the last column we note how much larger the binary term is than its 
corresponding decimal term, which is compounded as we head down the chart. Th ese prefi xes work for bits 
as well as bytes, so gigabit (Gb) is 109 bits while gibibits (Gib) is 230 bits.

Decimal 
term Abbreviation Value

Binary 
term Abbreviation Value % Larger

kilobyte KB 103 kibibyte KiB 210 2%

megabyte MB 106 mebibyte MiB 220 5%

gigabyte GB 109 gibibyte GiB 230 7%

terabyte TB 1012 tebibyte TiB 240 10%

petabyte PB 1015 pebibyte PiB 250 13%

exabyte EB 1018 exbibyte EiB 260 15%

zettabyte ZB 1021 zebibyte ZiB 270 18%

yottabyte YB 1024 yobibyte YiB 280 21%
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FIGURE 1.2 The number manufactured per year of tablets and smart phones, which 
refl ect the PostPC era, versus personal computers and traditional cell phones. Smart phones 
represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest 
growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories 
are relatively fl at or declining.  

PC is the personal mobile device (PMD). PMDs are battery operated with wireless 
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs, 
users can download soft ware (“apps”) to run on them. Unlike PCs, they no longer 
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen 
or even speech input. Today’s PMD is a smart phone or a tablet computer, but 
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time 
of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the traditional server is Cloud Computing, which relies upon 
giant datacenters that are now known as Warehouse Scale Computers (WSCs). 
Companies like Amazon and Google build these WSCs containing 100,000 servers 
and then let companies rent portions of them so that they can provide soft ware 
services to PMDs without having to build WSCs of their own. Indeed, Soft ware as 
a Service (SaaS) deployed via the cloud is revolutionizing the soft ware industry just 
as PMDs and WSCs are revolutionizing the hardware industry. Today’s soft ware 
developers will oft en have a portion of their application that runs on the PMD and 
a portion that runs in the Cloud.

What You Can Learn in This Book
Successful programmers have always been concerned about the performance of 
their programs, because getting results to the user quickly is critical in creating 
successful soft ware. In the 1960s and 1970s, a primary constraint on computer 
performance was the size of the computer’s memory. Th us, programmers oft en 
followed a simple credo: minimize memory space to make programs fast. In the 

Personal mobile 
devices (PMDs) are 
small wireless devices to 
connect to the Internet; 
they rely on batteries for 
power, and soft ware is 
installed by downloading 
apps. Conventional 
examples are smart 
phones and tablets. 

Cloud Computing  refers 
to large collections of 
servers that provide services 
over the Internet; some 
providers rent dynamically 
varying numbers of servers 
as a utility.

Soft ware as a Service 
(SaaS) delivers soft ware 
and data as a service over 
the Internet, usually via 
a thin program such as a 
browser that runs on local 
client devices, instead of 
binary code that must be 
installed, and runs wholly 
on that device. Examples 
include web search and 
social networking.
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last decade, advances in computer design and memory technology have greatly 
reduced the importance of small memory size in most applications other than 
those in embedded computing systems.

Programmers interested in performance now need to understand the issues 
that have replaced the simple memory model of the 1960s: the parallel nature 
of processors and the hierarchical nature of memories. Moreover, as we explain 
in Section 1.7, today’s programmers need to worry about energy effi  ciency of 
their programs running either on the PMD or in the Cloud, which also requires 
understanding what is below your code. Programmers who seek to build 
competitive versions of soft ware will therefore need to increase their knowledge of 
computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary 
machine, unraveling the soft ware below your program and the hardware under the 
covers of your computer. By the time you complete this book, we believe you will 
be able to answer the following questions:

■ How are programs written in a high-level language, such as C or Java, 
translated into the language of the hardware, and how does the hardware 
execute the resulting program? Comprehending these concepts forms the 
basis of understanding the aspects of both the hardware and soft ware that 
aff ect program performance.

■ What is the interface between the soft ware and the hardware, and how does 
soft ware instruct the hardware to perform needed functions? Th ese concepts 
are vital to understanding how to write many kinds of soft ware.

■ What determines the performance of a program, and how can a programmer 
improve the performance? As we will see, this depends on the original 
program, the soft ware translation of that program into the computer’s 
language, and the eff ectiveness of the hardware in executing the program.

■ What techniques can be used by hardware designers to improve performance? 
Th is book will introduce the basic concepts of modern computer design. Th e 
interested reader will fi nd much more material on this topic in our advanced 
book, Computer Architecture: A Quantitative Approach.

■ What techniques can be used by hardware designers to improve energy 
effi  ciency? What can the programmer do to help or hinder energy effi  ciency?

■ What are the reasons for and the consequences of the recent switch from 
sequential processing to parallel processing? Th is book gives the motivation, 
describes the current hardware mechanisms to support parallelism, and 
surveys the new generation of  “multicore” microprocessors (see Chapter 6).

■ Since the fi rst commercial computer in 1951, what great ideas did computer 
architects come up with that lay the foundation of modern computing?

multicore 
microprocessor 
A microprocessor 
containing multiple 
processors (“cores”) in a 
single integrated circuit.
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Without understanding the answers to these questions, improving the 
performance of your program on a modern computer or evaluating what features 
might make one computer better than another for a particular application will be 
a complex process of trial and error, rather than a scientifi c procedure driven by 
insight and analysis.

Th is fi rst chapter lays the foundation for the rest of the book. It introduces the 
basic ideas and defi nitions, places the major components of soft ware and hardware 
in perspective, shows how to evaluate performance and energy, introduces 
integrated circuits (the technology that fuels the computer revolution), and explains 
the shift  to multicores.

In this chapter and later ones, you will likely see many new words, or words 
that you may have heard but are not sure what they mean. Don’t panic! Yes, there 
is a lot of special terminology used in describing modern computers, but the 
terminology actually helps, since it enables us to describe precisely a function or 
capability. In addition, computer designers (including your authors) love using 
acronyms, which are easy to understand once you know what the letters stand for! 
To help you remember and locate terms, we have included a highlighted defi nition 
of every term in the margins the fi rst time it appears in the text. Aft er a short 
time of working with the terminology, you will be fl uent, and your friends will 
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, 
PCIe, SATA, and many others.

To reinforce how the soft ware and hardware systems used to run a program will 
aff ect performance, we use a special section, Understanding Program Performance, 
throughout the book to summarize important insights into program performance. 
Th e fi rst one appears below.

Th e performance of a program depends on a combination of the eff ectiveness of the 
algorithms used in the program, the soft ware systems used to create and translate 
the program into machine instructions, and the eff ectiveness of the computer in 
executing those instructions, which may include input/output (I/O) operations. 
Th is table summarizes how the hardware and soft ware aff ect performance.

Hardware or software 
component How this component affects performance

Where is this 
topic covered?

Algorithm Determines both the number of source-level 
statements and the number of I/O operations 
executed

Other books!

Programming language, 
compiler, and architecture

Determines the number of computer instructions 
for each source-level statement

Chapters 2 and 3

Processor and memory 
system

Determines how fast instructions can be executed Chapters 4, 5, and 6

I/O system (hardware and 
operating system)

Determines how fast I/O operations may be 
executed

Chapters 4, 5, and 6

acronym A word 
constructed by taking the 
initial letters of a string 
of words. For example: 
RAM is an acronym for 
Random Access Memory, 
and CPU is an acronym 
for Central Processing 
Unit.

Understanding 
Program 
Performance
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To demonstrate the impact of the ideas in this book, we improve the performance 
of a C program that multiplies a matrix times a vector in a sequence of 
chapters. Each step leverages understanding how the underlying hardware 
really works in a modern microprocessor to improve performance by a factor 
of 200!

■ In the category of data level parallelism, in Chapter 3 we use subword 
parallelism via C intrinsics to increase performance by a factor of 3.8.

■ In the category of instruction level parallelism, in Chapter 4 we use loop 
unrolling to exploit multiple instruction issue and out-of-order execution 
hardware to increase performance by another factor of 2.3.

■ In the category of memory hierarchy optimization, in Chapter 5 we use 
cache blocking to increase performance on large matrices by another factor 
of 2.5.

■ In the category of thread level parallelism, in Chapter 6 we use parallel for 
loops in OpenMP to exploit multicore hardware to increase performance by 
another factor of 14.

Check Yourself sections are designed to help readers assess whether they 
comprehend the major concepts introduced in a chapter and understand the 
implications of those concepts. Some Check Yourself questions have simple answers; 
others are for discussion among a group. Answers to the specifi c questions can 
be found at the end of the chapter. Check Yourself questions appear only at the 
end of a section, making it easy to skip them if you are sure you understand the 
material.

1. Th e number of embedded processors sold every year greatly outnumbers 
the number of PC and even PostPC processors. Can you confi rm or deny 
this insight based on your own experience? Try to count the number of 
embedded processors in your home. How does it compare with the number 
of conventional computers in your home?

2. As mentioned earlier, both the soft ware and hardware aff ect the performance 
of a program. Can you think of examples where each of the following is the 
right place to look for a performance bottleneck?

■ Th e algorithm chosen
■ Th e programming language or compiler
■ Th e operating system
■ Th e processor
■ Th e I/O system and devices

Check 
Yourself
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 1.2  Eight Great Ideas in Computer 
Architecture

We now introduce eight great ideas that computer architects have been invented in 
the last 60 years of computer design. Th ese ideas are so powerful they have lasted 
long aft er the fi rst computer that used them, with newer architects demonstrating 
their admiration by imitating their predecessors. Th ese great ideas are themes that 
we will weave through this and subsequent chapters as examples arise. To point 
out their infl uence, in this section we introduce icons and highlighted terms that 
represent the great ideas and we use them to identify the nearly 100 sections of the 
book that feature use of the great ideas.

Design for Moore’s Law
Th e one constant for computer designers is rapid change, which is driven largely by 
Moore’s Law. It states that integrated circuit resources double every 18–24 months. 
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made 
by Gordon Moore, one of the founders of Intel. As computer designs can take years, 
the resources available per chip can easily double or quadruple between the start 
and fi nish of the project. Like a skeet shooter, computer architects must anticipate 
where the technology will be when the design fi nishes rather than design for where 
it starts. We use an “up and to the right” Moore’s Law graph to represent designing 
for rapid change.

Use Abstraction to Simplify Design
Both computer architects and programmers had to invent techniques to make 
themselves more productive, for otherwise design time would lengthen as 
dramatically as resources grew by Moore’s Law. A major productivity technique for 
hardware and soft ware is to use abstractions to represent the design at diff erent 
levels of representation; lower-level details are hidden to off er a simpler model at 
higher levels. We’ll use the abstract painting icon to represent this second great 
idea.

Make the Common Case Fast
Making the common case fast will tend to enhance performance better than 
optimizing the rare case. Ironically, the common case is oft en simpler than the 
rare case and hence is oft en easier to enhance. Th is common sense advice implies 
that you know what the common case is, which is only possible with careful 
experimentation and measurement (see Section 1.6). We use a sports car as the 
icon for making the common case fast, as the most common trip has one or two 
passengers, and it’s surely easier to make a fast sports car than a fast minivan!
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Performance via Parallelism
Since the dawn of computing, computer architects have off ered designs that get 
more performance by performing operations in parallel. We’ll see many examples 
of parallelism in this book. We use multiple jet engines of a plane as our icon for 
parallel performance.

Performance via Pipelining
A particular pattern of parallelism is so prevalent in computer architecture that 
it merits its own name: pipelining. For example, before fi re engines, a “bucket 
brigade” would respond to a fi re, which many cowboy movies show in response to 
a dastardly act by the villain. Th e townsfolk form a human chain to carry a water 
source to fi re, as they could much more quickly move buckets up the chain instead 
of individuals running back and forth. Our pipeline icon is a sequence of pipes, 
with each section representing one stage of the pipeline.

Performance via Prediction
Following the saying that it can be better to ask for forgiveness than to ask for 
permission, the fi nal great idea is prediction. In some cases it can be faster on 
average to guess and start working rather than wait until you know for sure, 
assuming that the mechanism to recover from a misprediction is not too expensive 
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as 
our prediction icon.

Hierarchy of Memories
Programmers want memory to be fast, large, and cheap, as memory speed oft en 
shapes performance, capacity limits the size of problems that can be solved, and the 
cost of memory today is oft en the majority of computer cost. Architects have found 
that they can address these confl icting demands with a hierarchy of memories, with 
the fastest, smallest, and most expensive memory per bit at the top of the hierarchy 
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in 
Chapter 5, caches give the programmer the illusion that main memory is nearly 
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of 
the hierarchy. We use a layered triangle icon to represent the memory hierarchy. 
Th e shape indicates speed, cost, and size: the closer to the top, the faster and more 
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy
Computers not only need to be fast; they need to be dependable. Since any physical 
device can fail, we make systems dependable by including redundant components that 
can take over when a failure occurs and to help detect failures. We use the tractor-trailer 
as our icon, since the dual tires on each side of its rear axels allow the truck to continue 
driving even when one tire fails. (Presumably, the truck driver heads immediately to a 
repair facility so the fl at tire can be fi xed, thereby restoring redundancy!)
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 1.3 Below Your Program

A typical application, such as a word processor or a large database system, may 
consist of millions of lines of code and rely on sophisticated soft ware libraries that 
implement complex functions in support of the application. As we will see, the 
hardware in a computer can only execute extremely simple low-level instructions. 
To go from a complex application to the simple instructions involves several layers 
of soft ware that interpret or translate high-level operations into simple computer 
instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of soft ware are organized primarily in a 
hierarchical fashion, with applications being the outermost ring and a variety of 
systems soft ware sitting between the hardware and applications soft ware.

Th ere are many types of systems soft ware, but two types of systems soft ware 
are central to every computer system today: an operating system and a compiler. 
An operating system interfaces between a user’s program and the hardware 
and provides a variety of services and supervisory functions. Among the most 
important functions are:

■ Handling basic input and output operations

■ Allocating storage and memory

■ Providing for protected sharing of the computer among multiple applications 
using it simultaneously.

Examples of operating systems in use today are Linux, iOS, and Windows.

In Paris they simply 
stared when I spoke to 
them in French; I never 
did succeed in making 
those idiots understand 
their own language.
Mark Twain, Th e 
Innocents Abroad, 1869

systems soft ware 
Soft ware that provides 
services that are 
commonly useful, 
including operating 
systems, compilers, 
loaders, and assemblers.

operating system 
Supervising program that 
manages the resources of 
a computer for the benefi t 
of the programs that run 
on that computer.

Applications software 

Sys
tems software 

Hardware

FIGURE 1.3 A simplifi ed view of hardware and software as hierarchical layers, shown as 
concentric circles with hardware in the center and applications software outermost. In 
complex applications, there are oft en multiple layers of application soft ware as well. For example, a database 
system may run on top of the systems soft ware hosting an application, which in turn runs on top of the 
database.
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Compilers perform another vital function: the translation of a program written 
in a high-level language, such as C, C��, Java, or Visual Basic into instructions 
that the hardware can execute. Given the sophistication of modern programming 
languages and the simplicity of the instructions executed by the hardware, the 
translation from a high-level language program to hardware instructions is 
complex. We give a brief overview of the process here and then go into more depth 
in Chapter 2 and in Appendix A.

From a High-Level Language to the Language of Hardware
To actually speak to electronic hardware, you need to send electrical signals. Th e 
easiest signals for computers to understand are on and off , and so the computer 
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 
how much can be written, the two letters of the computer alphabet do not limit 
what computers can do. Th e two symbols for these two letters are the numbers 0 
and 1, and we commonly think of the computer language as numbers in base 2, or 
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are 
slaves to our commands, which are called instructions. Instructions, which are just 
collections of bits that the computer understands and obeys, can be thought of as 
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers 
for instructions and data; we don’t want to steal that chapter’s thunder, but using 
numbers for both instructions and data is a foundation of computing.

Th e fi rst programmers communicated to computers in binary numbers, but this 
was so tedious that they quickly invented new notations that were closer to the way 
humans think. At fi rst, these notations were translated to binary by hand, but this 
process was still tiresome. Using the computer to help program the computer, the 
pioneers invented programs to translate from symbolic notation to binary. Th e fi rst of 
these programs was named an assembler. Th is program translates a symbolic version 
of an instruction into the binary version. For example, the programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

Th is instruction tells the computer to add the two numbers A and B. Th e name coined 
for this symbolic language, still used today, is assembly language. In contrast, the 
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the 
notations a scientist might like to use to simulate fl uid fl ow or that an accountant 
might use to balance the books. Assembly language requires the programmer 
to write one line for every instruction that the computer will follow, forcing the 
programmer to think like the computer.

compiler A program 
that translates high-level 
language statements 
into assembly language 
statements.

binary digit Also called 
a bit. One of the two 
numbers in base 2 (0 or 1) 
that are the components 
of information.

instruction A command 
that computer hardware 
understands and obeys.

assembler A program 
that translates a symbolic 
version of instructions 
into the binary version.

assembly language 
A symbolic representation 
of machine instructions.

machine language 
A binary representation of 
machine instructions.



Th e recognition that a program could be written to translate a more powerful 
language into computer instructions was one of the great breakthroughs in the 
early days of computing. Programmers today owe their productivity—and their 
sanity—to the creation of high-level programming languages and compilers 
that translate programs in such languages into instructions. Figure 1.4 shows the 
relationships among these programs and languages, which are more examples of 
the power of abstraction.

high-level 
programming 
language A portable 
language such as C, C��, 
Java, or Visual Basic that 
is composed of words 
and algebraic notation 
that can be translated by 
a compiler into assembly 
language.

FIGURE 1.4 C program compiled into assembly language and then assembled into binary 
machine language. Although the translation from high-level language to binary machine language is 
shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 
Th ese languages and this program are examined in more detail in Chapter 2.
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swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

swap:
      multi $2, $5,4
      add   $2, $4,$2
      lw    $15, 0($2)
      lw    $16, 4($2)
      sw    $16, 0($2)
      sw    $15, 4($2)
      jr    $31

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)
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A compiler enables a programmer to write this high-level language expression:

A + B

Th e compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary 
instructions that tell the computer to add the two numbers A and B.

High-level programming languages off er several important benefi ts. First, they 
allow the programmer to think in a more natural language, using English words 
and algebraic notation, resulting in programs that look much more like text than 
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be 
designed according to their intended use. Hence, Fortran was designed for scientifi c 
computation, Cobol for business data processing, Lisp for symbol manipulation, 
and so on. Th ere are also domain-specifi c languages for even narrower groups of 
users, such as those interested in simulation of fl uids, for example.

Th e second advantage of programming languages is improved programmer 
productivity. One of the few areas of widespread agreement in soft ware development 
is that it takes less time to develop programs when they are written in languages 
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

Th e fi nal advantage is that programming languages allow programs to be 
independent of the computer on which they were developed, since compilers and 
assemblers can translate high-level language programs to the binary instructions of 
any computer. Th ese three advantages are so strong that today little programming 
is done in assembly language.

 1.4 Under the Covers

Now that we have looked below your program to uncover the underlying soft ware, 
let’s open the covers of your computer to learn about the underlying hardware. Th e 
underlying hardware in any computer performs the same basic functions: inputting 
data, outputting data, processing data, and storing data. How these functions are 
performed is the primary topic of this book, and subsequent chapters deal with 
diff erent parts of these four tasks.

When we come to an important point in this book, a point so important that 
we hope you will remember it forever, we emphasize it by identifying it as a Big 
Picture item. We have about a dozen Big Pictures in this book, the fi rst being the 
fi ve components of a computer that perform the tasks of inputting, outputting, 
processing, and storing data.

Two key components of computers are input devices, such as the microphone, 
and output devices, such as the speaker. As the names suggest, input feeds the 

input device 
A mechanism through 
which the computer is 
fed information, such as a 
keyboard.

output device 
A mechanism that 
conveys the result of a 
computation to a user, 
such as a display, or to 
another computer.
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FIGURE 1.5 The organization of a computer, showing the fi ve classic components. Th e 
processor gets instructions and data from memory. Input writes data to memory, and output reads data from 
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

Th e fi ve classic components of a computer are input, output, memory, 
datapath, and control, with the last two sometimes combined and called 
the processor. Figure 1.5 shows the standard organization of a computer. 
Th is organization is independent of hardware technology: you can place 
every piece of every computer, past and present, into one of these fi ve 
categories. To help you keep all this in perspective, the fi ve components of 
a computer are shown on the front page of each of the following chapters, 
with the portion of interest to that chapter highlighted.

The BIG
Picture

computer, and output is the result of computation sent to the user. Some devices, 
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s 
take an introductory tour through the computer hardware, starting with the 
external I/O devices.
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Through the Looking Glass
Th e most fascinating I/O device is probably the graphics display. Most personal 
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display. 
Th e LCD is not the source of light; instead, it controls the transmission of light. 
A typical LCD includes rod-shaped molecules in a liquid that form a twisting 
helix that bends light entering the display, from either a light source behind the 
display or less oft en from refl ected light. Th e rods straighten out when a current is 
applied and no longer bend the light. Since the liquid crystal material is between 
two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 
Today, most LCD displays use an active matrix that has a tiny transistor switch at 
each pixel to precisely control current and make sharper images. A red-green-blue 
mask associated with each dot on the display determines the intensity of the three-
color components in the fi nal image; in a color active matrix LCD, there are three 
transistor switches at each point.

Th e image is composed of a matrix of picture elements, or pixels, which can 
be represented as a matrix of bits, called a bit map. Depending on the size of the 
screen and the resolution, the display matrix in a typical tablet ranges in size from 
1024 � 768 to 2048 � 1536. A color display might use 8 bits for each of the three 
colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent 
colors to be displayed.

Th e computer hardware support for graphics consists mainly of a raster refresh 
buff er, or frame buff er, to store the bit map. Th e image to be represented onscreen 
is stored in the frame buff er, and the bit pattern per pixel is read out to the graphics 
display at the refresh rate. Figure 1.6 shows a frame buff er with a simplifi ed design 
of just 4 bits per pixel.

Th e goal of the bit map is to faithfully represent what is on the screen. Th e 
challenges in graphics systems arise because the human eye is very good at detecting 
even subtle changes on the screen.

liquid crystal display 
A display technology 
using a thin layer of liquid 
polymers that can be used 
to transmit or block light 
according to whether a 
charge is applied.

pixel Th e smallest 
individual picture 
element. Screens are 
composed of hundreds 
of thousands to millions 
of pixels, organized in a 
matrix.

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the 
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0, Y0) contains 
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X1, Y1).

active matrix display 
A liquid crystal display 
using a transistor to 
control the transmission 
of light at each individual 
pixel.

Th rough computer 
displays I have landed 
an airplane on the 
deck of a moving 
carrier, observed a 
nuclear particle hit a 
potential well, fl own 
in a rocket at nearly 
the speed of light and 
watched a computer 
reveal its innermost 
workings.
Ivan Sutherland, the 
“father” of computer 
graphics, Scientifi c 
American, 1984
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Touchscreen
While PCs also use LCD displays, the tablets and smartphones of the PostPC era 
have replaced the keyboard and mouse with touch sensitive displays, which has 
the wonderful user interface advantage of users pointing directly what they are 
interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets 
today use capacitive sensing. Since people are electrical conductors, if an insulator 
like glass is covered with a transparent conductor, touching distorts the electrostatic 
fi eld of the screen, which results in a change in capacitance. Th is technology can 
allow multiple touches simultaneously, which allows gestures that can lead to 
attractive user interfaces.

Opening the Box
Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly, 
of the fi ve classic components of the computer, I/O dominates this reading device. 
Th e list of I/O devices includes a capacitive multitouch LCD display, front facing 
camera, rear facing camera, microphone, headphone jack, speakers, accelerometer, 
gyroscope, Wi-Fi network, and Bluetooth network. Th e datapath, control, and 
memory are a tiny portion of the components.

Th e small rectangles in Figure 1.8 contain the devices that drive our advancing 
technology, called integrated circuits and nicknamed chips. Th e A5 package seen 
in the middle of in Figure 1.8 contains two ARM processors that operate with a 
clock rate of 1 GHz. Th e processor is the active part of the computer, following the 
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O 
devices to activate, and so on. Occasionally, people call the processor the CPU, for 
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a 
microprocessor. Th e processor logically comprises two main components: datapath 
and control, the respective brawn and brain of the processor. Th e datapath performs 
the arithmetic operations, and control tells the datapath, memory, and I/O devices 
what to do according to the wishes of the instructions of the program. Chapter 4 
explains the datapath and control for a higher-performance design.

Th e A5 package in Figure 1.8 also includes two memory chips, each with 
2 gibibits of capacity, thereby supplying 512 MiB. Th e memory is where the 
programs are kept when they are running; it also contains the data needed by the 
running programs. Th e memory is built from DRAM chips. DRAM stands for 
dynamic random access memory. Multiple DRAMs are used together to contain 
the instructions and data of a program. In contrast to sequential access memories, 
such as magnetic tapes, the RAM portion of the term DRAM means that memory 
accesses take basically the same amount of time no matter what portion of the 
memory is read.

Descending into the depths of any component of the hardware reveals insights 
into the computer. Inside the processor is another type of memory—cache memory. 

integrated circuit Also 
called a chip. A device 
combining dozens to 
millions of transistors.

central processor unit 
(CPU) Also called 
processor. Th e active part 
of the computer, which 
contains the datapath and 
control and which adds 
numbers, tests numbers, 
signals I/O devices to 
activate, and so on.

datapath Th e 
component of the 
processor that performs 
arithmetic operations

control Th e component 
of the processor that 
commands the datapath, 
memory, and I/O 
devices according to 
the instructions of the 
program.

memory Th e storage 
area in which programs 
are kept when they are 
running and that contains 
the data needed by the 
running programs.

dynamic random access 
memory (DRAM) 
Memory built as an 
integrated circuit; it 
provides random access to 
any location. Access times 
are 50 nanoseconds and 
cost per gigabyte in 2012 
was $5 to $10.



20 Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Components of the Apple iPad 2 A1395. Th e metal back of the iPad (with the reversed 
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To 
the far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and off ers 
10 hours of battery life. To the far left  is the metal frame that attaches the LCD to the back of the iPad. Th e 
small components surrounding the metal back in the center are what we think of as the computer; they 
are oft en L-shaped to fi t compactly inside the case next to the battery. Figure 1.8 shows a close-up of the 
L-shaped board to the lower left  of the metal case, which is the logic printed circuit board that contains the 
processor and the memory. Th e tiny rectangle below the logic board contains a chip that provides wireless 
communication: Wi-Fi, Bluetooth, and FM tuner. It fi ts into a small slot in the lower left  corner of the logic 
board. Near the upper left  corner of the case is another L-shaped component, which is a front-facing camera 
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case 
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and 
accelerometer. Th ese last two chips combine to allow the iPad to recognize 6-axis motion. Th e tiny rectangle 
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. Th e 
cable at the bottom is the connector between the logic board and the camera/volume control board. Th e 
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy 
iFixit, www.ifi xit.com)

FIGURE 1.8 Th e logic board of Apple iPad 2 in Figure 1.7. Th e photo highlights fi ve integrated circuits. 
Th e large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores 
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of 
the processor chip inside the A5 package. Th e similar sized chip to the left  is the 32 GB fl ash memory chip 
for non-volatile storage. Th ere is an empty space between the two chips where a second fl ash chip can be 
installed to double storage capacity of the iPad. Th e chips to the right of the A5 include power controller and 
I/O controller chips. (Courtesy iFixit, www.ifi xit.com)

http://www.ifixit.com
http://www.ifixit.com
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FIGURE 1.9 Th e processor integrated circuit inside the A5 package. Th e size of chip is 12.1 by 10.1 mm, and 
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or 
cores in the middle left  of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the 
upper left  quadrant. To the left  and bottom side of the ARM cores are interfaces to main memory (DRAM). 
(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buff er for the DRAM 
memory. (Th e nontechnical defi nition of cache is a safe place for hiding things.) 
Cache is built using a diff erent memory technology, static random access memory 
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM 
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small, 
fast memory that acts as a 
buff er for a slower, larger 
memory.

static random access 
memory (SRAM) Also 
memory built as an 
integrated circuit, but 
faster and less dense than 
DRAM.

http://www.chipworks.com
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As mentioned above, one of the great ideas to improve design is abstraction. 
One of the most important abstractions is the interface between the hardware 
and the lowest-level soft ware. Because of its importance, it is given a special 
name: the instruction set architecture, or simply architecture, of a computer. 
Th e instruction set architecture includes anything programmers need to know to 
make a binary machine language program work correctly, including instructions, 
I/O devices, and so on. Typically, the operating system will encapsulate the 
details of doing I/O, allocating memory, and other low-level system functions 
so that application programmers do not need to worry about such details. Th e 
combination of the basic instruction set and the operating system interface 
provided for application programmers is called the application binary interface 
(ABI).

An instruction set architecture allows computer designers to talk about 
functions independently from the hardware that performs them. For example, 
we can talk about the functions of a digital clock (keeping time, displaying the 
time, setting the alarm) independently from the clock hardware (quartz crystal, 
LED displays, plastic buttons). Computer designers distinguish architecture from 
an implementation of an architecture along the same lines: an implementation is 
hardware that obeys the architecture abstraction. Th ese ideas bring us to another 
Big Picture.

instruction set 
architecture Also 
called architecture. An 
abstract interface between 
the hardware and the 
lowest-level soft ware 
that encompasses all the 
information necessary to 
write a machine language 
program that will run 
correctly, including 
instructions, registers, 
memory access, I/O, and 
so on.

application binary 
interface (ABI) Th e user 
portion of the instruction 
set plus the operating 
system interfaces used by 
application programmers. 
It defi nes a standard for 
binary portability across 
computers.

implementation 
Hardware that obeys the 
architecture abstraction.

Both hardware and soft ware consist of hierarchical layers using abstraction, 
with each lower layer hiding details from the level above. One key interface 
between the levels of abstraction is the instruction set architecture—the 
interface between the hardware and low-level soft ware. Th is abstract 
interface enables many implementations of varying cost and performance 
to run identical soft ware.

The BIG
Picture

A Safe Place for Data
Th us far, we have seen how to input data, compute using the data, and display 
data. If we were to lose power to the computer, however, everything would be lost 
because the memory inside the computer is volatile—that is, when it loses power, 
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off  the 
power to the DVD player, and is thus a nonvolatile memory technology.

volatile memory 
Storage, such as DRAM, 
that retains data only if it 
is receiving power.

nonvolatile memory 
A form of memory that 
retains data even in the 
absence of a power source 
and that is used to store 
programs between runs. 
A DVD disk is nonvolatile.
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To distinguish between the volatile memory used to hold data and programs 
while they are running and this nonvolatile memory used to store data and 
programs between runs, the term main memory or primary memory is used for 
the former, and secondary memory for the latter. Secondary memory forms the 
next lower layer of the memory hierarchy. DRAMs have dominated main memory 
since 1975, but magnetic disks dominated secondary memory starting even earlier. 
Because of their size and form factor, personal Mobile Devices use fl ash memory, 
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip 
containing the fl ash memory of the iPad 2. While slower than DRAM, it is much 
cheaper than DRAM in addition to being nonvolatile. Although costing more per 
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged, 
and it is more power effi  cient than disks. Hence, fl ash memory is the standard 
secondary memory for PMDs. Alas, unlike disks and DRAM, fl ash memory bits 
wear out aft er 100,000 to 1,000,000 writes. Th us, fi le systems must keep track of 
the number of writes and have a strategy to avoid wearing out storage, such as by 
moving popular data. Chapter 5 describes disks and fl ash memory in more detail.

Communicating with Other Computers
We’ve explained how we can input, compute, display, and save data, but there is 
still one missing item found in today’s computers: computer networks. Just as the 
processor shown in Figure 1.5 is connected to memory and I/O devices, networks 
interconnect whole computers, allowing computer users to extend the power of 
computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new personal mobile device 
or server without a network interface would be ridiculed. Networked computers 
have several major advantages:

■ Communication: Information is exchanged between computers at high 
speeds.

■ Resource sharing : Rather than each computer having its own I/O devices, 
computers on the network can share I/O devices.

■ Nonlocal access: By connecting computers over long distances, users need not 
be near the computer they are using.

Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular type of network is Ethernet. It can 
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and 
speed make Ethernet useful to connect computers on the same fl oor of a building; 

main memory Also 
called primary memory. 
Memory used to hold 
programs while they are 
running; typically consists 
of DRAM in today’s 
computers.

secondary memory  
Nonvolatile memory 
used to store programs 
and data between runs; 
typically consists of fl ash 
memory in PMDs and 
magnetic disks in servers.

magnetic disk Also 
called hard disk. A form 
of nonvolatile secondary 
memory composed of 
rotating platters coated 
with a magnetic recording 
material. Because they 
are rotating mechanical 
devices, access times are 
about 5 to 20 milliseconds 
and cost per gigabyte in 
2012 was $0.05 to $0.10.

fl ash memory 
A nonvolatile semi-
conductor memory. It 
is cheaper and slower 
than DRAM but more 
expensive per bit and 
faster than magnetic disks. 
Access times are about 5 
to 50 microseconds and 
cost per gigabyte in 2012 
was $0.75 to $1.00.



24 Chapter 1 Computer Abstractions and Technology

hence, it is an example of what is generically called a local area network. Local area 
networks are interconnected with switches that can also provide routing services 
and security. Wide area networks cross continents and are the backbone of the 
Internet, which supports the web. Th ey are typically based on optical fi bers and are 
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by 
becoming much more ubiquitous and by making dramatic increases in performance. 
In the 1970s, very few individuals had access to electronic mail, the Internet and 
web did not exist, and physically mailing magnetic tapes was the primary way to 
transfer large amounts of data between two locations. Local area networks were 
almost nonexistent, and the few existing wide area networks had limited capacity 
and restricted access.

As networking technology improved, it became much cheaper and had a much 
higher capacity. For example, the fi rst standardized local area network technology, 
developed about 30 years ago, was a version of Ethernet that had a maximum capacity 
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if 
not a hundred, computers. Today, local area network technology off ers a capacity 
of from 1 to 40 gigabits per second, usually shared by at most a few computers. 
Optical communications technology has allowed similar growth in the capacity of 
wide area networks, from hundreds of kilobits to gigabits and from hundreds of 
computers connected to a worldwide network to millions of computers connected. 
Th is combination of dramatic rise in deployment of networking combined with 
increases in capacity have made network technology central to the information 
revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way 
computers communicate. Wireless technology is widespread, which enabled 
the PostPC Era. Th e ability to make a radio in the same low-cost semiconductor 
technology (CMOS) used for memory and microprocessors enabled a signifi cant 
improvement in price, leading to an explosion in deployment. Currently available 
wireless technologies, called by the IEEE standard name 802.11, allow for transmission 
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit 
diff erent from wire-based networks, since all users in an immediate area share the 
airwaves.

■ Semiconductor DRAM memory, fl ash memory, and disk storage diff er 
signifi cantly. For each technology, list its volatility, approximate relative 
access time, and approximate relative cost compared to DRAM.

 1.5  Technologies for Building Processors 
and Memory

Processors and memory have improved at an incredible rate, because computer 
designers have long embraced the latest in electronic technology to try to win the 
race to design a better computer. Figure 1.10 shows the technologies that have 

local area network 
(LAN) A network 
designed to carry data 
within a geographically 
confi ned area, typically 
within a single building.

wide area network 
(WAN) A network 
extended over hundreds 
of kilometers that can 
span a continent.

Check 
Yourself



FIGURE 1.10 Relative performance per unit cost of technologies used in computers over 
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See  Section 1.12.
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FIGURE 1.11 Growth of capacity per DRAM chip over time. Th e y-axis is measured in kibibits (210 bits). Th e DRAM industry 
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat 
closer to doubling every two years to three years.
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been used over time, with an estimate of the relative performance per unit cost for 
each technology. Since this technology shapes what computers will be able to do 
and how quickly they will evolve, we believe all computer professionals should be 
familiar with the basics of integrated circuits.

A transistor is simply an on/off  switch controlled by electricity. Th e integrated 
circuit (IC) combined dozens to hundreds of transistors into a single chip. When 
Gordon Moore predicted the continuous doubling of resources, he was predicting 
the growth rate of the number of transistors per chip. To describe the tremendous 
increase in the number of transistors from hundreds to millions, the adjective very 
large scale is added to the term, creating the abbreviation VLSI, for very large-scale 
integrated circuit.

Th is rate of increasing integration has been remarkably stable. Figure 1.11 shows 
the growth in DRAM capacity since 1977. For decades, the industry has consistently 
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how manufacture integrated circuits, we start at the beginning. 
Th e manufacture of a chip begins with silicon, a substance found in sand. Because 
silicon does not conduct electricity well, it is called a semiconductor. With a special 
chemical process, it is possible to add materials to silicon that allow tiny areas to 
transform into one of three devices:

■ Excellent conductors of electricity (using either microscopic copper or 
aluminum wire)

transistor An on/off  
switch controlled by an 
electric signal.

very large-scale 
integrated (VLSI) 
circuit A device 
containing hundreds of 
thousands to millions of 
transistors.

silicon  A natural 
element that is a 
semiconductor.

semiconductor 
A substance that does not 
conduct electricity well.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1
1965 35
1975 Integrated circuit

Very large-scale integrated circuit
Ultra large-scale integrated circuit

Transistor
900

1995 2,400,000
2013 250,000,000,000
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■ Excellent insulators from electricity (like plastic sheathing or glass)

■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of 
combinations of conductors, insulators, and switches manufactured in a single 
small package.

Th e manufacturing process for integrated circuits is critical to the cost of the 
chips and hence important to computer designers. Figure 1.12 shows that process. 
Th e process starts with a silicon crystal ingot, which looks like a giant sausage. 
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot 
is fi nely sliced into wafers no more than 0.1 inches thick. Th ese wafers then go 
through a series of processing steps, during which patterns of chemicals are placed 
on each wafer, creating the transistors, conductors, and insulators discussed earlier. 
Today’s integrated circuits contain only one layer of transistors but may have from 
two to eight levels of metal conductor, separated by layers of insulators.

silicon crystal ingot 
A rod composed of a 
silicon crystal that is 
between 8 and 12 inches 
in diameter and about 12 
to 24 inches long.

wafer A slice from a 
silicon ingot no more than 
0.1 inches thick, used to 
create chips.
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Dicer

20 to 40
processing steps

Bond die to
package
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Ship to
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wafer
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Tested packaged dies

FIGURE 1.12 The chip manufacturing process. Aft er being sliced from the silicon ingot, blank 
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). Th ese patterned wafers are 
then tested with a wafer tester, and a map of the good parts is made. Th en, the wafers are diced into dies (see 
Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) 
Th e yield of good dies in this case was 17/20, or 85%. Th ese good dies are then bonded into packages and 
tested one more time before shipping the packaged parts to customers. One bad packaged part was found 
in this fi nal test.

A single microscopic fl aw in the wafer itself or in one of the dozens of patterning 
steps can result in that area of the wafer failing. Th ese defects, as they are called, 
make it virtually impossible to manufacture a perfect wafer. Th e simplest way to 
cope with imperfection is to place many independent components on a single 
wafer. Th e patterned wafer is then chopped up, or diced, into these components, 

defect A microscopic 
fl aw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.



FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). Th e number of 
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. Th e several dozen partially 
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the 
masks used to pattern the silicon. Th is die uses a 32-nanometer technology, which means that the smallest 
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature 
size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size.
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called dies and more informally known as chips. Figure 1.13 shows a photograph 
of a wafer containing microprocessors before they have been diced; earlier, Figure 
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to 
contain the fl aws, rather than the whole wafer. Th is concept is quantifi ed by the 
yield of a process, which is defi ned as the percentage of good dies from the total 
number of dies on the wafer.

Th e cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and the smaller number of dies that fi t on a wafer. To reduce the 
cost, using the next generation process shrinks a large die as it uses smaller sizes for 
both transistors and wires. Th is improves the yield and the die count per wafer. A 
32-nanometer (nm) process was typical in 2012, which means essentially that the 
smallest feature size on the die is 32 nm.

die Th e individual 
rectangular sections that 
are cut from a wafer, more 
informally known as 
chips.

yield Th e percentage of 
good dies from the total 
number of dies on the 
wafer.
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