

 In Praise of Computer Organization and Design: The Hardware/
Software Interface, Fifth Edition

 “Textbook selection is oft en a frustrating act of compromise—pedagogy, content
coverage, quality of exposition, level of rigor, cost. Computer Organization and
Design is the rare book that hits all the right notes across the board, without
compromise. It is not only the premier computer organization textbook, it is a
shining example of what all computer science textbooks could and should be.”

 —Michael Goldweber, Xavier University

 “I have been using Computer Organization and Design for years, from the very
fi rst edition. Th e new Fift h Edition is yet another outstanding improvement on an
already classic text. Th e evolution from desktop computing to mobile computing
to Big Data brings new coverage of embedded processors such as the ARM, new
material on how soft ware and hardware interact to increase performance, and
cloud computing. All this without sacrifi cing the fundamentals.”

 —Ed Harcourt, St. Lawrence University

 “To Millennials: Computer Organization and Design is the computer architecture
book you should keep on your (virtual) bookshelf. Th e book is both old and new,
because it develops venerable principles—Moore's Law, abstraction, common case
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates
them with contemporary designs, e.g., ARM Cortex A8 and Intel Core i7.”

 —Mark D. Hill, University of Wisconsin-Madison

 “Th e new edition of Computer Organization and Design keeps pace with advances
in emerging embedded and many-core (GPU) systems, where tablets and
smartphones will are quickly becoming our new desktops. Th is text acknowledges
these changes, but continues to provide a rich foundation of the fundamentals
in computer organization and design which will be needed for the designers of
hardware and soft ware that power this new class of devices and systems.”

 —Dave Kaeli, Northeastern University

 “Th e Fift h Edition of Computer Organization and Design provides more than an
introduction to computer architecture. It prepares the reader for the changes necessary
to meet the ever-increasing performance needs of mobile systems and big data
processing at a time that diffi culties in semiconductor scaling are making all systems
power constrained. In this new era for computing, hardware and soft ware must be co-
designed and system-level architecture is as critical as component-level optimizations.”

 —Christos Kozyrakis, Stanford University

 “Patterson and Hennessy brilliantly address the issues in ever-changing computer
hardware architectures, emphasizing on interactions among hardware and soft ware
components at various abstraction levels. By interspersing I/O and parallelism concepts
with a variety of mechanisms in hardware and soft ware throughout the book, the new
edition achieves an excellent holistic presentation of computer architecture for the
PostPC era. Th is book is an essential guide to hardware and soft ware professionals
facing energy effi ciency and parallelization challenges in Tablet PC to cloud computing.”

 —Jae C. Oh, Syracuse University

This page intentionally left blank

 Computer Organization and Design

 T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

 F I F T H E D I T I O N

 David A. Patterson has been teaching computer architecture at the University of
California, Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair
of Computer Science. His teaching has been honored by the Distinguished Teaching
Award from the University of California, the Karlstrom Award from ACM, and the
Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson
received the IEEE Technical Achievement Award and the ACM Eckert-Mauchly Award
for contributions to RISC, and he shared the IEEE Johnson Information Storage Award
for contributions to RAID. He also shared the IEEE John von Neumann Medal and
the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of the
American Academy of Arts and Sciences, the Computer History Museum, ACM,
and IEEE, and he was elected to the National Academy of Engineering, the National
Academy of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on
the Information Technology Advisory Committee to the U.S. President, as chair of the
CS division in the Berkeley EECS department, as chair of the Computing Research
Association, and as President of ACM. Th is record led to Distinguished Service Awards
from ACM and CRA.

 At Berkeley, Patterson led the design and implementation of RISC I, likely the fi rst
VLSI reduced instruction set computer, and the foundation of the commercial
SPARC architecture. He was a leader of the Redundant Arrays of Inexpensive Disks
(RAID) project, which led to dependable storage systems from many companies.
He was also involved in the Network of Workstations (NOW) project, which led to
cluster technology used by Internet companies and later to cloud computing. Th ese
projects earned three dissertation awards from ACM. His current research projects
are Algorithm-Machine-People and Algorithms and Specializers for Provably Optimal
Implementations with Resilience and Effi ciency. Th e AMP Lab is developing scalable
machine learning algorithms, warehouse-scale-computer-friendly programming
models, and crowd-sourcing tools to gain valuable insights quickly from big data in
the cloud. Th e ASPIRE Lab uses deep hardware and soft ware co-tuning to achieve the
highest possible performance and energy effi ciency for mobile and rack computing
systems.

 John L. Hennessy is the tenth president of Stanford University, where he has been
a member of the faculty since 1977 in the departments of electrical engineering and
computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the
National Academy of Engineering, the National Academy of Science, and the American
Philosophical Society; and a Fellow of the American Academy of Arts and Sciences.
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to
RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000
John von Neumann Award, which he shared with David Patterson. He has also received
seven honorary doctorates.

 In 1981, he started the MIPS project at Stanford with a handful of graduate students.
Aft er completing the project in 1984, he took a leave from the university to cofound
MIPS Computer Systems (now MIPS Technologies), which developed one of the fi rst
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have
been shipped in devices ranging from video games and palmtop computers to laser printers
and network switches. Hennessy subsequently led the DASH (Director Architecture
for Shared Memory) project, which prototyped the fi rst scalable cache coherent
multiprocessor; many of the key ideas have been adopted in modern multiprocessors.
In addition to his technical activities and university responsibilities, he has continued to
work with numerous start-ups both as an early-stage advisor and an investor.

 Computer Organization and Design

 T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

 David A. Patterson
 University of California, Berkeley

 John L. Hennessy
 Stanford University

 AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
 Morgan Kaufmann is an imprint of Elsevier

 With contributions by
Perry Alexander
Th e University of Kansas

Peter J. Ashenden
Ashenden Designs Pty Ltd

Jason D. Bakos
University of South Carolina

Javier Bruguera
Universidade de Santiago de Compostela

Jichuan Chang
Hewlett-Packard

Matthew Farrens
University of California, Davis

David Kaeli
Northeastern University

Nicole Kaiyan
University of Adelaide

David Kirk
NVIDIA

James R. Larus
School of Computer and
Communications Science at EPFL

Jacob Leverich
Hewlett-Packard

Kevin Lim
Hewlett-Packard

John Nickolls
NVIDIA

John Oliver
Cal Poly, San Luis Obispo

Milos Prvulovic
Georgia Tech

Partha Ranganathan
Hewlett-Packard

 F I F T H E D I T I O N

 Library of Congress Cataloging-in-Publication Data
 Patterson, David A.
 Computer organization and design: the hardware/soft ware interface/David A. Patterson, John L. Hennessy. — 5th ed.
 p. cm. — (Th e Morgan Kaufmann series in computer architecture and design)
 Rev. ed. of: Computer organization and design/John L. Hennessy, David A. Patterson. 1998.
 Summary: “Presents the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining, memory hierarchies
and I/O”— Provided by publisher.
 ISBN 978-0-12-407726-3 (pbk.)
 1. Computer organization. 2. Computer engineering. 3. Computer interfaces. I. Hennessy, John L. II. Hennessy, John L. Computer
organization and design. III. Title.

 British Library Cataloguing-in-Publication Data
 A catalogue record for this book is available from the British Library

 ISBN: 978-0-12-407726-3

 Acquiring Editor: Todd Green
 Development Editor: Nate McFadden
 Project Manager: Lisa Jones
 Designer: Russell Purdy

 Morgan Kaufmann is an imprint of Elsevier
 Th e Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB
 225 Wyman Street, Waltham, MA 02451, USA

 Copyright © 2014 Elsevier Inc. All rights reserved

 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how
to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the
Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

 Th is book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted
herein).

 Notices
 Knowledge and best practice in this fi eld are constantly changing. As new research and experience broaden our understanding, changes in
research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience
and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

 To the fullest extent of the law, neither the publisher nor the authors, contributors, or editors, assume any liability for any injury and/
or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

 For information on all MK publications visit our
website at www.mkp.com

 Printed and bound in the United States of America

 13 14 15 16 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.mkp.com

 To Linda,
who has been, is, and always will be the love of my life

 A C K N O W L E D G M E N T S

 Figures 1.7, 1.8 Courtesy of iFixit (www.ifi xit.com).

 Figure 1.9 Courtesy of Chipworks (www.chipworks.com).

 Figure 1.13 Courtesy of Intel.

 Figures 1.10.1, 1.10.2, 4.15.2 Courtesy of the Charles Babbage
Institute, University of Minnesota Libraries, Minneapolis.

 Figures 1.10.3, 4.15.1, 4.15.3, 5.12.3, 6.14.2 Courtesy of IBM.

 Figure 1.10.4 Courtesy of Cray Inc.

 Figure 1.10.5 Courtesy of Apple Computer, Inc.

 Figure 1.10.6 Courtesy of the Computer History Museum.

 Figures 5.17.1, 5.17.2 Courtesy of Museum of Science, Boston.

 Figure 5.17.4 Courtesy of MIPS Technologies, Inc.

 Figure 6.15.1 Courtesy of NASA Ames Research Center.

http://www.ifixit.com
http://www.chipworks.com

Contents

Preface xv

C H A P T E R S

 1 Computer Abstractions and Technology 2

1.1 Introduction 3
1.2 Eight Great Ideas in Computer Architecture 11
1.3 Below Your Program 13
1.4 Under the Covers 16
1.5 Technologies for Building Processors and Memory 24
1.6 Performance 28
1.7 Th e Power Wall 40
1.8 Th e Sea Change: Th e Switch from Uniprocessors to

Multiprocessors 43
1.9 Real Stuff : Benchmarking the Intel Core i7 46
1.10 Fallacies and Pitfalls 49
1.11 Concluding Remarks 52
1.12 Historical Perspective and Further Reading 54
1.13 Exercises 54

 2 Instructions: Language of the Computer 60

2.1 Introduction 62
2.2 Operations of the Computer Hardware 63
2.3 Operands of the Computer Hardware 66
2.4 Signed and Unsigned Numbers 73
2.5 Representing Instructions in the Computer 80
2.6 Logical Operations 87
2.7 Instructions for Making Decisions 90
2.8 Supporting Procedures in Computer Hardware 96
2.9 Communicating with People 106
2.10 MIPS Addressing for 32-Bit Immediates and Addresses 111
2.11 Parallelism and Instructions: Synchronization 121
2.12 Translating and Starting a Program 123
2.13 A C Sort Example to Put It All Together 132
2.14 Arrays versus Pointers 141

x Contents

2.15 Advanced Material: Compiling C and Interpreting Java 145
2.16 Real Stuff : ARMv7 (32-bit) Instructions 145
2.17 Real Stuff : x86 Instructions 149
2.18 Real Stuff : ARMv8 (64-bit) Instructions 158
2.19 Fallacies and Pitfalls 159
2.20 Concluding Remarks 161
2.21 Historical Perspective and Further Reading 163
2.22 Exercises 164

 3 Arithmetic for Computers 176

3.1 Introduction 178
3.2 Addition and Subtraction 178
3.3 Multiplication 183
3.4 Division 189
3.5 Floating Point 196
3.6 Parallelism and Computer Arithmetic: Subword Parallelism 222
3.7 Real Stuff : Streaming SIMD Extensions and Advanced Vector

Extensions in x86 224
3.8 Going Faster: Subword Parallelism and Matrix Multiply 225
3.9 Fallacies and Pitfalls 229
3.10 Concluding Remarks 232
3.11 Historical Perspective and Further Reading 236
3.12 Exercises 237

 4 The Processor 242

4.1 Introduction 244
4.2 Logic Design Conventions 248
4.3 Building a Datapath 251
4.4 A Simple Implementation Scheme 259
4.5 An Overview of Pipelining 272
4.6 Pipelined Datapath and Control 286
4.7 Data Hazards: Forwarding versus Stalling 303
4.8 Control Hazards 316
4.9 Exceptions 325
4.10 Parallelism via Instructions 332
4.11 Real Stuff : Th e ARM Cortex-A8 and Intel Core i7 Pipelines 344
4.12 Going Faster: Instruction-Level Parallelism and Matrix

Multiply 351
4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware

Design Language to Describe and Model a Pipeline and More Pipelining
Illustrations 354

 Contents xi

4.14 Fallacies and Pitfalls 355
4.15 Concluding Remarks 356
4.16 Historical Perspective and Further Reading 357
4.17 Exercises 357

 5 Large and Fast: Exploiting Memory Hierarchy 372

5.1 Introduction 374
5.2 Memory Technologies 378
5.3 Th e Basics of Caches 383
5.4 Measuring and Improving Cache Performance 398
5.5 Dependable Memory Hierarchy 418
5.6 Virtual Machines 424
5.7 Virtual Memory 427
5.8 A Common Framework for Memory Hierarchy 454
5.9 Using a Finite-State Machine to Control a Simple Cache 461
5.10 Parallelism and Memory Hierarchies: Cache Coherence 466
5.11 Parallelism and Memory Hierarchy: Redundant Arrays of

Inexpensive Disks 470
5.12 Advanced Material: Implementing Cache Controllers 470
5.13 Real Stuff : Th e ARM Cortex-A8 and Intel Core i7 Memory

Hierarchies 471
5.14 Going Faster: Cache Blocking and Matrix Multiply 475
5.15 Fallacies and Pitfalls 478
5.16 Concluding Remarks 482
5.17 Historical Perspective and Further Reading 483
5.18 Exercises 483

 6 Parallel Processors from Client to Cloud 500

6.1 Introduction 502
6.2 Th e Diffi culty of Creating Parallel Processing Programs 504
6.3 SISD, MIMD, SIMD, SPMD, and Vector 509
6.4 Hardware Multithreading 516
6.5 Multicore and Other Shared Memory Multiprocessors 519
6.6 Introduction to Graphics Processing Units 524
6.7 Clusters, Warehouse Scale Computers, and Other

Message-Passing Multiprocessors 531
6.8 Introduction to Multiprocessor Network Topologies 536
6.9 Communicating to the Outside World: Cluster Networking 539
6.10 Multiprocessor Benchmarks and Performance Models 540
6.11 Real Stuff : Benchmarking Intel Core i7 versus NVIDIA Tesla

GPU 550

xii Contents

6.12 Going Faster: Multiple Processors and Matrix Multiply 555
6.13 Fallacies and Pitfalls 558
6.14 Concluding Remarks 560
6.15 Historical Perspective and Further Reading 563
6.16 Exercises 563

A P P E N D I C E S

 A Assemblers, Linkers, and the SPIM Simulator A-2

A.1 Introduction A-3
A.2 Assemblers A-10
A.3 Linkers A-18
A.4 Loading A-19
A.5 Memory Usage A-20
A.6 Procedure Call Convention A-22
A.7 Exceptions and Interrupts A-33
A.8 Input and Output A-38
A.9 SPIM A-40
A.10 MIPS R2000 Assembly Language A-45
A.11 Concluding Remarks A-81
A.12 Exercises A-82

 B The Basics of Logic Design B-2

B.1 Introduction B-3
B.2 Gates, Truth Tables, and Logic Equations B-4
B.3 Combinational Logic B-9
B.4 Using a Hardware Description Language B-20
B.5 Constructing a Basic Arithmetic Logic Unit B-26
B.6 Faster Addition: Carry Lookahead B-38
B.7 Clocks B-48
B.8 Memory Elements: Flip-Flops, Latches, and Registers B-50
B.9 Memory Elements: SRAMs and DRAMs B-58
B.10 Finite-State Machines B-67
B.11 Timing Methodologies B-72
B.12 Field Programmable Devices B-78
B.13 Concluding Remarks B-79
B.14 Exercises B-80

Index I-1

 Contents xiii

O N L I N E C O N T E N T

 Graphics and Computing GPUs C-2

C.1 Introduction C-3
C.2 GPU System Architectures C-7
C.3 Programming GPUs C-12
C.4 Multithreaded Multiprocessor Architecture C-25
C.5 Parallel Memory System C-36
C.6 Floating Point Arithmetic C-41
C.7 Real Stuff : Th e NVIDIA GeForce 8800 C-46
C.8 Real Stuff : Mapping Applications to GPUs C-55
C.9 Fallacies and Pitfalls C-72
C.10 Concluding Remarks C-76
C.11 Historical Perspective and Further Reading C-77

 Mapping Control to Hardware D-2

D.1 Introduction D-3
D.2 Implementing Combinational Control Units D-4
D.3 Implementing Finite-State Machine Control D-8
D.4 Implementing the Next-State Function with a Sequencer D-22
D.5 Translating a Microprogram to Hardware D-28
D.6 Concluding Remarks D-32
D.7 Exercises D-33

 A Survey of RISC Architectures for Desktop, Server,
and Embedded Computers E-2
E.1 Introduction E-3
E.2 Addressing Modes and Instruction Formats E-5
E.3 Instructions: Th e MIPS Core Subset E-9
E.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs E-16
E.5 Instructions: Digital Signal-Processing Extensions of the Embedded

RISCs E-19
E.6 Instructions: Common Extensions to MIPS Core E-20
E.7 Instructions Unique to MIPS-64 E-25
E.8 Instructions Unique to Alpha E-27
E.9 Instructions Unique to SPARC v9 E-29
E.10 Instructions Unique to PowerPC E-32
E.11 Instructions Unique to PA-RISC 2.0 E-34
E.12 Instructions Unique to ARM E-36
E.13 Instructions Unique to Th umb E-38
E.14 Instructions Unique to SuperH E-39

C

D

E

xiv Contents

E.15 Instructions Unique to M32R E-40
E.16 Instructions Unique to MIPS-16 E-40
E.17 Concluding Remarks E-43

Glossary G-1
Further Reading FR-1

 Preface

 Th e most beautiful thing we can experience is the mysterious. It is the
source of all true art and science.

 Albert Einstein, What I Believe, 1930

 About This Book
 We believe that learning in computer science and engineering should refl ect
the current state of the fi eld, as well as introduce the principles that are shaping
computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, energy, and, ultimately, the success of computer systems.

 Modern computer technology requires professionals of every computing
specialty to understand both hardware and soft ware. Th e interaction between
hardware and soft ware at a variety of levels also off ers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
soft ware, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Th us, our emphasis in this book is to show
the relationship between hardware and soft ware and to focus on the concepts that
are the basis for current computers.

 Th e recent switch from uniprocessor to multicore microprocessors confi rmed
the soundness of this perspective, given since the fi rst edition. While programmers
could ignore the advice and rely on computer architects, compiler writers, and silicon
engineers to make their programs run faster or be more energy-effi cient without
change, that era is over. For programs to run faster, they must become parallel.
While the goal of many researchers is to make it possible for programmers to be
unaware of the underlying parallel nature of the hardware they are programming,
it will take many years to realize this vision. Our view is that for at least the next
decade, most programmers are going to have to understand the hardware/soft ware
interface if they want programs to run effi ciently on parallel computers.

 Th e audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

xvi Preface

 About the Other Book
 Some readers may be familiar with Computer Architecture: A Quantitative
Approach , popularly known as Hennessy and Patterson. (Th is book in turn is
oft en called Patterson and Hennessy.) Our motivation in writing the earlier book
was to describe the principles of computer architecture using solid engineering
fundamentals and quantitative cost/performance tradeoff s. We used an approach
that combined examples and measurements, based on commercial systems, to
create realistic design experiences. Our goal was to demonstrate that computer
architecture could be learned using quantitative methodologies instead of a
descriptive approach. It was intended for the serious computing professional who
wanted a detailed understanding of computers.

 A majority of the readers for this book do not plan to become computer
architects. Th e performance and energy effi ciency of future soft ware systems will
be dramatically aff ected, however, by how well soft ware designers understand the
basic hardware techniques at work in a system. Th us, compiler writers, operating
system designers, database programmers, and most other soft ware engineers need
a fi rm grounding in the principles presented in this book. Similarly, hardware
designers must understand clearly the eff ects of their work on soft ware applications.

 Th us, we knew that this book had to be much more than a subset of the material
in Computer Architecture , and the material was extensively revised to match the
diff erent audience. We were so happy with the result that the subsequent editions of
 Computer Architecture were revised to remove most of the introductory material;
hence, there is much less overlap today than with the fi rst editions of both books.

 Changes for the Fifth Edition
 We had six major goals for the fi ft h edition of Computer Organization and Design:
demonstrate the importance of understanding hardware with a running example;
highlight major themes across the topics using margin icons that are introduced
early; update examples to refl ect changeover from PC era to PostPC era; spread the
material on I/O throughout the book rather than isolating it into a single chapter;
update the technical content to refl ect changes in the industry since the publication
of the fourth edition in 2009; and put appendices and optional sections online
instead of including a CD to lower costs and to make this edition viable as an
electronic book.

 Before discussing the goals in detail, let’s look at the table on the next page. It
shows the hardware and soft ware paths through the material. Chapters 1, 4, 5, and
6 are found on both paths, no matter what the experience or the focus. Chapter 1
discusses the importance of energy and how it motivates the switch from single
core to multicore microprocessors and introduces the eight great ideas in computer
architecture. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the soft ware-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming
languages. Chapter 3 is for readers interested in constructing a datapath or in

 Preface xvii

Chapter or Appendix Sections Software focus Hardware focus

1. Computer Abstractions
and Technology

1.1 to 1.11

 1.12 (History)

3. Arithmetic for Computers

3.1 to 3.5

 3.11 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

E. RISC Instruction-Set Architectures E.1 to E.17

2. Instructions: Language
of the Computer

2.1 to 2.14

 2.15 (Compilers & Java)

2.16 to 2.20

 2.21 (History)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.12 (Parallel, Real Stuff)

 4.16 (History)

B. The Basics of Logic Design B.1 to B.13

D. Mapping Control to Hardware D.1 to D.6

A. Assemblers, Linkers, and
the SPIM Simulator

 C.1 to C.13

Read carefully

Review or read

Read if have time

Read for culture

Reference

 4.13 (Verilog Pipeline Control)

5. Large and Fast: Exploiting
Memory Hierarchy

5.1 to 5.10

 5.17 (History)

4.14 to 4.15 (Fallacies)

6. Parallel Process from Client
to Cloud

6.1 to 6.8

 6.9 (Networks)

6.10 to 6.14

 6.15 (History)

3.6 to 3.8 (Subword Parallelism)

3.9 to 3.10 (Fallacies)

5.13 to 5.16

C. Graphics Processor Units

 A.1 to A.11

 5.12 (Verilog Cache Controller)

 5.11 (Redundant Arrays of
Inexpensive Disks)

xviii Preface

learning more about fl oating-point arithmetic. Some will skip parts of Chapter 3,
either because they don’t need them or because they off er a review. However, we
introduce the running example of matrix multiply in this chapter, showing how
subword parallels off ers a fourfold improvement, so don’t skip sections 3.6 to 3.8.
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews
and Section 4.12 gives the next performance boost for matrix multiply for those with
a soft ware focus. Th ose with a hardware focus, however, will fi nd that this chapter
presents core material; they may also, depending on their background, want to read
Appendix C on logic design fi rst. Th e last chapter on multicores, multiprocessors,
and clusters, is mostly new content and should be read by everyone. It was
signifi cantly reorganized in this edition to make the fl ow of ideas more natural
and to include much more depth on GPUs, warehouse scale computers, and the
hardware-soft ware interface of network interface cards that are key to clusters.

 Th e fi rst of the six goals for this fi rth edition was to demonstrate the importance
of understanding modern hardware to get good performance and energy effi ciency
with a concrete example. As mentioned above, we start with subword parallelism
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance
in Chapter 4 by unrolling the loop to demonstrate the value of instruction level
parallelism. Chapter 5 doubles performance again by optimizing for caches using
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by
using thread-level parallelism. All four optimizations in total add just 24 lines of C
code to our initial matrix multiply example.

 Th e second goal was to help readers separate the forest from the trees by
identifying eight great ideas of computer architecture early and then pointing out
all the places they occur throughout the rest of the book. We use (hopefully) easy
to remember margin icons and highlight the corresponding word in the text to
remind readers of these eight themes. Th ere are nearly 100 citations in the book.
No chapter has less than seven examples of great ideas, and no idea is cited less than
fi ve times. Performance via parallelism, pipelining, and prediction are the three
most popular great ideas, followed closely by Moore’s Law. Th e processor chapter
(4) is the one with the most examples, which is not a surprise since it probably
received the most attention from computer architects. Th e one great idea found in
every chapter is performance via parallelism, which is a pleasant observation given
the recent emphasis in parallelism in the fi eld and in editions of this book.

 Th e third goal was to recognize the generation change in computing from the
PC era to the PostPC era by this edition with our examples and material. Th us,
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6
describes the computing infrastructure of the cloud. We also feature the ARM,
which is the instruction set of choice in the personal mobile devices of the PostPC
era, as well as the x86 instruction set that dominated the PC Era and (so far)
dominates cloud computing.

 Th e fourth goal was to spread the I/O material throughout the book rather
than have it in its own chapter, much as we spread parallelism throughout all the
chapters in the fourth edition. Hence, I/O material in this edition can be found in

 Preface xix

Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. Th e thought is that readers (and instructors)
are more likely to cover I/O if it’s not segregated to its own chapter.

 Th is is a fast-moving fi eld, and, as is always the case for our new editions, an
important goal is to update the technical content. Th e running example is the ARM
Cortex A8 and the Intel Core i7, refl ecting our PostPC Era. Other highlights include
an overview the new 64-bit instruction set of ARMv8, a tutorial on GPUs that
explains their unique terminology, more depth on the warehouse scale computers
that make up the cloud, and a deep dive into 10 Gigabyte Ethernet cards.

 To keep the main book short and compatible with electronic books, we placed
the optional material as online appendices instead of on a companion CD as in
prior editions.

 Finally, we updated all the exercises in the book.
 While some elements changed, we have preserved useful book elements from

prior editions. To make the book work better as a reference, we still place defi nitions
of new terms in the margins at their fi rst occurrence. Th e book element called
“Understanding Program Performance” sections helps readers understand the
performance of their programs and how to improve it, just as the “Hardware/Soft ware
Interface” book element helped readers understand the tradeoff s at this interface.
“Th e Big Picture” section remains so that the reader sees the forest despite all the
trees. “Check Yourself ” sections help readers to confi rm their comprehension of the
material on the fi rst time through with answers provided at the end of each chapter.
Th is edition still includes the green MIPS reference card, which was inspired by the
“Green Card” of the IBM System/360. Th is card has been updated and should be a
handy reference when writing MIPS assembly language programs.

 Changes for the Fifth Edition
 We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, fi gures from the book, lecture slides, and other
materials are available to adopters from the publisher. Check the publisher’s Web
site for more information:

 textbooks.elsevier.com/9780124077263

 Concluding Remarks
 If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod5bugs@mkp.
com or by low-tech mail using the address found on the copyright page.

 Th is edition is the second break in the long-standing collaboration between
Hennessy and Patterson, which started in 1989. Th e demands of running one of
the world’s great universities meant that President Hennessy could no longer make
the substantial commitment to create a new edition. Th e remaining author felt

http://textbooks.elsevier.com/
mailto:cod5bugs@mkp.com
mailto:cod5bugs@mkp.com

xx Preface

once again like a tightrope walker without a safety net. Hence, the people in the
acknowledgments and Berkeley colleagues played an even larger role in shaping
the contents of this book. Nevertheless, this time around there is only one author
to blame for the new material in what you are about to read.

 Acknowledgments for the Fifth Edition
 With every edition of this book, we are very fortunate to receive help from many
readers, reviewers, and contributors. Each of these people has helped to make this
book better.

 Chapter 6 was so extensively revised that we did a separate review for ideas and
contents, and I made changes based on the feedback from every reviewer. I’d like to
thank Christos Kozyrakis of Stanford University for suggesting using the network
interface for clusters to demonstrate the hardware-soft ware interface of I/O and
for suggestions on organizing the rest of the chapter; Mario Flagsilk of Stanford
University for providing details, diagrams, and performance measurements of the
NetFPGA NIC; and the following for suggestions on how to improve the chapter:
 David Kaeli of Northeastern University, Partha Ranganathan of HP Labs,
 David Wood of the University of Wisconsin, and my Berkeley colleagues Siamak
Faridani , Shoaib Kamil , Yunsup Lee , Zhangxi Tan , and Andrew Waterman .

 Special thanks goes to Rimas Avizenis of UC Berkeley, who developed the
various versions of matrix multiply and supplied the performance numbers as well.
As I worked with his father while I was a graduate student at UCLA, it was a nice
symmetry to work with Rimas at UCB.

 I also wish to thank my longtime collaborator Randy Katz of UC Berkeley, who
helped develop the concept of great ideas in computer architecture as part of the
extensive revision of an undergraduate class that we did together.

 I’d like to thank David Kirk , John Nickolls , and their colleagues at NVIDIA
(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm,
Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov)
for writing the fi rst in-depth appendix on GPUs. I’d like to express again my
appreciation to Jim Larus , recently named Dean of the School of Computer and
Communications Science at EPFL, for his willingness in contributing his expertise
on assembly language programming, as well as for welcoming readers of this book
with regard to using the simulator he developed and maintains.

 I am also very grateful to Jason Bakos of the University of South Carolina,
who updated and created new exercises for this edition, working from originals
prepared for the fourth edition by Perry Alexander (Th e University of Kansas);
 Javier Bruguera (Universidade de Santiago de Compostela); Matthew Farrens
(University of California, Davis); David Kaeli (Northeastern University); Nicole
Kaiyan (University of Adelaide); John Oliver (Cal Poly, San Luis Obispo); Milos
Prvulovic (Georgia Tech); and Jichuan Chang , Jacob Leverich , Kevin Lim , and
 Partha Ranganathan (all from Hewlett-Packard).

 Additional thanks goes to Jason Bakos for developing the new lecture slides.

 Preface xxi

 I am grateful to the many instructors who have answered the publisher’s surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition. Th ey include the following individuals: Focus Groups in
2012: Bruce Barton (Suff olk County Community College), Jeff Braun (Montana
Tech), Ed Gehringer (North Carolina State), Michael Goldweber (Xavier University),
Ed Harcourt (St. Lawrence University), Mark Hill (University of Wisconsin,
Madison), Patrick Homer (University of Arizona), Norm Jouppi (HP Labs), Dave
Kaeli (Northeastern University), Christos Kozyrakis (Stanford University),
Zachary Kurmas (Grand Valley State University), Jae C. Oh (Syracuse University),
Lu Peng (LSU), Milos Prvulovic (Georgia Tech), Partha Ranganathan (HP
Labs), David Wood (University of Wisconsin), Craig Zilles (University of Illinois
at Urbana-Champaign). Surveys and Reviews: Mahmoud Abou-Nasr (Wayne State
University), Perry Alexander (Th e University of Kansas), Hakan Aydin (George
Mason University), Hussein Badr (State University of New York at Stony Brook),
Mac Baker (Virginia Military Institute), Ron Barnes (George Mason University),
Douglas Blough (Georgia Institute of Technology), Kevin Bolding (Seattle Pacifi c
University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster
College), Jeff Braun (Montana Tech), Tom Briggs (Shippensburg University), Scott
Burgess (Humboldt State University), Fazli Can (Bilkent University), Warren R.
Carithers (Rochester Institute of Technology), Bruce Carlton (Mesa Community
College), Nicholas Carter (University of Illinois at Urbana-Champaign), Anthony
Cocchi (Th e City University of New York), Don Cooley (Utah State University),
Robert D. Cupper (Allegheny College), Edward W. Davis (North Carolina State
University), Nathaniel J. Davis (Air Force Institute of Technology), Molisa Derk
(Oklahoma City University), Derek Eager (University of Saskatchewan), Ernest
Ferguson (Northwest Missouri State University), Rhonda Kay Gaede (Th e University
of Alabama), Etienne M. Gagnon (UQAM), Costa Gerousis (Christopher Newport
University), Paul Gillard (Memorial University of Newfoundland), Michael
Goldweber (Xavier University), Georgia Grant (College of San Mateo), Merrill Hall
(Th e Master’s College), Tyson Hall (Southern Adventist University), Ed Harcourt
(St. Lawrence University), Justin E. Harlow (University of South Florida), Paul F.
Hemler (Hampden-Sydney College), Martin Herbordt (Boston University), Steve
J. Hodges (Cabrillo College), Kenneth Hopkinson (Cornell University), Dalton
Hunkins (St. Bonaventure University), Baback Izadi (State University of New
York—New Paltz), Reza Jafari, Robert W. Johnson (Colorado Technical University),
Bharat Joshi (University of North Carolina, Charlotte), Nagarajan Kandasamy
(Drexel University), Rajiv Kapadia, Ryan Kastner (University of California,
Santa Barbara), E.J. Kim (Texas A&M University), Jihong Kim (Seoul National
University), Jim Kirk (Union University), Geoff rey S. Knauth (Lycoming College),
Manish M. Kochhal (Wayne State), Suzan Koknar-Tezel (Saint Joseph’s University),
Angkul Kongmunvattana (Columbus State University), April Kontostathis (Ursinus
College), Christos Kozyrakis (Stanford University), Danny Krizanc (Wesleyan
University), Ashok Kumar, S. Kumar (Th e University of Texas), Zachary Kurmas
(Grand Valley State University), Robert N. Lea (University of Houston), Baoxin

xxii Preface

Li (Arizona State University), Li Liao (University of Delaware), Gary Livingston
(University of Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon Institute
of Technology), Yashwant K Malaiya (Colorado State University), Bill Mark
(University of Texas at Austin), Ananda Mondal (Clafl in University), Alvin Moser
(Seattle University), Walid Najjar (University of California, Riverside), Danial J.
Neebel (Loras College), John Nestor (Lafayette College), Jae C. Oh (Syracuse
University), Joe Oldham (Centre College), Timour Paltashev, James Parkerson
(University of Arkansas), Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted
Pedersen (University of Minnesota), Lu Peng (Louisiana State University), Gregory
D Peterson (Th e University of Tennessee), Milos Prvulovic (Georgia Tech), Partha
Ranganathan (HP Labs), Dejan Raskovic (University of Alaska, Fairbanks) Brad
Richards (University of Puget Sound), Roman Rozanov, Louis Rubinfi eld (Villanova
University), Md Abdus Salam (Southern University), Augustine Samba (Kent State
University), Robert Schaefer (Daniel Webster College), Carolyn J. C. Schauble
(Colorado State University), Keith Schubert (CSU San Bernardino), William
L. Schultz, Kelly Shaw (University of Richmond), Shahram Shirani (McMaster
University), Scott Sigman (Drury University), Bruce Smith, David Smith, Jeff W.
Smith (University of Georgia, Athens), Mark Smotherman (Clemson University),
Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M), Timothy
D. Stanley (Brigham Young University), Dean Stevens (Morningside College),
Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander Taubin
(Boston University), Will Th acker (Winthrop University), Mithuna Th ottethodi
(Purdue University), Manghui Tu (Southern Utah University), Dean Tullsen
(UC San Diego), Rama Viswanathan (Beloit College), Ken Vollmar (Missouri
State University), Guoping Wang (Indiana-Purdue University), Patricia Wenner
(Bucknell University), Kent Wilken (University of California, Davis), David Wolfe
(Gustavus Adolphus College), David Wood (University of Wisconsin, Madison),
Ki Hwan Yum (University of Texas, San Antonio), Mohamed Zahran (City College
of New York), Gerald D. Zarnett (Ryerson University), Nian Zhang (South Dakota
School of Mines & Technology), Jiling Zhong (Troy University), Huiyang Zhou
(Th e University of Central Florida), Weiyu Zhu (Illinois Wesleyan University).

 A special thanks also goes to Mark Smotherman for making multiple passes to
fi nd technical and writing glitches that signifi cantly improved the quality of this
edition.

 We wish to thank the extended Morgan Kaufmann family for agreeing to publish
this book again under the able leadership of Todd Green and Nate McFadden : I
certainly couldn’t have completed the book without them. We also want to extend
thanks to Lisa Jones , who managed the book production process, and Russell
Purdy , who did the cover design. Th e new cover cleverly connects the PostPC Era
content of this edition to the cover of the fi rst edition.

 Th e contributions of the nearly 150 people we mentioned here have helped
make this fi ft h edition what I hope will be our best book yet. Enjoy!

 David A. Patterson

This page intentionally left blank

1
Civilization advances
by extending the
number of important
operations which we
can perform without
thinking about them.
Alfred North Whitehead,
An Introduction to Mathematics, 1911

Computer
Abstractions and
Technology
1.1 Introduction 3
1.2 Eight Great Ideas in Computer

Architecture 11
1.3 Below Your Program 13
1.4 Under the Covers 16
1.5 Technologies for Building Processors and

Memory 24

Computer Organization and Design. DOI:
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1
2013

1.6 Performance 28
1.7 The Power Wall 40
1.8 The Sea Change: The Switch from Uniprocessors to

Multiprocessors 43
1.9 Real Stuff: Benchmarking the Intel Core i7 46
1.10 Fallacies and Pitfalls 49
1.11 Concluding Remarks 52
1.12 Historical Perspective and Further Reading 54
1.13 Exercises 54

 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the
excitement of the world of computer systems. Th is is not a dry and dreary fi eld,
where progress is glacial and where new ideas atrophy from neglect. No! Computers
are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore’s Law. Th is unusual
industry embraces innovation at a breath-taking rate. In the last 30 years, there have
been a number of new computers whose introduction appeared to revolutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

Th is race to innovate has led to unprecedented progress since the inception
of electronic computing in the late 1940s. Had the transportation industry kept
pace with the computer industry, for example, today we could travel from New
York to London in a second for a penny. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in San
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change.

4 Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolutions.
Th e resulting multiplication of humankind’s intellectual strength and reach
naturally has aff ected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. Th ere is now a new vein of scientifi c
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

Th e computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications that
were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fi ction.”

■ Computers in automobiles: Until microprocessors improved dramatically
in price and performance in the early 1980s, computer control of cars was
ludicrous. Today, computers reduce pollution, improve fuel effi ciency via
engine controls, and increase safety through blind spot warnings, lane
departure warnings, moving object detection, and air bag infl ation to protect
occupants in a crash.

■ Cell phones: Who would have dreamed that advances in computer
systems would lead to more than half of the planet having mobile phones,
allowing person-to-person communication to almost anyone anywhere in
the world?

■ Human genome project: Th e cost of computer equipment to map and analyze
human DNA sequences was hundreds of millions of dollars. It’s unlikely that
anyone would have considered this project had the computer costs been 10
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover,
costs continue to drop; you will soon be able to acquire your own genome,
allowing medical care to be tailored to you.

■ World Wide Web: Not in existence at the time of the fi rst edition of this book,
the web has transformed our society. For many, the web has replaced libraries
and newspapers.

■ Search engines: As the content of the web grew in size and in value, fi nding
relevant information became increasingly important. Today, many people
rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now aff ect almost every aspect of our
society. Hardware advances have allowed programmers to create wonderfully
useful soft ware, which explains why computers are omnipresent. Today’s science
fi ction suggests tomorrow’s killer applications: already on their way are glasses that
augment reality, the cashless society, and cars that can drive themselves.

 1.1 Introduction 5

Classes of Computing Applications and Their
Characteristics
Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these diff erent applications have diff erent design requirements
and employ the core hardware technologies in diff erent ways. Broadly speaking,
computers are used in three diff erent classes of applications.

Personal computers (PCs) are possibly the best known form of computing,
which readers of this book have likely used extensively. Personal computers
emphasize delivery of good performance to single users at low cost and usually
execute third-party soft ware. Th is class of computing drove the evolution of many
computing technologies, which is only about 35 years old!

Servers are the modern form of what were once much larger computers, and
are usually accessed only via a network. Servers are oriented to carrying large
workloads, which may consist of either single complex applications—usually a
scientifi c or engineering application—or handling many small jobs, such as would
occur in building a large web server. Th ese applications are usually based on
soft ware from another source (such as a database or simulation system), but are
oft en modifi ed or customized for a particular function. Servers are built from the
same basic technology as desktop computers, but provide for greater computing,
storage, and input/output capacity. In general, servers also place a greater emphasis
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. Th ese low-end servers are typically used for fi le storage,
small business applications, or simple web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of tens of thousands of
processors and many terabytes of memory, and cost tens to hundreds of millions
of dollars. Supercomputers are usually used for high-end scientifi c and engineering
calculations, such as weather forecasting, oil exploration, protein structure
determination, and other large-scale problems. Although such supercomputers
represent the peak of computing capability, they represent a relatively small fraction
of the servers and a relatively small fraction of the overall computer market in
terms of total revenue.

Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the
microprocessors found in your car, the computers in a television set, and the
networks of processors that control a modern airplane or cargo ship. Embedded
computing systems are designed to run one application or one set of related
applications that are normally integrated with the hardware and delivered as a
single system; thus, despite the large number of embedded computers, most users
never really see that they are using a computer!

personal computer
(PC) A computer
designed for use by
an individual, usually
incorporating a graphics
display, a keyboard, and a
mouse.

server A computer
used for running
larger programs for
multiple users, oft en
simultaneously, and
typically accessed only via
a network.

supercomputer A class
of computers with the
highest performance and
cost; they are confi gured
as servers and typically
cost tens to hundreds of
millions of dollars.

terabyte (TB) Originally
1,099,511,627,776
(240) bytes, although
communications and
secondary storage
systems developers
started using the term to
mean 1,000,000,000,000
(1012) bytes. To reduce
confusion, we now use the
term tebibyte (TiB) for
240 bytes, defi ning terabyte
(TB) to mean 1012 bytes.
Figure 1.1 shows the full
range of decimal and
binary values and names.

embedded computer
A computer inside another
device used for running
one predetermined
application or collection of
soft ware.

6 Chapter 1 Computer Abstractions and Technology

Embedded applications oft en have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary
to handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers oft en have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in a
plane or cargo ship crashes). In consumer-oriented embedded applications, such as
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded
systems, techniques of redundancy from the server world are oft en employed.
Although this book focuses on general-purpose computers, most concepts apply
directly, or with slight modifi cations, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a
processor written in a hardware description language, such as Verilog or VHDL (see
Chapter 4). The core allows a designer to integrate other application-specifi c hardware
with the processor core for fabrication on a single chip.

Welcome to the PostPC Era
Th e continuing march of technology brings about generational changes in
computer hardware that shake up the entire information technology industry.
Since the last edition of the book we have undergone such a change, as signifi cant
in the past as the switch starting 30 years ago to personal computers. Replacing the

FIGURE 1.1 The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for
all the common size terms. In the last column we note how much larger the binary term is than its
corresponding decimal term, which is compounded as we head down the chart. Th ese prefi xes work for bits
as well as bytes, so gigabit (Gb) is 109 bits while gibibits (Gib) is 230 bits.

Decimal
term Abbreviation Value

Binary
term Abbreviation Value % Larger

kilobyte KB 103 kibibyte KiB 210 2%

megabyte MB 106 mebibyte MiB 220 5%

gigabyte GB 109 gibibyte GiB 230 7%

terabyte TB 1012 tebibyte TiB 240 10%

petabyte PB 1015 pebibyte PiB 250 13%

exabyte EB 1018 exbibyte EiB 260 15%

zettabyte ZB 1021 zebibyte ZiB 270 18%

yottabyte YB 1024 yobibyte YiB 280 21%

 1.1 Introduction 7

0

200

400

600

800

1000

1200

1400

2007 2008 2009 2010 2011 2012

Tablet

Smart phone sales

M
ill

io
ns

PC (not including
tablet)

Cell phone (not
including smart phone)

FIGURE 1.2 The number manufactured per year of tablets and smart phones, which
refl ect the PostPC era, versus personal computers and traditional cell phones. Smart phones
represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest
growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories
are relatively fl at or declining.

PC is the personal mobile device (PMD). PMDs are battery operated with wireless
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs,
users can download soft ware (“apps”) to run on them. Unlike PCs, they no longer
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen
or even speech input. Today’s PMD is a smart phone or a tablet computer, but
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time
of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the traditional server is Cloud Computing, which relies upon
giant datacenters that are now known as Warehouse Scale Computers (WSCs).
Companies like Amazon and Google build these WSCs containing 100,000 servers
and then let companies rent portions of them so that they can provide soft ware
services to PMDs without having to build WSCs of their own. Indeed, Soft ware as
a Service (SaaS) deployed via the cloud is revolutionizing the soft ware industry just
as PMDs and WSCs are revolutionizing the hardware industry. Today’s soft ware
developers will oft en have a portion of their application that runs on the PMD and
a portion that runs in the Cloud.

What You Can Learn in This Book
Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
successful soft ware. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Th us, programmers oft en
followed a simple credo: minimize memory space to make programs fast. In the

Personal mobile
devices (PMDs) are
small wireless devices to
connect to the Internet;
they rely on batteries for
power, and soft ware is
installed by downloading
apps. Conventional
examples are smart
phones and tablets.

Cloud Computing refers
to large collections of
servers that provide services
over the Internet; some
providers rent dynamically
varying numbers of servers
as a utility.

Soft ware as a Service
(SaaS) delivers soft ware
and data as a service over
the Internet, usually via
a thin program such as a
browser that runs on local
client devices, instead of
binary code that must be
installed, and runs wholly
on that device. Examples
include web search and
social networking.

8 Chapter 1 Computer Abstractions and Technology

last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature
of processors and the hierarchical nature of memories. Moreover, as we explain
in Section 1.7, today’s programmers need to worry about energy effi ciency of
their programs running either on the PMD or in the Cloud, which also requires
understanding what is below your code. Programmers who seek to build
competitive versions of soft ware will therefore need to increase their knowledge of
computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary
machine, unraveling the soft ware below your program and the hardware under the
covers of your computer. By the time you complete this book, we believe you will
be able to answer the following questions:

■ How are programs written in a high-level language, such as C or Java,
translated into the language of the hardware, and how does the hardware
execute the resulting program? Comprehending these concepts forms the
basis of understanding the aspects of both the hardware and soft ware that
aff ect program performance.

■ What is the interface between the soft ware and the hardware, and how does
soft ware instruct the hardware to perform needed functions? Th ese concepts
are vital to understanding how to write many kinds of soft ware.

■ What determines the performance of a program, and how can a programmer
improve the performance? As we will see, this depends on the original
program, the soft ware translation of that program into the computer’s
language, and the eff ectiveness of the hardware in executing the program.

■ What techniques can be used by hardware designers to improve performance?
Th is book will introduce the basic concepts of modern computer design. Th e
interested reader will fi nd much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

■ What techniques can be used by hardware designers to improve energy
effi ciency? What can the programmer do to help or hinder energy effi ciency?

■ What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? Th is book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 6).

■ Since the fi rst commercial computer in 1951, what great ideas did computer
architects come up with that lay the foundation of modern computing?

multicore
microprocessor
A microprocessor
containing multiple
processors (“cores”) in a
single integrated circuit.

 1.1 Introduction 9

Without understanding the answers to these questions, improving the
performance of your program on a modern computer or evaluating what features
might make one computer better than another for a particular application will be
a complex process of trial and error, rather than a scientifi c procedure driven by
insight and analysis.

Th is fi rst chapter lays the foundation for the rest of the book. It introduces the
basic ideas and defi nitions, places the major components of soft ware and hardware
in perspective, shows how to evaluate performance and energy, introduces
integrated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the
terminology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted defi nition
of every term in the margins the fi rst time it appears in the text. Aft er a short
time of working with the terminology, you will be fl uent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIe, SATA, and many others.

To reinforce how the soft ware and hardware systems used to run a program will
aff ect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
Th e fi rst one appears below.

Th e performance of a program depends on a combination of the eff ectiveness of the
algorithms used in the program, the soft ware systems used to create and translate
the program into machine instructions, and the eff ectiveness of the computer in
executing those instructions, which may include input/output (I/O) operations.
Th is table summarizes how the hardware and soft ware aff ect performance.

Hardware or software
component How this component affects performance

Where is this
topic covered?

Algorithm Determines both the number of source-level
statements and the number of I/O operations
executed

Other books!

Programming language,
compiler, and architecture

Determines the number of computer instructions
for each source-level statement

Chapters 2 and 3

Processor and memory
system

Determines how fast instructions can be executed Chapters 4, 5, and 6

I/O system (hardware and
operating system)

Determines how fast I/O operations may be
executed

Chapters 4, 5, and 6

acronym A word
constructed by taking the
initial letters of a string
of words. For example:
RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

Understanding
Program
Performance

10 Chapter 1 Computer Abstractions and Technology

To demonstrate the impact of the ideas in this book, we improve the performance
of a C program that multiplies a matrix times a vector in a sequence of
chapters. Each step leverages understanding how the underlying hardware
really works in a modern microprocessor to improve performance by a factor
of 200!

■ In the category of data level parallelism, in Chapter 3 we use subword
parallelism via C intrinsics to increase performance by a factor of 3.8.

■ In the category of instruction level parallelism, in Chapter 4 we use loop
unrolling to exploit multiple instruction issue and out-of-order execution
hardware to increase performance by another factor of 2.3.

■ In the category of memory hierarchy optimization, in Chapter 5 we use
cache blocking to increase performance on large matrices by another factor
of 2.5.

■ In the category of thread level parallelism, in Chapter 6 we use parallel for
loops in OpenMP to exploit multicore hardware to increase performance by
another factor of 14.

Check Yourself sections are designed to help readers assess whether they
comprehend the major concepts introduced in a chapter and understand the
implications of those concepts. Some Check Yourself questions have simple answers;
others are for discussion among a group. Answers to the specifi c questions can
be found at the end of the chapter. Check Yourself questions appear only at the
end of a section, making it easy to skip them if you are sure you understand the
material.

1. Th e number of embedded processors sold every year greatly outnumbers
the number of PC and even PostPC processors. Can you confi rm or deny
this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of conventional computers in your home?

2. As mentioned earlier, both the soft ware and hardware aff ect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

■ Th e algorithm chosen
■ Th e programming language or compiler
■ Th e operating system
■ Th e processor
■ Th e I/O system and devices

Check
Yourself

 1.2 Eight Great Ideas in Computer Architecture 11

 1.2 Eight Great Ideas in Computer
Architecture

We now introduce eight great ideas that computer architects have been invented in
the last 60 years of computer design. Th ese ideas are so powerful they have lasted
long aft er the fi rst computer that used them, with newer architects demonstrating
their admiration by imitating their predecessors. Th ese great ideas are themes that
we will weave through this and subsequent chapters as examples arise. To point
out their infl uence, in this section we introduce icons and highlighted terms that
represent the great ideas and we use them to identify the nearly 100 sections of the
book that feature use of the great ideas.

Design for Moore’s Law
Th e one constant for computer designers is rapid change, which is driven largely by
Moore’s Law. It states that integrated circuit resources double every 18–24 months.
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made
by Gordon Moore, one of the founders of Intel. As computer designs can take years,
the resources available per chip can easily double or quadruple between the start
and fi nish of the project. Like a skeet shooter, computer architects must anticipate
where the technology will be when the design fi nishes rather than design for where
it starts. We use an “up and to the right” Moore’s Law graph to represent designing
for rapid change.

Use Abstraction to Simplify Design
Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as
dramatically as resources grew by Moore’s Law. A major productivity technique for
hardware and soft ware is to use abstractions to represent the design at diff erent
levels of representation; lower-level details are hidden to off er a simpler model at
higher levels. We’ll use the abstract painting icon to represent this second great
idea.

Make the Common Case Fast
Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is oft en simpler than the
rare case and hence is oft en easier to enhance. Th is common sense advice implies
that you know what the common case is, which is only possible with careful
experimentation and measurement (see Section 1.6). We use a sports car as the
icon for making the common case fast, as the most common trip has one or two
passengers, and it’s surely easier to make a fast sports car than a fast minivan!

12 Chapter 1 Computer Abstractions and Technology

Performance via Parallelism
Since the dawn of computing, computer architects have off ered designs that get
more performance by performing operations in parallel. We’ll see many examples
of parallelism in this book. We use multiple jet engines of a plane as our icon for
parallel performance.

Performance via Pipelining
A particular pattern of parallelism is so prevalent in computer architecture that
it merits its own name: pipelining. For example, before fi re engines, a “bucket
brigade” would respond to a fi re, which many cowboy movies show in response to
a dastardly act by the villain. Th e townsfolk form a human chain to carry a water
source to fi re, as they could much more quickly move buckets up the chain instead
of individuals running back and forth. Our pipeline icon is a sequence of pipes,
with each section representing one stage of the pipeline.

Performance via Prediction
Following the saying that it can be better to ask for forgiveness than to ask for
permission, the fi nal great idea is prediction. In some cases it can be faster on
average to guess and start working rather than wait until you know for sure,
assuming that the mechanism to recover from a misprediction is not too expensive
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as
our prediction icon.

Hierarchy of Memories
Programmers want memory to be fast, large, and cheap, as memory speed oft en
shapes performance, capacity limits the size of problems that can be solved, and the
cost of memory today is oft en the majority of computer cost. Architects have found
that they can address these confl icting demands with a hierarchy of memories, with
the fastest, smallest, and most expensive memory per bit at the top of the hierarchy
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in
Chapter 5, caches give the programmer the illusion that main memory is nearly
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of
the hierarchy. We use a layered triangle icon to represent the memory hierarchy.
Th e shape indicates speed, cost, and size: the closer to the top, the faster and more
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy
Computers not only need to be fast; they need to be dependable. Since any physical
device can fail, we make systems dependable by including redundant components that
can take over when a failure occurs and to help detect failures. We use the tractor-trailer
as our icon, since the dual tires on each side of its rear axels allow the truck to continue
driving even when one tire fails. (Presumably, the truck driver heads immediately to a
repair facility so the fl at tire can be fi xed, thereby restoring redundancy!)

 1.3 Below Your Program 13

 1.3 Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated soft ware libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of soft ware that interpret or translate high-level operations into simple computer
instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of soft ware are organized primarily in a
hierarchical fashion, with applications being the outermost ring and a variety of
systems soft ware sitting between the hardware and applications soft ware.

Th ere are many types of systems soft ware, but two types of systems soft ware
are central to every computer system today: an operating system and a compiler.
An operating system interfaces between a user’s program and the hardware
and provides a variety of services and supervisory functions. Among the most
important functions are:

■ Handling basic input and output operations

■ Allocating storage and memory

■ Providing for protected sharing of the computer among multiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, iOS, and Windows.

In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.
Mark Twain, Th e
Innocents Abroad, 1869

systems soft ware
Soft ware that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefi t
of the programs that run
on that computer.

Applications software

Sys
tems software

Hardware

FIGURE 1.3 A simplifi ed view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications, there are oft en multiple layers of application soft ware as well. For example, a database
system may run on top of the systems soft ware hosting an application, which in turn runs on top of the
database.

14 Chapter 1 Computer Abstractions and Technology

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C��, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and in Appendix A.

From a High-Level Language to the Language of Hardware
To actually speak to electronic hardware, you need to send electrical signals. Th e
easiest signals for computers to understand are on and off , and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. Th e two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

Th e fi rst programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At fi rst, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbolic notation to binary. Th e fi rst of
these programs was named an assembler. Th is program translates a symbolic version
of an instruction into the binary version. For example, the programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

Th is instruction tells the computer to add the two numbers A and B. Th e name coined
for this symbolic language, still used today, is assembly language. In contrast, the
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fl uid fl ow or that an accountant
might use to balance the books. Assembly language requires the programmer
to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer.

compiler A program
that translates high-level
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

Th e recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers
that translate programs in such languages into instructions. Figure 1.4 shows the
relationships among these programs and languages, which are more examples of
the power of abstraction.

high-level
programming
language A portable
language such as C, C��,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
language.

FIGURE 1.4 C program compiled into assembly language and then assembled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
Th ese languages and this program are examined in more detail in Chapter 2.

 1.3 Below Your Program 15

swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 multi $2, $5,4
 add $2, $4,$2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)

16 Chapter 1 Computer Abstractions and Technology

A compiler enables a programmer to write this high-level language expression:

A + B

Th e compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages off er several important benefi ts. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientifi c
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. Th ere are also domain-specifi c languages for even narrower groups of
users, such as those interested in simulation of fl uids, for example.

Th e second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in soft ware development
is that it takes less time to develop programs when they are written in languages
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

Th e fi nal advantage is that programming languages allow programs to be
independent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions of
any computer. Th ese three advantages are so strong that today little programming
is done in assembly language.

 1.4 Under the Covers

Now that we have looked below your program to uncover the underlying soft ware,
let’s open the covers of your computer to learn about the underlying hardware. Th e
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
diff erent parts of these four tasks.

When we come to an important point in this book, a point so important that
we hope you will remember it forever, we emphasize it by identifying it as a Big
Picture item. We have about a dozen Big Pictures in this book, the fi rst being the
fi ve components of a computer that perform the tasks of inputting, outputting,
processing, and storing data.

Two key components of computers are input devices, such as the microphone,
and output devices, such as the speaker. As the names suggest, input feeds the

input device
A mechanism through
which the computer is
fed information, such as a
keyboard.

output device
A mechanism that
conveys the result of a
computation to a user,
such as a display, or to
another computer.

 1.4 Under the Covers 17

FIGURE 1.5 The organization of a computer, showing the fi ve classic components. Th e
processor gets instructions and data from memory. Input writes data to memory, and output reads data from
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

Th e fi ve classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
Th is organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these fi ve
categories. To help you keep all this in perspective, the fi ve components of
a computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

The BIG
Picture

computer, and output is the result of computation sent to the user. Some devices,
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s
take an introductory tour through the computer hardware, starting with the
external I/O devices.

18 Chapter 1 Computer Abstractions and Technology

Through the Looking Glass
Th e most fascinating I/O device is probably the graphics display. Most personal
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display.
Th e LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less oft en from refl ected light. Th e rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three-
color components in the fi nal image; in a color active matrix LCD, there are three
transistor switches at each point.

Th e image is composed of a matrix of picture elements, or pixels, which can
be represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display matrix in a typical tablet ranges in size from
1024 � 768 to 2048 � 1536. A color display might use 8 bits for each of the three
colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent
colors to be displayed.

Th e computer hardware support for graphics consists mainly of a raster refresh
buff er, or frame buff er, to store the bit map. Th e image to be represented onscreen
is stored in the frame buff er, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buff er with a simplifi ed design
of just 4 bits per pixel.

Th e goal of the bit map is to faithfully represent what is on the screen. Th e
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

liquid crystal display
A display technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

pixel Th e smallest
individual picture
element. Screens are
composed of hundreds
of thousands to millions
of pixels, organized in a
matrix.

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0, Y0) contains
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X1, Y1).

active matrix display
A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

Th rough computer
displays I have landed
an airplane on the
deck of a moving
carrier, observed a
nuclear particle hit a
potential well, fl own
in a rocket at nearly
the speed of light and
watched a computer
reveal its innermost
workings.
Ivan Sutherland, the
“father” of computer
graphics, Scientifi c
American, 1984

 1.4 Under the Covers 19

Touchscreen
While PCs also use LCD displays, the tablets and smartphones of the PostPC era
have replaced the keyboard and mouse with touch sensitive displays, which has
the wonderful user interface advantage of users pointing directly what they are
interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets
today use capacitive sensing. Since people are electrical conductors, if an insulator
like glass is covered with a transparent conductor, touching distorts the electrostatic
fi eld of the screen, which results in a change in capacitance. Th is technology can
allow multiple touches simultaneously, which allows gestures that can lead to
attractive user interfaces.

Opening the Box
Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly,
of the fi ve classic components of the computer, I/O dominates this reading device.
Th e list of I/O devices includes a capacitive multitouch LCD display, front facing
camera, rear facing camera, microphone, headphone jack, speakers, accelerometer,
gyroscope, Wi-Fi network, and Bluetooth network. Th e datapath, control, and
memory are a tiny portion of the components.

Th e small rectangles in Figure 1.8 contain the devices that drive our advancing
technology, called integrated circuits and nicknamed chips. Th e A5 package seen
in the middle of in Figure 1.8 contains two ARM processors that operate with a
clock rate of 1 GHz. Th e processor is the active part of the computer, following the
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O
devices to activate, and so on. Occasionally, people call the processor the CPU, for
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a
microprocessor. Th e processor logically comprises two main components: datapath
and control, the respective brawn and brain of the processor. Th e datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

Th e A5 package in Figure 1.8 also includes two memory chips, each with
2 gibibits of capacity, thereby supplying 512 MiB. Th e memory is where the
programs are kept when they are running; it also contains the data needed by the
running programs. Th e memory is built from DRAM chips. DRAM stands for
dynamic random access memory. Multiple DRAMs are used together to contain
the instructions and data of a program. In contrast to sequential access memories,
such as magnetic tapes, the RAM portion of the term DRAM means that memory
accesses take basically the same amount of time no matter what portion of the
memory is read.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache memory.

integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

central processor unit
(CPU) Also called
processor. Th e active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath Th e
component of the
processor that performs
arithmetic operations

control Th e component
of the processor that
commands the datapath,
memory, and I/O
devices according to
the instructions of the
program.

memory Th e storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location. Access times
are 50 nanoseconds and
cost per gigabyte in 2012
was $5 to $10.

20 Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Components of the Apple iPad 2 A1395. Th e metal back of the iPad (with the reversed
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To
the far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and off ers
10 hours of battery life. To the far left is the metal frame that attaches the LCD to the back of the iPad. Th e
small components surrounding the metal back in the center are what we think of as the computer; they
are oft en L-shaped to fi t compactly inside the case next to the battery. Figure 1.8 shows a close-up of the
L-shaped board to the lower left of the metal case, which is the logic printed circuit board that contains the
processor and the memory. Th e tiny rectangle below the logic board contains a chip that provides wireless
communication: Wi-Fi, Bluetooth, and FM tuner. It fi ts into a small slot in the lower left corner of the logic
board. Near the upper left corner of the case is another L-shaped component, which is a front-facing camera
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and
accelerometer. Th ese last two chips combine to allow the iPad to recognize 6-axis motion. Th e tiny rectangle
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. Th e
cable at the bottom is the connector between the logic board and the camera/volume control board. Th e
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy
iFixit, www.ifi xit.com)

FIGURE 1.8 Th e logic board of Apple iPad 2 in Figure 1.7. Th e photo highlights fi ve integrated circuits.
Th e large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of
the processor chip inside the A5 package. Th e similar sized chip to the left is the 32 GB fl ash memory chip
for non-volatile storage. Th ere is an empty space between the two chips where a second fl ash chip can be
installed to double storage capacity of the iPad. Th e chips to the right of the A5 include power controller and
I/O controller chips. (Courtesy iFixit, www.ifi xit.com)

http://www.ifixit.com
http://www.ifixit.com

 1.4 Under the Covers 21

FIGURE 1.9 Th e processor integrated circuit inside the A5 package. Th e size of chip is 12.1 by 10.1 mm, and
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or
cores in the middle left of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the
upper left quadrant. To the left and bottom side of the ARM cores are interfaces to main memory (DRAM).
(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buff er for the DRAM
memory. (Th e nontechnical defi nition of cache is a safe place for hiding things.)
Cache is built using a diff erent memory technology, static random access memory
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small,
fast memory that acts as a
buff er for a slower, larger
memory.

static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

http://www.chipworks.com

22 Chapter 1 Computer Abstractions and Technology

As mentioned above, one of the great ideas to improve design is abstraction.
One of the most important abstractions is the interface between the hardware
and the lowest-level soft ware. Because of its importance, it is given a special
name: the instruction set architecture, or simply architecture, of a computer.
Th e instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the
details of doing I/O, allocating memory, and other low-level system functions
so that application programmers do not need to worry about such details. Th e
combination of the basic instruction set and the operating system interface
provided for application programmers is called the application binary interface
(ABI).

An instruction set architecture allows computer designers to talk about
functions independently from the hardware that performs them. For example,
we can talk about the functions of a digital clock (keeping time, displaying the
time, setting the alarm) independently from the clock hardware (quartz crystal,
LED displays, plastic buttons). Computer designers distinguish architecture from
an implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. Th ese ideas bring us to another
Big Picture.

instruction set
architecture Also
called architecture. An
abstract interface between
the hardware and the
lowest-level soft ware
that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, I/O, and
so on.

application binary
interface (ABI) Th e user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
It defi nes a standard for
binary portability across
computers.

implementation
Hardware that obeys the
architecture abstraction.

Both hardware and soft ware consist of hierarchical layers using abstraction,
with each lower layer hiding details from the level above. One key interface
between the levels of abstraction is the instruction set architecture—the
interface between the hardware and low-level soft ware. Th is abstract
interface enables many implementations of varying cost and performance
to run identical soft ware.

The BIG
Picture

A Safe Place for Data
Th us far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off the
power to the DVD player, and is thus a nonvolatile memory technology.

volatile memory
Storage, such as DRAM,
that retains data only if it
is receiving power.

nonvolatile memory
A form of memory that
retains data even in the
absence of a power source
and that is used to store
programs between runs.
A DVD disk is nonvolatile.

 1.4 Under the Covers 23

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and
programs between runs, the term main memory or primary memory is used for
the former, and secondary memory for the latter. Secondary memory forms the
next lower layer of the memory hierarchy. DRAMs have dominated main memory
since 1975, but magnetic disks dominated secondary memory starting even earlier.
Because of their size and form factor, personal Mobile Devices use fl ash memory,
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip
containing the fl ash memory of the iPad 2. While slower than DRAM, it is much
cheaper than DRAM in addition to being nonvolatile. Although costing more per
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged,
and it is more power effi cient than disks. Hence, fl ash memory is the standard
secondary memory for PMDs. Alas, unlike disks and DRAM, fl ash memory bits
wear out aft er 100,000 to 1,000,000 writes. Th us, fi le systems must keep track of
the number of writes and have a strategy to avoid wearing out storage, such as by
moving popular data. Chapter 5 describes disks and fl ash memory in more detail.

Communicating with Other Computers
We’ve explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new personal mobile device
or server without a network interface would be ridiculed. Networked computers
have several major advantages:

■ Communication: Information is exchanged between computers at high
speeds.

■ Resource sharing : Rather than each computer having its own I/O devices,
computers on the network can share I/O devices.

■ Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and
speed make Ethernet useful to connect computers on the same fl oor of a building;

main memory Also
called primary memory.
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
computers.

secondary memory
Nonvolatile memory
used to store programs
and data between runs;
typically consists of fl ash
memory in PMDs and
magnetic disks in servers.

magnetic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material. Because they
are rotating mechanical
devices, access times are
about 5 to 20 milliseconds
and cost per gigabyte in
2012 was $0.05 to $0.10.

fl ash memory
A nonvolatile semi-
conductor memory. It
is cheaper and slower
than DRAM but more
expensive per bit and
faster than magnetic disks.
Access times are about 5
to 50 microseconds and
cost per gigabyte in 2012
was $0.75 to $1.00.

24 Chapter 1 Computer Abstractions and Technology

hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the web. Th ey are typically based on optical fi bers and are
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by
becoming much more ubiquitous and by making dramatic increases in performance.
In the 1970s, very few individuals had access to electronic mail, the Internet and
web did not exist, and physically mailing magnetic tapes was the primary way to
transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the fi rst standardized local area network technology,
developed about 30 years ago, was a version of Ethernet that had a maximum capacity
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if
not a hundred, computers. Today, local area network technology off ers a capacity
of from 1 to 40 gigabits per second, usually shared by at most a few computers.
Optical communications technology has allowed similar growth in the capacity of
wide area networks, from hundreds of kilobits to gigabits and from hundreds of
computers connected to a worldwide network to millions of computers connected.
Th is combination of dramatic rise in deployment of networking combined with
increases in capacity have made network technology central to the information
revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way
computers communicate. Wireless technology is widespread, which enabled
the PostPC Era. Th e ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a signifi cant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmission
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit
diff erent from wire-based networks, since all users in an immediate area share the
airwaves.

■ Semiconductor DRAM memory, fl ash memory, and disk storage diff er
signifi cantly. For each technology, list its volatility, approximate relative
access time, and approximate relative cost compared to DRAM.

 1.5 Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.10 shows the technologies that have

local area network
(LAN) A network
designed to carry data
within a geographically
confi ned area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See Section 1.12.

 1,000,000

 10,000,000

1976 1978 1980 1982 1984 1986

Year of introduction

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

K
ib

ib
it

ca
pa

ci
ty

16K

64K

256K

1M

4M

16M
64M

128M
256M 512M

1G
2G

4G

100,000

10,000

1000

100

10

FIGURE 1.11 Growth of capacity per DRAM chip over time. Th e y-axis is measured in kibibits (210 bits). Th e DRAM industry
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat
closer to doubling every two years to three years.

 1.5 Technologies for Building Processors and Memory 25

been used over time, with an estimate of the relative performance per unit cost for
each technology. Since this technology shapes what computers will be able to do
and how quickly they will evolve, we believe all computer professionals should be
familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. Th e integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. When
Gordon Moore predicted the continuous doubling of resources, he was predicting
the growth rate of the number of transistors per chip. To describe the tremendous
increase in the number of transistors from hundreds to millions, the adjective very
large scale is added to the term, creating the abbreviation VLSI, for very large-scale
integrated circuit.

Th is rate of increasing integration has been remarkably stable. Figure 1.11 shows
the growth in DRAM capacity since 1977. For decades, the industry has consistently
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how manufacture integrated circuits, we start at the beginning.
Th e manufacture of a chip begins with silicon, a substance found in sand. Because
silicon does not conduct electricity well, it is called a semiconductor. With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to
transform into one of three devices:

■ Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

transistor An on/off
switch controlled by an
electric signal.

very large-scale
integrated (VLSI)
circuit A device
containing hundreds of
thousands to millions of
transistors.

silicon A natural
element that is a
semiconductor.

semiconductor
A substance that does not
conduct electricity well.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1
1965 35
1975 Integrated circuit

Very large-scale integrated circuit
Ultra large-scale integrated circuit

Transistor
900

1995 2,400,000
2013 250,000,000,000

26 Chapter 1 Computer Abstractions and Technology

■ Excellent insulators from electricity (like plastic sheathing or glass)

■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of
combinations of conductors, insulators, and switches manufactured in a single
small package.

Th e manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.12 shows that process.
Th e process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot
is fi nely sliced into wafers no more than 0.1 inches thick. Th ese wafers then go
through a series of processing steps, during which patterns of chemicals are placed
on each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

silicon crystal ingot
A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more than
0.1 inches thick, used to
create chips.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

FIGURE 1.12 The chip manufacturing process. Aft er being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). Th ese patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Th en, the wafers are diced into dies (see
Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
Th e yield of good dies in this case was 17/20, or 85%. Th ese good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this fi nal test.

A single microscopic fl aw in the wafer itself or in one of the dozens of patterning
steps can result in that area of the wafer failing. Th ese defects, as they are called,
make it virtually impossible to manufacture a perfect wafer. Th e simplest way to
cope with imperfection is to place many independent components on a single
wafer. Th e patterned wafer is then chopped up, or diced, into these components,

defect A microscopic
fl aw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). Th e number of
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. Th e several dozen partially
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the
masks used to pattern the silicon. Th is die uses a 32-nanometer technology, which means that the smallest
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature
size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size.

 1.6 Performance 27

called dies and more informally known as chips. Figure 1.13 shows a photograph
of a wafer containing microprocessors before they have been diced; earlier, Figure
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to
contain the fl aws, rather than the whole wafer. Th is concept is quantifi ed by the
yield of a process, which is defi ned as the percentage of good dies from the total
number of dies on the wafer.

Th e cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fi t on a wafer. To reduce the
cost, using the next generation process shrinks a large die as it uses smaller sizes for
both transistors and wires. Th is improves the yield and the die count per wafer. A
32-nanometer (nm) process was typical in 2012, which means essentially that the
smallest feature size on the die is 32 nm.

die Th e individual
rectangular sections that
are cut from a wafer, more
informally known as
chips.

yield Th e percentage of
good dies from the total
number of dies on the
wafer.

	Front Cover
	Computer Organization and Design
	Copyright Page
	Acknowledgments
	Contents
	Preface
	About This Book
	About the Other Book
	Acknowledgments for the Fifth Edition

	1 Computer Abstractions and Technology
	1.1 Introduction
	Classes of Computing Applications and Their Characteristics

	1.2 Eight Great Ideas in Computer Architecture
	Design for Moore’s Law
	Performance via Parallelism
	Performance via Pipelining
	Performance via Prediction

	1.3 Below Your Program
	From a High-Level Language to the Language of Hardware

	1.4 Under the Covers
	Through the Looking Glass
	Touchscreen
	Opening the Box
	Communicating with Other Computers

